Internat. J. Math. & Math. Sci. Vol. 2 No. 4 (1979) 669-676

A NOTE ON LOCAL ASYMPTOTIC BEHAVIOR FOR BROWNIAN MOTION IN BANACH SPACES

MOU-HSIUNG CHANG

Department of Mathematics The University of Alabama in Huntsville Huntsville, Alabama 35807 U.S.A.

(Received July 26, 1978)

<u>ABSTRACT</u>. In this paper we obtain an integral characterization of a two-sided upper function for Brownian motion in a real separable Banach space. This characterization generalizes that of Jain and Taylor [2] where $B = \mathbb{R}^n$. The integral test obtained involves the index of a mean zero Gaussian measure on the Banach space, which is due to Kuelbs [3]. The special case that when B is itself a real separable Hilbert space is also illustrated.

<u>KEY WORDS AND PHRASES</u>. Gaussian measures on B-spaces, abstract Wiener spaces, covariance operators, Brownian motion in B-space, upper and lower functions, integral test.

AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 60J65, 60G17.

1. INTRODUCTION

Let B be a real separable Banach space with norm $||\cdot||$ and let B* be the topological dual of B. If μ is a mean zero Gaussian measure on B then it is well known from [1] that B contains a Hilbert space H_{μ} with norm $||\cdot||_{\mu}$ such that $||\cdot||$ is a measurable norm on H_{μ} in the sense of [1]. As a consequence, the B norm $||\cdot||$ is weaker than $||\cdot||_{\mu}$. Thus through a restriction map we have the relation that $B* \subseteq H* \equiv H \subseteq B$. Furthermore, it is also shown in [1] that μ is the extension of the canonical normal distribution on H_{μ} to B and we shall say that μ is generated by H_{μ} . If K denotes the unit ball of H_{μ} in the norm $||\cdot||_{\mu}$, let $\Gamma = \sup_{x \in K} ||x||$. The definition of index of μ , n_1 , is due to xeK Kuelbs [3], where

$$n_1 = \sup \{k: \exists f_1, \ldots, f_k \in B^*; f_1, \ldots, f_k \text{ orthogonal in } H_{i}\}$$

$$||f_{j}||_{B^{*}} = 1 \text{ and } ||f_{j}||_{U} = \Gamma (1 \le j \le k)$$
.

It is known from [3] that n_1 exists and is finite and if B itself is a Hilbert space then n_1 on B equals the multiplicity of the maximal eigenvalue of the covariance operator for μ . Let $\{W(t): 0 \leq t < \infty\}$ denote μ -Brownian motion in B. Let Φ_{ε} denote the class of functions from $(0,\varepsilon)$ to $[0,\infty)$ such that $\phi(t)\uparrow\infty$ as t $\downarrow0$ and $t^{1/2}\phi(t)\downarrow0$ as t $\downarrow0$.

DEFINITION 1. A function $\phi \in \Phi_{\varepsilon}$ is called an upper function for $\{W(t): t > 0\}$ with respect to the norm $||\cdot||$, if given t > 0, there exists a $\delta > 0$ such that $P(||W(t+v) - W(t-u)|| < 2^{1/2}(u+v)^{1/2}\phi(u+v) \Gamma$ for all $u, v \ge 0$ with $0 < u+v < \delta$ = 1. In this case, we say $\phi \in U$. $\phi \in \Phi_{\varepsilon}$ is called a lower function for $\{W(t): t \ge 0\}$ with respect to the norm $||\cdot||$, denoted by $\phi \in L$, if $\phi \notin U$.

In the case that $B = \mathbb{R}^d$, a d-dimensional Euclidean space, Jain and Taylor [2] have shown that $\phi \in \Phi_{\epsilon}$ is an upper function for d-dimension standard Brownian motion {W(t): $0 \le t < \infty$ } with respect to the Euclidean norm $||\cdot||_2$ if and only if $\int_{0+} \frac{[\phi(t)]^{d+2}}{t} e^{-\phi^2(t)/2} dt < \infty$. This integral test for two-sided growth in \mathbb{R}^d is the same as that for one-sided growth in \mathbb{R}^{d+2} . In the case that B is an infinite dimensional real separable Banach space, Kuelbs [3] has shown that $\phi(t)$, a nonnegative, non-decreasing continuous function defined for large values of t, is a one-sided upper function for μ -Brownian motion {W(t): $0 \leq t < \infty$ } with respect to some equivalent norm $||\cdot||_1$ on B if and only if $\int_{0}^{\infty} \frac{\left[\phi(t)\right]^{n_{1}}}{t} e^{-\phi^{2}(t)/2} dt < \infty \text{ where the } \phi \text{ is called one-sided upper function with}$ respect to $||\cdot||_1$ if P $(||W(t)||_1 > t^{1/2}\phi(t)\Gamma$ for only a bounded set of t's) = 1. Based on the results of Jain-Taylor and Kuelbs, it is very natural to conjecture that $\oint e_{c} \Phi_{c}$ is in U (Definition 1) for $\{W(t): 0 \leq t < \infty\}$ with respect to some equivalent norm $||\cdot||_1$ on B if and only if $\int \frac{[\phi(t)]^{n_1+2}}{0+t} e^{-\phi^2(t)/2} dt < \infty$. The main purpose of this note is to verify this conjecture. Throughout this note c will stand for a positive number whose value may change from line to line. The notation $a(h) \sim b(h)$ means $\lim_{h \to 0} \frac{a(h)}{b(h)} = 1$.

2. MAIN RESULTS

The following useful estimates have been used repeatedly in [3] and they can be verified by the argument similar to that in d-dimensional Euclidean space \mathbb{R}^d [4, p. 222].

LEMMA 2. Let $\{W(t): 0 \leq t < \infty$ be Brownian motion in a real separable Banach space B having norm $||\cdot||$. Then for all λ , h > 0

$$P (\sup_{\substack{0 \le t_{1} \le t_{2} \le h}} ||W(t) - W(t_{1})|| > \lambda h^{1/2}) \le (1)$$

$$P (\sup_{\substack{0 \le t \le h}} ||W(t)|| > \lambda h^{1/2}) \le 4P (||W(h)|| > \lambda h^{1/2}).$$

We have the following integral test for a two-sided upper function for $\{W(t): 0 \le t < \infty\}$:

THEOREM 3. Let $\{W(t): 0 \le t < \infty\}$ be μ -Brownian motion in a real separable Banach space B having norm $||\cdot||$, and assume $\phi \in \Phi_{\varepsilon}$. Let n_1 denote the index of μ . Then there is an equivalent norm $||\cdot||_1$ on B such that $\sup_{x \in K} ||x||_1 = \Gamma$ and $\phi \in U$ with respect to $||\cdot||_1$ if and only if

$$\int_{0+}^{} \frac{[\phi(t)]^{n} 1^{+2}}{t} e^{-\phi^{2}(t)/2} dt < \infty .$$
 (2)

PROOF. The construction of the equivalent norm $||\cdot||_1$ is due to [3], which is defined to be

$$||\mathbf{x}||_{1} = \max \{\Gamma ||\pi \mathbf{x}||_{\mu}, ||Q\mathbf{x}||\},$$

where

$$\pi(\mathbf{x}) = \sum_{j=1}^{l} e_j(\mathbf{x}) e_j(\mathbf{x}_{\varepsilon B})$$

and

Q(x) = x -
$$\pi(x)$$
, $e_j(\cdot)$ denotes the linear function $f_j(\cdot)/\Gamma$.
Consider the sequence $a_m = e^{-m/\log m}$, $m \ge 2$. Then $a_{m+1}^{\underline{a}\underline{n}} \sim 1 + (\log m)^{-1}$
as $m \rightarrow \infty$. Let $u_{n,i} = \frac{i}{\log n} a_n$; $v_{n,i} = (1 - \frac{i}{\log n}) a_n$, $0 \le i \le \log n$.
Note that for each i, $u_{n,i} + v_{n,i} = a_n$. If $u, v \ge 0$ are sufficiently
small we can choose an n sufficiently large such that $a_{n+1} \le u + v \le a_n$.

$$E_{n,i} = \{\omega: ||W(t+v_{n,i}) - W(t-u_{n,i})||_{1} > 2^{1/2}a_{n}^{1/2}\phi(a_{n})\Gamma\} \text{ and}$$

$$F_{n,i} = \{\omega: ||W(t+v_{n,i}) - W(t-u_{n,i})||_{\mu} > 2^{1/2}a_{n}^{1/2}\phi(a_{n})\}.$$

Since

 $\{\pi W(t): 0 \le t < \infty\} \text{ is standard } n_1 \text{ dimensional Brownian motion in}$ $\pi B = \pi H_{\mu,} \text{ divergence of the integral (2) implies that}$ $\sum_{\substack{n=2 \\ n=2}}^{\infty} \sum_{i=0}^{n} F(F_{n,i}) = \infty \text{ and infinitely many of } F_{n,i} \text{ occur.}$

Consequently infinitely many of $E_{n,i}$ occurr with probability one. Thus $\phi \in L$.

Now assume that the integral (2) converges. Let us choose a suitable $i \leq \log n$ such that $u_{n,i} \leq u \leq u_{n,i+1}$ and $v \leq v_{n,i-1}$

Then

$$\begin{split} & P(||W(t+v) - W(t-u)||_{1} > 2^{1/2}(u+v)^{1/2}\phi(u+v)\Gamma) \\ & \leq P(||W(t+v) - W(t-u)||_{1} > 2^{1/2}a_{n+1}^{1/2}\phi(a_{n+1})\Gamma) \\ & \leq P(0 \leq t_{1} < t_{2} \leq u_{n,i+1}+v_{n,i-1} ||\pi(W(t_{2}) - W(t_{1}))||_{\mu} > 2^{1/2}a_{n+1}^{1/2}\phi(a_{n+1})) \\ & + P(0 \leq t_{1} < t_{2} \leq u_{n,i+1}+v_{n,i-1} ||Q(W(t_{2}) - W(t_{1}))|| > 2^{1/2}a_{n+1}^{1/2}\phi(a_{n+1})\Gamma). \end{split}$$

Since $\{\pi W(t): 0 \le t < \infty\}$ is standard n_1 dimensional Brownian motion in $\pi B = \pi H_{\mu}$, by the same argument as those in Theorem 3.1 [2], we conclude that the first term in the right hand side of the above inequality being zero for infinitely many n and i. As for the second term in the above inequality, we have

$$P(\underset{0 \le t_1 \le t_2}{\sup} = (u_{n,i+1} + v_{n,i-1}) || Q(W(t_2) - W(t_1))|| > 2^{1/2} a_{n+1}^{1/2} \phi(a_{n+1}) \Gamma) \equiv P(A_{n,i})$$

$$\leq 4P (||QW(1)|| > (\frac{2a_{n+1}}{u_{n,i+1}+v_{n,i-1}})^{1/2} \phi (a_{n+1})\Gamma)$$

$$\leq C \exp\{-\varepsilon \frac{2a_{n+1}}{\mu_{n,i+1}+v_{n,i-1}} \phi^2 (a_{n+1})\Gamma^2\},\$$

Where

$$\varepsilon < 1/2 \sup_{B} \Lambda_{n}^{2}(x) \psi^{Q}(dx), \{\Lambda_{j}\}$$
 is a sequence in B* such that
 $|| \Lambda_{j}||_{B^{*}} = 1 \text{ and } ||x|| = \sup_{j} |\Lambda_{j}(x)|$ for every x ε B.

The last inequality comes from [3, p. 253].

Since
$$u_{n,i+1} + v_{n,i-1} = (1 + 2/\log n)a_n \sim (1 + 3/\log n)a_{n+1}$$
, if

we choose δ be such that ϵ = (1 + $\delta)/2\Gamma$ we have

$$P(A_{n,i}) \leq C \exp \{-\delta \phi^{2}(a_{n+1})\} \exp \{-\phi^{2}(a_{n+1})\}$$
$$\leq C \exp \{-\phi^{2}(a_{n+1})\}$$

Thus

$$\sum_{n=2}^{\infty} \log n$$

$$\sum_{n=2}^{\infty} P(A_{n,i}) < c \sum_{n=2}^{\infty} (\log n) \exp \{-\phi^{2}(a_{n+1})\}$$

$$n=2 \quad i=0 \qquad n=2$$

$$< c \sum_{n=2}^{\infty} [\phi(a_{n+1})]^{n} 1 \exp \{-\phi^{2}(a_{n+1})\}$$

$$< \infty, \text{ since the integral (2) converges}$$

(see Lemma 2.12 of [2]). From Lemma 2.15 (i) of [2] we conclude that $P(A_{n,i}, i.o.) = 0$. Thus

$$P(\sup_{t-u_{n,i+1} \leq t_{1}} \sup \{ t_{2} \leq t+v_{n,i-1} | | W(t_{2}) - W(t_{1}) | |_{1} \leq 2^{1/2} a_{n+1}^{1/2} \phi (a_{n+1}) \Gamma) = 1$$

for all i and n sufficiently large. Thus $\varphi \epsilon U.$

In case that B is a real separable Hilbert space, then n_1 equals the multiplicity of the maximal eigenvalue of the covariance operator for μ . We have the same result as those of Theorem 3.

THEOREM 4. Let $\{W(t): 0 \le t < \infty\}$ be μ -Brownian motion in a real separable Hilbert space H with norm $||\cdot||$, and suppose $\phi \in \Phi_{\epsilon}$. Then ϕ

674

is in U with respect to the given norm $||\cdot||$ if and only if

$$\int_{0+}^{-\frac{[\phi(t)]^{n_{1}+2}}{t}} e^{-\phi^{2}(t)/2} dt < \infty,$$
(3)

Where n_1 denotes the multiplicity of the maximal eigenvalue of the covariance operator for μ .

PROOF. Let sequence $\{a_n\}$, $\{u_{n,i}\}$ and $\{v_{n,i}\}$ be the same as those in the proof of Theorem 3. If $u, v \ge 0$ are sufficiently small we choose n sufficiently large such that $a_{n+1} \le u+v < a_n$ and then fix $i \le \log n$ such that $u_{n,i} \le u \le u_{n,i+1}$ and $v \le v_{n,i-1}$. If the integral (3) diverges, then we proceed as those in Theorem 3 and conclude that $\phi \in L$. Now if the integral (3) converges define

$$B_{n,i} = \{\omega: t - u_{n,i+1} \leq t_1 \leq t_2 \leq t + v_{n,i} | |W(t_2) - W(t_1)| | > 2^{1/2} a_{n+1}^{1/2} \phi(a_{n+1})\Gamma \}.$$

Then

$$\begin{split} \mathbb{P}(\mathbb{B}_{n,i}) &\leq 4\mathbb{P}(||\mathbb{W}(1)|| > (\frac{2a_{n+1}}{u_{n,i+1}+v_{n,i-1}})^{1/2} \phi (a_{n+1})\Gamma) \\ &\leq \mathbb{C}[\phi(a_{n+1})] \stackrel{n_{\overline{1}}^2}{=} \exp (-\frac{a_{n+1}\phi^2(a_{n+1})}{(u_{n,i+1}+v_{n,i-1})\lambda}) \\ &\leq \mathbb{C}[\phi(a_{n+1})] \stackrel{n_{\overline{1}}^2}{=} \exp \{-\phi^2(a_{n+1})\} \end{split}$$

Where λ is the maximal eigenvalue of the covarience of μ and it is known that $\lambda = \Gamma^2$ [3]. The last inequality comes from [3] and the fact that

$$u_{n,i+1}+v_{n,i-1} \sim \frac{a_{n+1}}{1+3(\log n)^{-1}}$$
.

Thus

$$\sum_{n=2}^{\infty} \sum_{i=0}^{\log n} P(B_{n,i}) < C \sum_{i=0}^{\infty} \sum_{n=2}^{\log n} [\phi(a_{n+1})]^{n} 1^{-2} \exp \{-\phi^{2}(a_{n+1})\}$$
$$= C \sum_{n=2}^{\infty} [\phi(a_{n+1})]^{n} \exp \{-\phi^{2}(a_{n+1})\} < \infty \text{ since}$$

the integral (3) converges. From Lemma 2.15 (i) we have $P(B_{n,i}, i.o.) = 0$.

That is $P(B_{n,i}^{C}) = 1$ for sufficiently large i and n. Thus $\phi \in U$.

REFERENCES

- Gross, L. <u>Abstract Wiener Spaces</u>, Proc. Fifth Berkeley Symposium on Math Statistics and Probability, (1965) 31-42.
- Jain, N. C. and Taylor, S. J. Local Asymptotic Laws for Brownian Motion. <u>The Annals of Probability, Vol. 1, No. 4</u> (1973) 527-549.
- Kuelks, J. Sample Path Behavior for Brownian Motion in Banach Spaces. <u>The Annals of Probability, Vol. 3</u>, No. 2 (1975) 247-261.
- Taylor, S. J. Exact Asymptotic Estimates of Brownian Path Variation. Duke Math. J. 39, (1972) 219-241.