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ABSTRACT. A study is made of the generation of SH-type wves at the free surface

of a layered anlsotroplc elastic medium due to an impulsive stress discontinuity

moving with uniform velocity along the interface of the layered medium. The exact

solution for the displacement function is obtained by the Laplace and Fourier

transforms combined with the modified Cagnlard method. The numerical results for

an important special case at two different distances are shown graphically. The

results of the present study are found to be in excellent agreement with those

of isotropic elastic media.
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i. INTRODUCTION.

In recent years an attention has been given to problems of generation and

propagation of waves in anlsotropic or inhomogeneous elastic solids. The solutions

of these problems in various geometrical configurations, and in layered media are

important in geophysics, seismology, acoustics and electromagnetism. Available

information strongly suggests that layered media, crystals, and various new materials

such as reinforced plastics, flbre-relnforced metals, and composite materials are

essentially anlsotropic and/or inhomogeneous in nature. Naturally, there is a

growing need for elastodynamlcal analysis of anlsotroplc and/or inhomogeneous

problems in elastic materials.

Some recent works on the generation and propagation of waves in layered iso-

tropic or anlsotroplc elastic media may be relevant to mention with a brief descrlp-

tion in order to indicate our motivation. Anderson [i] made an interesting study of

elastic wave propagation in layered anlsotroplc media with applications. He

discussed the period equations for waves of Raylelgh, Stoneley, and Love types. It

was shown that anisotrophy can have a pronounced effect on both the range of

existence and the shape of the dispersion curves. Finally, the single layer solu-

tlons in an anisotroplc medium were generalized to n-layer media by the use of

Haskell matrices.

Elastic properties are generally anlsotroplc (transversely isotroplc) in

sedimentary layers. Studies of Uhrlng and Van Melle [2], and Anderson and Harkrlder

[3] have indicated that anlsotrophy is also present in the near surface layers,

and in the crust and upper mantle regions of the earth. It has been observed that

the transition region between the crust and mantle is not a single layer but is

possibly formed by a set of thin layers. Nag [4] made an investigation of the

generation of SH-type waves at the free surface of an isotroplc elastic layered

medium due to an impulsive stress discontinuity moving with constant velocity after

creation along the interface of the medium. In a subsequent paper Nag and Pal [5]
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solved a problem similar to that of Nag with a shearing stress discontinuity at the

interface of two layers of finite thickness overlying a semi-inflnlte medium of

different elastic constants. Mention may also be made of the work on forced

vibrations of an anlsotropic elastic spherical shell due to an uniformly distributed

internal and external pressure by Sheehan and Debnath [6].

The purpose of this paper is to study the generation of SH-type waves at the

free surface of a layered anlsotroplc elastic medium due to an impulsive stress

discontinuity moving with uniform velocity along the interface of the layered medium.

The displacement function is obtained for two different types of discontinuity in the

shearing stress. The numerical solution for one case at two different distances is

shown graphically. Some special cases of physical interest are examined.

2. MATHEMATICAL FORMULATION OF THE PROBLEM.

We consider an anlsotroplc elstlc layer of thickness h with elastic constants

LI, N
1

and Pl
over an anlsotropic half-space with constants L2, N

2
and P2"

The geometrical configuration of the anlsotroplc wave problem is depicted in Figure I.

With the z-axls directed vertically downwards, the transversely Isotroplc layered

structure is referred to a rectangular Cartesian coordinate system with the origin at

the interface (z=0) of the layers I and II as shown in Figure i. The wave gener-

atlng mechanlsn is a shearing stress discontinuity which occurs suddenly at the

interface and then moves with constant velocity V in the positive x-dlrectlon

along the interface. Since only the SH-type waves are considered, we can assume

that the displacement fields u--w=0 and v is a function of space variable x, z

and t.

Neglecting body forces and assuming small deformations, the equations of motion

in the two layers can be written, with the usual notations, in the form

2vi 32vi 32vi
i 2 Ni 2 + Li 2
t 3x z

t > 0, (2.1ab)
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where i 1,2, vI
and v

2
represent the displacement functions in the layers I

and II respectively.

LI’NI’PI Ill-
o +

L2 N202

GEOMETRY OF THE PROBLEM

FIG. I.

The boundary conditions are, in the usual notations,

(yz)l 0 at z -h, t > 0 (2.2)

vI v2
at z- 0, t > 0 (2.3)

(z) I
(yr)

2
S(x,t) H(t) at z 0 (2.4)

where S(x,t) is a function of x and t; H(t) is the Heavislde unit function

of time t, and the shearing stress in an anisotroplc medium is given by- v
i(yz)

i
L
i ---, i i, 2 (2.5ab)

We complete the formulation of the problem by assuming the appropriate initial

conditions and the existence of the Laplace and Fourier transforms of the functions

vi(x,z;t) with respect to time t and distance x respectively.
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3. THE SOLUTIO OF THE PROBLEM.

The above problem can readily be solved by using the Laplace and Fourier

transforms combined with the modified Cagnlard metho& The Laplace transform with

respect to t and the Fourier transform with respect to x are defined by

(,z;p)v I e-iXdx I e-pt v(x’z;t)dt’

where the tilda and the bar deote the lplace an4 t Fourier transforms respectively.

Application of the le tranBforms (3.i) to equations (2.1ab) give the

solutions in the upper loer layers with v2
/ 0 as z / in the form

l(X’z;P) I (A cosh sl z + B sinh nsl z) eiXd, (3.2)

v2(x,z;p) C exp (ix- ns2 z)d, (3.3)

where the constants A, B and C are to be determined from the boundary conditions

(2.2) (2.4);

i

nsl =(p2/ 2 + 2/2)2 i- 1 2

1 1L
i .Ni.7

81i (i)2 82i %pi

(3.4ab)

(3.5ab)

/ is the anisotropic parameter for the two layers I and II.and @i 82i 811
It follows fro the bom4ary conditions (2.2) (2.3) that

A C, B cosh slh A slnh nslh,

We now consider to different forms of the functions S(x,t).

Case (1): S(x,t) P, a < x < b + Yt [
@, elsewhere

(3.6ab)

(3.7)

where P is a constant.

This case implies that the stress discontinuity is created in the region x a
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to x b and then expands with constant velocity V in the x-dlrectlon. In

particular, when a b 0, the discontinuity is created at the origin and then

expands with uniform velocity V in the x-dlrectlon. When the disturbance expands

in both directions after creation, this solution is to be added to the solution for

negative values of x.

It follows from the transformed boundary condition (2.4) combined with (3.7)

that

BLI sl + CL2 s2
p [e-la e-ib e-ib J2p

+
i + p/V (3.8)

With the aid of (3.6ab) and{3.8), we solve for the three constants A,B,C;

and then write down the integral solution for the displacement function at the free

surface z -h in the form

P I exp (ix)
Vl(X, h,p) =Tp (Llnslsinh nsl h + L2 ns2 cosh nsl h)

e-iX_e-ib e-ib ]i
+ i+p/V d

p i exp(ix-hnsl) le-ia-e-ib- (Llsl+L2s2) i i+p/V I Ke d,

(3.9)

where K(<I) represents the reflection parameter given by

Llsl-L2ns2K (3.10)
Llsl+L2s2

Using the inverse Laplace transform, we can rewrite (3.9) in a convenient form

Vl(X -h;p) [-i(I
1 + 12 + 13),

where L-I stands for the inverse Laplace transform and

_2hslh_I
P (l-Ke ,1

Ii -- i (LInsl+L2ns2)

(3.11)

exp(fxI hnsl)d, (3.12)
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exp(ix2 hsl)d, (3.13)

_2hnsl)_I
13
P (I-K e
p (i+p/V) (Llsl+L2s2)

exp(ix
2 hnsl)d, (3.14)

with xI x a and x2 x b.

In order to evaluate the Laplace inversion integral, we shall use the modified

Cagniard method due to Garvin [7] who discussed the contour integration and mapping

in detail. It may be fair to avoid duplication of mathematical analysis similar to

that of Garvin, and to quote some necessary results from that paper without proof.

We next substitute p/811 in (3.4ab) and 3.10) so that

1 2 1
2 - L 811 2 2)L (i + 2@i) s2 2 + @2nsl 811 811 12

i

8.I
2 i

and LI(I+2@12)2 L2( 12 + 2@22)2
812K= I 2 i

LI(I+2012) + L2(811 2 2

S122
+ 2

(3.15ab)

(3.16)

We thus obtain

-2hnsl
2P

Im [ exp’iXl-hnsl" (i + K e
Ii - I (Llnsl+L2ns2

0

+ K
2 -4hnsl

e + ...)d, (3.17)

where nsl and s2 are given by (3.15ab).

Denoting the first term of I, in (3.17) by Iii, we get

2P
Iii 2

P 1811
Im

exp p{_iXl+h(l+2@l2)2} / 81 d

2@12)’"
2 1 ]1

L2 811+ q (8122 + 2@22
(3.18)

The integrand of (3.18) has singularities at 0, _+ i/@l and

+_ i 811/@2812. Setting
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i

t [-ixI + h(l + 212) 21811 (3.19)

so that the inversion gives

1

(t) 811
[itxI + h{t

2 2
h
2 2 2--]

(x12+h212) (Xl + i )8112} (3.20)

The singularities in the -plane are shown in Figure 2, and the mapping and contour

in the t-plane are depicted in Figure 3. Making reference to these Figures and to

the paper [4], we find

t

i-i 2P I(t T)G
I [I, (T)]dTIll- ’111 ,1 1

0

(3.21)

iwhere t[tH(t)] and

i 2 i

GI t[(t)] Im[{l + 12 2 (t)} + L2 {811 + 2 2 (t)}2]I,I q 812 2 I,i

I
-i d + h2i2)281 },x i,i d- I,I (t) H{t (Xl

2 i

i

Since h181I
< t < (x12 + h212)281i the expression

1 2 1

[{i + 2 2 L2 {811 + 2 (t)}
i,I (t)l } +q 8122 22 i,I

is real.

out that

(3.22)

In general, it turns

t

t-Ill 2P I (t )GI [i (T)]dT,n P1811 ,n ,n
0

(3.23)

where

G1 ,n

I 2 I

[i (t)] Im[{l + 12 2, } 52 2
(i n(t) + { 811 + 22i t)}.n 8122 ,n

1

x i
I d l,n(t)H{t (x12 + n2h212)TBll}n dt

(3.24)

and
i

(x12+n2h2l2)
2 2 n2h212) 812}2] n{l,n(t)

Ell
[ix,t + nh{t (xI + I, 3, 5

(3.25)
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PLANE SHOWING THE SINGULARITIES
FIG.2.

PLANE SHOWING THE MAPPING AND THE CONTOUR
FIG.
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so that

t-lI . t-lIl,n, (3.26)i n=1,3,5...

Sinilarly, we obtain

t-lI
2 Z t-iI2 n (3.27)

n=1,3,5...

A similar procedure gives that

L-11 [ L-II3,n (3.28)3
n=1,3,5...

where
t

L-II3 2P. f (t T)G
3 [2, (T)]d (3 29),n PlBll ,n n

0
1 2 1L

2G3 [2 (t)] Re[{I + i
2 2 (t)}2 + {811 2 2 (t)}2]

,n ,n 2,n q 8122 + 2 2,n

n-i 1"811 (t) ]-I K -- d 2,n(t) 2 n2h2l2x I-V- + i2,n 2,n dt H{t (x2 + ) [i}, (3.30)

and 2,n(t) is given by (3.25) with x
2

in place of xI.
Finally, a simple combination of the results (3.26) (3.28) gives the exact

value of the free surface displacement field Vl(X, h,t).

Case(ll): S(x,t) Ph (x Vt), (3.31)

where P is a constant, (r) is the Dirac distribution and a factor h is

included in (3.31) so that P has the dimension of stress.

The boundary condition (2.4) given

Ph
BLlnsl + CL2ns2 "2 V(i+P/V)’ (3.32)

Solving A, B, and C from (3.6 ab) and (3.32), we obtain the solution as

Ph (I+K e +.vl(x, -h;p)
(Llsl+L2s2) (. exp(ix hsl)d (3.33)
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A procedure similar to that of Case (i) gives the solution in the form

vl(x, -h,t)

,t

2Ph I 10 Gn[n(T)]dT,rVSll n=1,3,5
(3.34)

where

1 2 I
L2 {811 2Gn[n(t)] Re[(1 + #12n2(t)}2

+i 8122 + .22n }

811
(t) ]-i

d n(t) n-i n2h2#12)lt--+ in dt
K 2

n(t) H{t (x2 + 2 8111, (3.35)

and
1

811 2 (x2 + n2h2l2)n(t) [itx + nh{t
(x2+n2h212) (3.36)

If the stress discontinuity is taken as H(x) H(x Vt) in place of

(x Vt), the coresponding result on the right hand side of (3.33) differ only

by a constant factor from 13 (with a b 0) in (3.12) (3.14).

4. RICAL RESULTS

It is of interest to consider the initial behavior of the displacement field

vl(x,- h,t) for case (ll) numerically.

Following Nag and Pal [5], motion due to each of the pulses at the instant of

their arrival has been investigated. We consider the following numerical values:

#I 0.9, 2 I.I, L2/L1 1.33, 811/V 1.21, 811/812 1.02.

The initial behavior of Vl(X h,t) at two different distances is examined.

(i) When x 5h, t
h

for sx initial values, we have
811

KiVl(X, -h, t) ’ [A(01)cosh-1 tt(: 5.2) +

T+ A(e3)cosh-I H(z 6.3) + A(e5)cosh-i 8-- H(T 8.2)

T+ A(eT)cosh-I I-.i H(r I0 I) + A(e9)cosh-i H(, 12.6) +

+ A (811) csh-I 15. H( 15.2)], (4.1)
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2.42 P Pl
where KI -811
and

n-i

[(I-1.76cos28 )1/2- 0.95(1.04 2.1cos28 )1/2] 2
sin 8

A(8 Re n n n
n

(i-i. 76cos2e
n

n-3

i/2+ 0. 95 (l 04_2 .1cos2e )i/2] 2 (1.2- cose
n n

(4.2)

n I, 3, 5,

Th(2) When x 10h, t for six initial values, we have
811

T H(T- I0 08) +KlVl(X -h, t) [A(81)cosh-i 10.08

+ A(83)csh-I 10.71T H(T- i0.71) +

(4.3)

+ A
o (85)cosh-I T

ii 94 H(T ii 94) + A(87)cosh-I T

13.64 H(T- 13.64) +

+ A(89)cosh-i TT H(T 15 5) + A(811)cosh-i 17 6253 H(T 17.62)], (4.4)

where A(8 ), n i, 3, 5, are given by (4.3).
n

Values of A(8 ), n 1, 3, 5, for x 5h and x 10h are tabulated

below:

TABLE i.

A(Sn A(81 A(e3 A(85 A(87 A(89 A(ell

x 5h 0.74 -0.301 0.052 -0.122 0.0009 -0.00012

x 10h 0.23 -0.02 0.0165 -0.0035 0.00055 -0.0002

5. DISCUSSION AND CONCLUSIONS.

The exact form of the displacement field due to physically realistic shearing

stress discontinuity has been obtained. The value of KlVl(X,-h,t) for x 5h

and x 10h have been plotted against T1
T T

0
where T0

is the time at

which the disturbances arrive at the point of observation. The values of for
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8O

SO

I0

0 2 3 4 ) 0 7 $ 9 I0 II 12

FIG.4.

x 5h and x 10h are 5.2 and 10.08 respectively. These results are shown

in Figure 4. It is clear from Figure 4 that the curves start from the origin and

undergo sharp changes in their slopes with sudden Jerking as the dfferent pulses

arrive after undergoing reflections from the boundaries of the anlsotropc layers.

(52 2 1/2
These changes occur for x 5h at T + 0.81 n n i, 5, 9,....; and

102 2 1/2
for x 10h at T + 0.81 n n i, 5, 9, We also infer that

the contribution due to the third pulse for x 10h will arrive n a shorter tme

than for x 5h.

In addtlon to above two special disturbances, the present analyss ncorporates

other forms of physically realistic stress discontinuity for the generation of SH
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type waves in both isotropic and anisotropic elastic media.

In the case of the layered isotropic media, i i, i 1,2; the results of

the present analysis reduce to those of Nag [4] for the corresponding isotropic

problem.

Finally the shearing stress discontinuity is always associated with the

propogation of cracks in earthquakes. Hence the present study has direct applica-

tions to geophysics and seismology. In addition, the present study is of interest

in connection with the propagation of cracks in sedimentary layers, and in particu-

far in elastic layers having anisotropic property in general.
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