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ABSTRACT. A well-known theorem of N. Jacobson states that any periodic

associative ring is commutative. Several authors (most notably Kaplansky and

Hersteir0 generalized the "periodic polynomial" condition and were still able to

conclude that the rings under consideration were commutative. (See [3]) In

this paper we develop a structure theory for a class of rings which properly

contains the periodic rings. In particular, an associative ring R is said to be

a quasi-anti-integral (QAI) ring if for every a # 0 in R there exist a positive

integer k and integers nl,n2,...,nk (all depending on a), so that 0 nla n2a2+.
k+ nka In the main theorems of this paper, we show that any QAl-ring is a sub-

direct sum of prime QAl-rings, which in turn are shown to be left and right

orders in division algebras which are algebraic over their prime fields.
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I. INTRODUCTION.

In this paper we give a characterization of an associative ring which satisfies

an algebraic condition over the integers. This condition can be viewed as a natural

generalization of one studied by Osborn for a power-associative ring (i.e. a ring

in which the subring generated by each element is associative). As in [5] R will

be called periodic if for every element a of R, there exists an integer n=n(a)

n
greater than 1, such that a a. In [5, p. 321l Osborn proves the following

theorem which relates the periodic property to a more general kind of algebraic

condition.

THEOREM i. The following are equivalent for a power-associative ring R:

i. R is a periodic ring.

2. Every element a of R is anti-integral over the ring of integers. That is,

there are integers k,n2,n3, n
k

depending on a so that

k k-i 2
nka + nk_la + + n2a + a 0.

3. R is a discrete direct sum of ideals each of which is an algebraic algebra

over a periodic prime field and contains no nonzero nilpotent elements.

It follows that if R is a periodic ring, then R T(R), where

T(R) {x E Rlnx- 0 for some integer n 0} is the torsion ideal of R. In

this paper we consider a class of associative rings, which are not necessarily

equal to their torsion ideals, but which satisfy a generalized antl-integral

relation. In particular, if F is a commutative, associative ring with i, and

R is a power-associative F-algebra, then a nonzero element a of R is said to

be quasi-a,ti.i.ntegral (QA.I). over F if there are ’scalars’ nl, n2, n
k

2 k
in F (depending on a) such that 0 @ nla n2a + + nka R is a QA!-

algebra over F if every nonzero element of R is QAI over F.

After developing some of the basic properties of QAl-algebras over Z, the

ring of integers, we show that a prime associative ring which is QAI over Z is
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a left and right order in a division algebra which is algebraic over its prime

field, and conversely. We then show that an arbitrary associative QAl-algebra

over the integers is a subdirect sum of prime QAl-rings. We present an example

to show that not every such subdirect sum yields a QAl-ring.

2. PROPERTIES OF QAI-ALGEBRAS.

For the remainder of this paper, unless specifically stated otherwise, the

term ring will mean associative ring without any assumption being made about

the existence of a unity element. If R is a ring which is a QAl-algebra over

Z we will simply call R a QAl-ring. If R is a ring, then a ring Q(R) is said

to be a left quotient ring for R and R is called a left order in Q(R) provided

(i) there is a monomorphism h of R into Q(R) such that (ii) if x is a regular

element (i.e. one which is neither a left nor a right zero divisor) in R, then

h(x) is invertible in Q(R), and (iii) Q(R) consists of all elements of the

form h(a)-lh(b) for a, b in R with a regular in R. Right quotient ring and

right order are defined in a similar manner. If R has a left quotient ring

Q(R), we will often assume that R is a subring of Q(R) and so dispense with

the monomorphism h.

We state the following well-known results for future reference. See

[ 5 ], 3 ] for their proofs.

LEMMA 2. If R is a left order in Q(R) and xI, x2, Xn are arbi-

trary elements of Q(R), then there are elements a, bI, b2, bn in R,

-ibiwith a regular in R, such that x
i

a (i i, 2, n).

LEMMA 3. Suppose that R is an F-algebra, where F is a commutative and

associative ring with i and with a left quotient ring Q(F). Then every element

-i
x in Q(F) @F R can be written as x c @ r for c regular in F and some r in R.

The following lemma is well-known in its more general form, but we state

it here and use it only for associative rings considered as algebras over Z.
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The proof in the general case may be found in [ 5, p. 189 ]
LEMMA 4. Suppose R is an associative algebra over the ring of integers

Z, and that T(R) (0). Then the map f from R into Q Z R given by

f(r) 1 8 r is a ring monomorphlsm. (Q is the field of rationals)

We observe that if A is a prime periodic ring of characteristic p # 0,

then A is a periodic field and so A is a left order and in fact A Q(A).

In fact, the class of periodic fields is precisely the class of prime periodic

rings which are left and right orders in fields of nonzero characteristic which

are algebraic over their prime fields.

It follows from Theorem i that any periodic ring is a QAl-rlng. In the

characteristic zero case we will show that QAI rings play a role similar to

that of periodic rings in characteristic p.

LEMMA 5. Let D be any division algebra of characteristic zero which is

algebraic over Q and suppose R is a subrlng of D. R is a QAl-rlng.

PROOF. Let a be a nonzero element of R. Since D is Q-algebralc, there

is a polynomial p(x) r xn
n + + r2x2 + rlx + r

0
in Q[x] such that

p(a) 0. Assume such a polynomial of minimal degree has been chosen. Since

a is not a zero divisor we may assume r
0

O. But then

0 r0a -(r a
n+l + + r2a3 + rla2). Suppose r

i cidi
-1

and let d be
n

the least common multiple of dO dI, dn. Then dr
i

is an integer for

dr0a
n+l dr2a3 so a is QAI,i 0, I, n and 0 -dr a drla2n

and R is a QAl-ring.

The class of QAl-rings, although containing the periodic rings, can now

be seen to be quite different from the class of periodic rings. The ring of

integral quaternions is a noncommutative QAl-ring (compare with [2, Thm. Ii]).
A periodic ring is Jacobson semisimple since every element generates an

idempotent, while the subring of Q consisting of all quotients of the form
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2r/2s+l, (2r,2s + i) I, is a Jacobson radical ring which is also QAI by

Lemma 5.

THEOREM 6. Let R be an associative QAl-ring with torsion ideal T(R).

Then

(a) R has no nonzero nilpotent elements, and thus every

idempotent of R is contained in the center of R, Z(R).

(b) T(R) is a QAl-ring in its own right with the following

decompositions:

(i) T(R) is a periodic ring which is a direct sum of

algebraic Z -algebras each of which has no nilpotent
P

elements.

(ii) T(R) is a periodic ring which is a subdirect sum of

primitive periodic rings (i.e. a subdirect sum of

periodic fields).

(c) If S is any subring of R, then S is a QAl-ring.

(d) Any homomorphic image of R which is torsion-free is a QAl-ring.

PROOF. (a) It suffices to prove that R has no nonzero elements which

square to 0. Let r # 0 be an element of R. Then there are integers

2 3 k
n, k, a2, a3, a

k
such that 0 nr a2r + a3r + + akr Then

2 2+i
clearly, r 0 implies r 0 for all positive integers i and this yields,

a2r2 + a3r3 + + akrk 0 a contradiction. Thus r
2

0 and hence R has

2
no nonzero nilpotent elements. If e e and x is an arbitrary element of

R, then (ex- exe) 2
0 (xe exe) 2. Thus ex exe xe and so e is in

Z(R).

(b) T(R) is an ideal of R and it is clear that the property of being

QAI is inherited by subrings, so T(R) is itself a QAl-ring.
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(i) Let R {x in Rlpmx 0 for some positive integer m},
P

for each prime number p. R is a subset of T(R) and is in
P

fact an ideal of R and hence of T(R). T(R) is actually a

discrete direct sum of the collection of ideals {R p a
P

prime. Let x be an arbitrary element of R There exists
P

m
a positive integer m such that p x 0. This implies

mm i(px)m p x (pmx)xm- 0 so px is a nilpotent element

of R. By (a), px 0 and hence R is an algebra over Z
P P

Also 0 nx a2x2 + a3x3 + + atxt where n, a2, a
t

are integers which may be considered as coefficients from Z
P

since nx # 0. Therefore, each R is an algebraic Z -algebra
P P

with no nonzero nilpotent elements and so a periodic ring by

Theorem i.

(ii) By (i) T(R) is a periodic ring and by [2 Thin. ii] T(R) is

commutative. If a is an element of T(R), then for some

m
positive integer m greater than I, a a which implies

m-I
e a is an idempotent. But the Jacobson radical J(T(R))

contains no Idempotents which yields a is not an element of

J(T(R)). Thus J(T(R)) (0) and T(R) is a subdirect sum of

primitive rings which must also be commutative and periodic,

since they are homomorphic images of T(R). Therefore T(R) is

a subdirect sum of periodic fields.

(c) This is clear since the QAl-property is an element-wlse condition.

(d) If I is an ideal of R for which R/I is torslon-free, then R/I is

a QAl-rlng follows from the fact that

0 # na n2a2 + n3a3 + + nkak implies

0 # na n22 + n + + nka if a a + I @ 0 in R/I.
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LEMMA 7. If T(R) 0 then R is a QAl-ring if and only if every element of

R satisfies some polynomial with integer coefficients and has no nonzero

nilpotent elements.

PROOF. The necessity follows directly from Theorem 6. Conversely, let w

t
be a nonzero element of R. Then there is some polynomial p(x) a x + +

t
2

a2x + alx with a1, a2, a
t

Integers so that p(w) O. If a1 0 then

alw 0 and we are finished. Otherwise, let k be minimal so that akw 0 and

t-(k-l) + + ak+lw2 + akw. If z 0, w is QAI Otherwise, z @ 0set z arw
k+lbut z 0, a contradiction. Therefore R is a QAl-ring.

It will sometimes be convenient to use the obviously equivalent form of

the definition: a in R is QAI if and only if there exists a polynomial

a2x2 akxkp(x) alX + + + with integer coefficients so that p(a) 0 and

ala # 0. (p(x) will be called an integral polynomial.)

THEOREM 8. Suppose R and S are both power-associative QAl-rings. Then

so is their direct sum R @ S.

PROOF. Let (r, s) be an element of R S. We may assume that both r and

s are nonzero for otherwise (r, s) is QAI trivially. The argument will be

divided into four cases determined by the additive orders of r and s, which

will be denoted by o(r) and o(s), respectively.

Case i. o(r) n, o(s) m; n, m both finite. Then r e T(R) and@ e T(S).

By Theorem 6 T(R) and T(S) are both periodic rings, and by the proof of Theorem

13.2 [ 5 ] so is T(R) T(S). But T(R) + T(S) T(R (R) S). Thus (r, s) T(R S),

a periodic ring and hence (r, s) is QAI.

Case 2. o(r) n, finite and o(x) (R). Since s is QAI there exists an

integral polynomial p(x) alx + a2x2 + + akxk with p(s) 0 and als # 0.

Let f(x) np(x) (nal)x + (na2)x2 + + (nak)xk. f(x) is an integral

polynomial and nals 0 since s has infinite additive order. Thus
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nal(r,s) (nalr, nals) (0, nals) (0, 0) in R S, yet

2 kf((r,s)) nal(r,s) + na2(r,s) + + nak(r,s
2 2) k k)(nalr, nals) +(na2r na2s + + (nr ns

(f(r), f(s)) (np(r), np(s))= (0, 0)

Therefore, (r,s) is QAI.

Case 3. o(r) -, o(s) n, finite. Same as Case 2 interchange the

roles of r and s.

Case 4. o(r -, o(s) -. Since R is a QAI-rlng, there is an integral

polynomial p(x) alx + a2x2 + + akxk with alr # 0 and p(r) 0.

Now, p((r,s)) al(r,s) + a2(r,s)2 + + ak(r,s)k
(a2r2 k k)(alr als) + a2s2) + + (akr aks

(p(r), p(s)) (0, p(s)).

If p(s) 0 in S, then p((r,s)) (0, 0) and al(r,s) (0, 0) in R S so

(r,s) is QAI. Otherwise, p(s) @ 0 in S. But S is a QAl-rlng so there is an

b2x2 x
n
with blP(S) 0 andintegral polynomial h(x) blx + + + b

n

h(p(s)) 0 in S. Define g(x) to be the composition of the two polynomials

p(x) and h(x). That is,set

g(x) h(p(x)) bl(alx + a2x2 + + xk)

+ b2(alX + a2x2 + + akxk)2 +

a2x2 xk)n+ bn(alx + + + ak
Upon inspection of this polynomial one sees that the coefficient of the linear

term is blaI 0 and that g(x) is clearly an integral polynomial. Since

o(r) o(s), we get

blal(r,s) (blalr, blalS) (0, 0) the zero element of R S. However,
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g(<r,s)) --h(p((r,s))) h((0, p(s))) (0, h(p(s))) (0, 0), and <r,s) is

QAI. Since these four cases are exhaustive, the theorem is proved.

COROLLARY 9. Suppose RI R2, R are QAl-rlngs. Then their direct

sum RI R
2 R is also a QAl-rlng.n

PROOF. This can be proved easily by induction.

COROLLARY i0. Let {Rt} t e A be any collection of QAl-rlngs, and suppose

R 7. R
t

is their weak direct sum. Then R is QAI-rlng.a
teA

PROOF. Let a be any nonzero element of R. Then all but a finite number

of the components of a are zero; i.e. if a (at) t e A then there exist a

finite number of elements tl, t2, t
k

in A such that a 0 if s is not a
s

member of {tl, t2, tk}. Then a can be considered to be an element of

Rtl @ Rt2 Rtk which is a QAI-rlng. Thus a is QAI and R I R
teA t

is a QAl-rlng.

As can be seen from Theorem 6 and Corollary i0, the class of QAl-rlngs is

closed under taking subrlngs, direct sums and torslon-free homomorphlc images.

However, Z/nZ is a homomorphlc image of Z which is not a QAl-rlng whenever n

is not square-free. To see that the class of QAl-rlngs is not closed under

complete direct products consider the following example.

EXAMPLE. Let W
i

Z, the ring of integers for i i, 2, 3, and

set R W
i. Let x R be that element x (xi) such that x

i
i.

Suppose x is QAI. That is, suppose there exist n, a2, a3, a
k integers so

nx a2x2 + a3x3 + + akxk.- Since two elements of R are equal ifthat 0

and only if they are equal in each component, this equation yields the following
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infinite system of equations:

n a2 + a3 + + ak

2n 4a
2
+ 8a3 + + 2kak which implies that 2 divides n

3n 9a2 + 27a
3
+ + 3kak- which implies that 3 divides n

2 3 k
mn m a

2
+ m a

3
+ + m a

k
which implies that m divides n

This is clearly a contradiction since n can have only a finite number of

divisors. Therefore R is not a QAl-ring.

3. THE PRIME CASE

Let R be an arbitrary QAl-ring, and P(R) be the prime radical of R. P(R)

is the intersection of all the prime ideals of R and is also a nil ideal of R,

hence equals (0), since R has no nilpotent elements and thus certainly no nil

ideals. This fact, together with examples of QAl-rings which are Jacobson

radical rings, led us to investigate QAl-rlngs via the prime-semi-prime route

instead of the primitlve-semisimple one.

LEMMA Ii. If R is a prime associative ring then Q 8z R is also prime

PROOF. If R is prime, then it has a characteristic p. If p # 0, then

Q Z R (0) since m/n (R) r mp/np r m/np e pr m/np 00 O.

If p 0, then by Lemma 4, R is embedded in Q (R)Z R via f:r ---+ i r.

Suppose there exist elements x, y in Q ez R such that x(Q Z R)y (0). By

-i -iLemma 3, x s rI, y t r
2

for some s, t e Z and rI, r
2

e R. Then

-1 -l -1Q l)0 (s 8 rI)(Q 8 R)(t 8 r2) (s t- 8 (rlRr2). In particular
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0 (s-l(st)t-1) 0 (rlRr2) 1 0 (rlRr2). But f:R Q@ZR is one-to-one

and so rlRr2 0. But R is prime and so rI 0 or r2
O.

Therefore, x(Q@zR)y (0) implies x 0 or y 0 and Q@ZR is prime.

LEMMA 12. Suppose R is a prime ring with no nonzero nilpotent elements.

Then R has no nonzero, zero-divisors.

PROOF. Suppose xy 0. By hypothesis R has no nonzero nilpotent elements.

2Now (yRx) (yRx)(yRx) yR(xy)Rx 0 and thus yRx 0. The primeness of R

now forces x 0 or y 0. Therefore xy 0 implies x 0 or y 0.

LEMMA 13. Suppose R is a prime QAl-ring of characteristic zero. Then

S Q@ZR is also a QAl-rlng.

PROOF. Let x Q@ZR. By Lemma 3, there is an integer c and an element r

in R such that x c-ler. S is a Q-algebra, so we may rewrite x as

-I
x c (1 e r).

R is a QAl-ring and r R so there are integers n, n2, n3, nk such

that 0 # nr n2r
2 + n3r3 + + nkrk Since S is a Q-algebra it is torsion-

free so

0 @ n(18r) n@r l@nr l@(n2r2 + n3r3 + + nkrk)
(ln2r2) + (ln3r3) + + (lkrk)

n2(lr)2 + n3(lr)3 + + nk(l@r)k. Now

-1 -1 2 3
0 nx n(c-lr)-- c (nr) c (n2(lr) + n3(lr) + + nk(lr)k)

c-ln2(18r)2 + c-ln3(18r) 3 + + c-lnk(18r)k

n2c(c-lr) 2 + n3c2(c-1Or)3 + + nkck-l(c-lr)k, since S

i-i
is a Q-algebra. But if a

i nlc for i 2, 3, k then we have shown

nx a2x2 + a3x3 + + akxk- with a
i

Z. Therefore since xthat 0 S

was arbitrary, S is a QAI-rlng which is also a Q-algebra.
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COROLLARY 14. If R is a prime QAl-ring of characteristic zero, then R

can be embedded as a subring in a Q-algebra S which is a prime QAl-ring.

PROOF. Let S Q @Z R. By Lemma II and Lemma 13, S is a prime QAl-ring

and is clearly a Q-algebra. By Lemma 4 R is embedded inside S by r-----+ l@r.

If we require, in addition to the hypothesis of the last corollary, that

our ring R have a unity element I, then we can also conclude that Q @z R is a

division algebra. In particular, let S be a Q-algebra which is a prime

QAl-ring with i and let x be a nonzero element of S. We wish to show that x

is invertible. There exist integers m, a2, a3, a
t

so that

0 @ mx a2x2 + a3x3 + + atxt. Then

0 =mx- (a2x2 + + atxt) x(m-i (a2x + + atxt-l)). But by Lemma 12,

R has no zero-divisors and then we get m-i (a2x + a3x2 + + atxt-l) 0.

x
2 t-i

atxt-2Thus m.l a2x + a + + atx (a2.1 + a3x + + )-x. So x is
3

-i -i xt-2) and we have proven theinvertible, x m (a2.1 + a3x + + a
t

following.

THEOREM 15. If R is a prime Q-algebra with i which is also a QAl-ring

then R is a division algebra.

If one assumes that R is a prime QAl-ring with i, then the resulting

Q-algebra Q@ZR satisfies the hypothesis of Theorem 15. The following theorem

shows that we need not assume the existence of i.

THEOREM 16. If R is a prime Q-algebra which is also a QAl-ring, then R

is a division algebra, algebraic over Q.

PROOF. Let a be a nonzero element of R. There exist positive integers

2 k
n, k and integers n2, n3, such that 0 na n2a + + nka We

may assume that nk 0- for otherwise the polynomial is of smaller degree and

at least one of the n
i

0. Since R is a Q-algebra,
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k -i 2 ak-l)a n
k (na- (n2a + + nk_I ). That is A, the Q-subalgebra of

R generated by a is finite dimensional.

Consider a A
r A, the right multiplication map given by a (x) xa.

r

a is a Q-linear transformation which is one-to-one since R, being a primer

QAl-ring, has no nonzero zero-divisors. Now A is finite dimensional so a isr

also onto, and by a standard argument ar is invertible and hence a is invertible

in A. Similarly, every b in A which is nonzero is invertible, and since A is a

commutative subalgebra, it is a field. Let e in A be the identity of A.

2
e e, and for any y # 0 in R, e(ey y) 0 (ye y)e. Since R has no

nonzero zero-divisors, ey y ye and e is an identity for R. Thus every

nonzero element of R is invertible and R is a divisiom algebra. The fact that

R is algebraic over Q follows from the definition of QAI-ring.

Having characterized prime Q-algebras which are QAl-rings as bein division

algebras which are algebraic over the rationals, we now wish to investigate the

nature of the embedding of a prime, characteristic zero QAl-ring R into Q@ZR.

It is interesting that R turns out to be a left and right order in S Q@ZR.

To demonstrate this, it is convenient to know the inverse of an arbitrary

nonzero element c-l@r in S.

LEMMA 17. Suppose e t-l@s is the identity in S and c-l@r is any nonzero

element of S. Then the multiplicative inverse of c-l@r is given by d-l@uwhere
tru cds- tur.

PROOF. By Theorem 16, c-l@r is invertible since S is a division algebra.

Suppose (c-lr)-1 d-lu. Then (c-l@r) (d-lu) t-l(R)s (d-leu) (c-l@r), if

and only if (cd)-l@ru t-l@s (dc)-l@ur. Since S is a Q-algebra, upon

multiplying by tcd in Z, we get t@ru cd@s t@ur. But the tensor product

is taken over Z, so l@tru l@cds l@tur. Applying Lepta 14 this is

equivalent to tru cds fur.
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We now proceed to characterize prime QAl-rings of characteristic zero.

THEOREM 18. Let R be a prime QAl-ring of characteristic zero. Then R is

a left and right order in a rational division algebra which is algebraic over Q.

PROOF. By Corollary 14 and Theorem 16 the function f R QOzR
given by f(r) iOr is a ring monomorphlsm of R into the Q-divlsion algebra

S QOzR which is algebraic over the rational field. It remains then to show

that f actually embeds R as a left and right order in S.

By definition, we must show:

(i) If x is regular in R, then f(x) is invertlble in S; and

(ll) Every element z in S can be written as z f(x)-If(y) (and

z f(u)f(v)-I) where x, y, u, v are in R with x and v regular.

To establish (1), it is necessary only to observe that since f is one-to-one

and S is a division algebra, f(x) iOx will be invertlble for any x 0 in R.

Let e t be the identity for S. From (lm)(t-los) lm (t-los)(lm)
it follows that t-18ms 18m t-1Osm which implies (multiplying by t)

lms =IOtm IOsm and hence, because f is one-to-one, ms tm sm.

-lemLet z be an arbitrary element of S, say z p where p 0 is an integer

-iand m is in R. If m 0, then write z (1By) (100) for any y @ 0 in R. So

assume m 0; then pm 0 since R is prime of characteristic zero. Consider

10pm 0. By Lemma 17 (iOpm)
-I q-18w where tpwm tpmw qs. Then

(10pm)-l(lm2) (q-18w)(lm2) q-18wm2. But tpwm qs and upon multiplying

by m in R, we get tpwm
2 qsm sqm tqm. Thus t(pwm2 qm) 0 and R being

torsion-free implies pwm2 qm. It follows that 10pwm
2 f(pwm2) f(qm) 10qm.

Since S is a Q-algebra, if we multiply by (pq)-I then we see that q-lwm2

p lm z
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Therefore z p-l@m q-l@wm2 (q-l@w)(l@m2) (l@pm)-l(l@m2). S is

then seen to be the collection of all elements of the form (l@x)-l(l@y)

f(x)-if(y). Thus R is a left order in S. The proof for ’R is a right order

in S’ is similar to the one above.

We now turn our attention to the remaining case in the prime situation--

that of prime QAl-rings of nonzero characteristic. Indeed it is here that we

find the overlap with periodic rings.

THEOREM 19. Suppose R is a prime QAl-ring of characteristic p # 0. Then

R is a periodic field.

PROOF. Because R T(R), by Theorem 6 R is a periodic ring and by Lemma

12, R has no nonzero zero-divisors. If x # 0 in R then there exists a positive

n-i 2
integer n greater than i such that xn x. Then if e x e e # 0. We

claim that e must be the identity element for R. If not, then there is y in

R such that ey # y (or ye # y). But then ey y # 0 and yet e(ey y) 0

(or ye- y # 0 and (ye y)e 0). This yields a contradiction since R has no

n-i
nonzero zero-divisors and hence e x is an identity for R. For any w in

k k-i
R w w for some k greater than i and as above w is an idempotent. By

k-i
the same argument as before w e. Thus every nonzero element of R is

Invertible and by [2, Thin. Ii] R is commutative. Therefore a prime QAl-ring

of characteristic p # 0 is a periodic field.

THEOREM 20. For a ring R to be a prime QAl-ring it is necessary and

sufficient that it be a left and right order in a division algebra which is

algebraic over its prime field.

PROOF. The necessity follows directly from Theorem 18 (characteristic

zero) and Theorem 19 (characteristic p). For sufficiency, let R be a left

and right order in a division algebra D, where D is algebraic over its prime
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field F. Smppose x 0 in R; then there exist a positive integer n and

a
0

0, aI, an in F such that anxn + + alX + a0 0. Multiplying by

n+l alx2x gives a x + + + a0x 0.
n

Case i. If char F p 0 then the a
i

can be considered as integers

(between 0 nd p).

-i
Case 2. If char F 0, then F Q and a

i bici i 0, i, n.

Set d equal to the least common multiple of co cI, cn. Then da
i

is an

integer for i 0, i, n and (dan)X
n+l + + (dal)x

2 + (da0)x 0.

In either case x is QAI so R is a QAl-ring. Since a subring of a division

ring is always prime R is a prime QAl-ring.

In fact, we can drop the assumption that R be an order in Theorem 20.

COROLLARY 21. A ring R is a prime QAl-ring if and only if R is a subring

of a division algebra which is algebraic over its prime field.

There are several instances where a QAl-ring R, being a special type of

prime ring, must not only be a left order in a division ring but must itself

be a division ring.

THEOREM 22. Suppose R is a primitive QAl-ring. Then R is a division

ring which is algebraic over its prime field.

PROOF. A primitive ring is prime; so if R has nonzero characteristic, it

will be a periodic field by Theorem 19. We thus assume that R is a primitive

QAl-rin of characteristic zero. By the Density Theorem R is isomorphic to a

dense ring of linear transformations of a vector space V over a division ring D.

We claim that the D-dimension of V is one. Suppose not; that is, suppose that

{vI, v2} is a D-linearly independent subset of V. Since R is dense, there exist

elements x and y in R so that yvI v2, yv
2 0, xvI 0, xv

2
v2. But R is a

QAl-ring so there exist integers m, m2, m3, m
t

and n, n2, n3, ns
so

m3x3 t 2 n3y3 sthat 0 # mx m2x2 + + + mtx and 0 # ny n2Y + + + nsY
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Then mnxy mx(n2y2 + + nsyS) 2 (n
2

ys-2)ay where a mx + n3Y + + ns
But 0 0.vI (mnxy ay2)v

I mnx(yvI) ay(yvI) mnv2, which is a contra-

diction since D has characteristic zero if R does. Thus the dimension of V over

D is one and so R is isomorphic to D-- HomD(V,V), and R is a division ring. R

is algebraic over its prime field by the definition of QAI.

COROLLARY 23. Suppose R is a QAl-ring which is an algebra over a field F.

Then R is a subdlrect sum of division algebras over F.

PROOF. Since R is a QAl-ring, R is algebraic over F. Thus the Jacobson

radical is a nil ideal of R and hence (0). R is then a subdirect sum of

primitive F-algebras, {Dr}t A" Each D
t

is a homomorphic image of R and has

the same characteristic as R so is a QAl-ring. The corollary follows from

Theorem 22.

THEOREM 24. A simple QAl-ring must be a division ring.

PROOF. For each positive integer m, let mR {mrlr e R}. mR is an ideal

of R, and since R is simple, either mR (0) or mR R. If there is an m for

which mR (0), then R is a prime QAl-ring of nonzero characteristic. By

Theorem 19 R is a periodic field. Otherwise, mR R for every positive integer

m. In this case R is a Q-algebra and so a division ring by Theorem 16.

4. THE GENERAL CASE.

In our study of prime QAl-rings we considered two separate cases one of

characteristic zero and another of prime characteristic. If R is any QAl-ring,

then R is semiprime; however, a semiprime ring may have characteristic zero and

still contain elements of finite order. The dichotomy we will use in the general

case will be the torsion T(R) and the torsion-free R/T(R) cases, then

attempting to put these two extremes together to say something about R. As is

often the case, it is the latter which is the most difficult.
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THEOREM 25. Let R be a QAl-ring. The torsion ideal, T(R), is a subdirect

sum of periodic fields and R/T(R) is a subring of an algebra S over the

rationals Q, so that S is a subdirect sum of Q-division algebras which are

algebraic over Q.

PROOF. The conclusions about T(R) are Just Theorem 6. Let M R/T(R),

a torsion-free QAl-ring by Theorem 6. Set S Q@ZM. Since M is a QAl-ring,

so is S by Lemma 13. If f: M S is given by f(m) l@m then f is a ring

monomorphlsm since M is torsion-free. Thus we may consider M as a subring of

a Q-algebra S which is itself a QAl-ring. We claim that S is a subdirect sum

of prime Q-algebras which are QAl-rings. S has no nonzero nilpotent elements

and hence no nonzero nil ideals. Suppose a is a nonzero element of S, and set

J {Ill is a Q-algebra ideal of S and I {anln is a positive integer} $}.
a

(0) E J so J . By Zorn’s Lemma pick I maximal in J Then I is a prime
a a a a a

algebra ideal and the intersection of the collectlon {I la E S} of ideals is
8

(0). Each S/I is a Q-algebra which forces it to be torsion-free and hence a
a

QAl-ring by Theorem 6. Thus S is a subdlrect sum of the collection {S/la}a E S

of prime Q-algebras which are QAI-rlngs, and we are done by applylng Theorem 16.

Suppose R is a torsion-free QAl-ring. It follows from Theorem 25 that we

may embed R in a rational algebra which has a nice representation. Can we then

say that R also has a similar representation?

THEOREM 26. Suppose R is a torslon-free QAl-ring. Then R can be written

as a subdirect sum of orders in Q-division algebras each of which is algebraic

over Q.

PROOF. Since Q is the quotient field of Z, the homomorphlsm f: R QOzR
given by f(r) 1Or is a ring embedding. By the proof of Theorem 25, QSZR is a

subdlrect sum of a collection of Q-dlvision algebras {Dr}t e A" For each t in A,

D
t

is algebraic over Q. Consider the following diagram:
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h
-’ QOzR ’t A D

t

p 1 Pw

h is the embedding of QOzR into the complete direct product,
t A Dt and Pw

is just the projection homomorphism onto the wth coordinate. Set E Pw(h(f(R))).

E is a subring of D and a rlng homomorphic image of R. In fact, E is an order
w w

in D For if d is an element of D and i is the unity of D__, then there are
w w

elements n-10e and m-lr such that Pw(h(n-le)) i and Pw(h(m-lr)) d. Then

-i
Pw(h (f (me)) ran- i and Pw (h (f (nr)) nmd. Thus d (ran- I) (rand)

(Pw(h(f(me))))-l(pw(h(f(nr)))). By the way E
t

is defined for each t in A, it is

clear that R is a subdlrect sum of _{Et}t c A" (The proof that Ew is an order in

D is due to Professor F. Kosler.)
w

COROLLARY 27. If R is a torslon-free QAl-rlng, then R is a subdlrect sum

of prime QAl-rlngs of characteristic zero.

PROOF. Using the notation of the proof of Theorem 26, R is a subdlrect sum

of {Et} t e A" E
t

is a subring (order)of a Q-division algebra and is a QAl-ring.

Thus E
t

is prime of characteristic zero.

Reviewing What we have done up to this point in the general case, we see

that by Theorem 25 and Theorem 26 if R is either a torsion QAl-rlng or a torsion-

free QAl-rlng, then R is a subdlrect sum of orders in division algebras, each

being algebraic over its prime field. Our present goal is to get a similar

decomposition for an arbitrary QAl-rlng.

DEFINITION. If R is a ring then a subset M of R is called a multlpllcatlve

system if

i) 0 is not in M, and

2) whenever m and n are elements of M, so is their product mn.
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M is a maximal multlplicatlve system if it is not a proper subset of another

multlpllcatlve system.

Observe that if R is a QAl-rlng, then R has no nonzero nilpotent elements;

so if r is a nonzero element of R, N
r {rnln i, 2, 3, } is a multlpllcatlve

system. We state the following three lemmas without proof; see [i].

LEMMA 28. If R is a QAl-rlng and a 0 in R, then there is a maximal

multlpllcatlve system containing a.

LEMMA 29. If M is a maximal multiplicatlve system in a ring R without

nilpotent elements, then the set-theoretlc complement c(M) is an ideal.

LEMMA 30. Let R be a ring without nilpotent elements and for each x @ 0

in R let M be a maximal multlpllcatlve system of R containing x with complement
x

C(Mx). Then R is a subdlrect sum of the integral domains {R/C(Mx)}x 4 0 R"

As we observed earlier, all homomorphlc images of a QAI-rlng need not

be QAl-rlngs. In Theorem 6 we showed that if I is an ideal of R such that R/I

is torslon-free then R/I is a QAI-rlng. However, in the decomposition of R, we

can make use of the following:

LEMMA 31. Let R be a QAl-rlng and M a maximal multlpllcatlve system in R.

Then R/c(M) is a QAl-ring.

PROOF. For notational convenience we denote R/c(M) by A and let x represent

the image of x under the natural homomorphism f: R A. From Lemma 30 we

see that A is an integral domain. If A has characteristic zero, then we are

finished since it will then be torslon-free. Thus we may assume A has charac-

terlstlc a prime p # 0. We make two observations:

(i) Since A has no zero divisors, it suffices to show that for a in

R with a 0 a satisfies some relation of the form

k k-I n2x2nkx + nk_iX + + + nix 0 with at least one--any

one--of the integers n
i
not divisible by p.
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(ii) If a is a nonzero element of R of finite additive order m,

then ma mf(a) f(ma) f(0) 0. Thus f(a) a has finite

additive order k and k divides m. Therefore, since the

characteristic of A is p, if a in R is of order q where q is

a prime, q # p, then a f(a) 0 in A.

T(R) --O7.R where R {x e R lpkx-- 0 for some k}
P P

{x e R Ipx 0} (R has no nilpotent elements)

Let a # 0 be an element of R.

Case i. a e T(R) a aI + a
2
+ + at, a

i
e Rpi

If a 0, we are done. Otherwise a 0 and by (ii) there exists an integer

s such that i < s < t with a e R R and a a in A. But for some
s Ps P s

k 2
collection of integers ml’ m2’ mk’ mk(as) + + m2(as) + mlas 0

and mlas # 0. This implies that p does not divide mI and

)k )k-i 2ink(a--s + mk_l(aL + + mm(as) + mlas

mk()k + mk-i ()k-I + + m2()2 + ml

Since a a 0 we also have mla mlas # 0 (p does not divide ml).s

Hence a is QAI.

Case 2. a T(R)

If a 0 in A, we are done. Suppose that a @ 0 Since R is a QAl-ring,

there exist integers n, rI, r2, rn such that

n n-i r2a2rna + rn_la + + + rla 0 with rla # 0.

If p does not divide rI, then rla # 0 in A and we are finished.
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--n --n-i --2If p divides rI, then 0 rna + rn_+/-a + + r2a + rla

--n --n-i --2rna + r + + r2an_
a

--n-i --n-2(rna + rn_la + + r2a)a

no zero divisors and a # 0 so rna + + r3a2 + r^az ---O"But A has

If p does not divide r2, then r2a @ 0 in A and we are finished. If p divides

)n-2r2, then as above we have r ( + + ra= 0 Continuing in this manner,n

it follows that either a is QAI by (1) or p divides r
i

for i i, 2, n.

Therefore, assume p divides r
i

for i I, 2, n, and suppose pt is

the highest power of p which divides all of the ri. Write rj ptbj for some

integers bl, b2, bn; at least one of these integers, say by, is not

divisible by p.

n t nan b2a2a + + r2a2 + rla p (b + + + bla).Now, 0 rn

b2a2Set z bnan + + + bla. If z 0 in R, then a is QAI by I, since

t(by, p) i. Otherwise z # 0 and since p z 0, z e T(R); in fact, z Rp.
By Case I, either z 0 in A which implies bnn + + b2a2 + bla 0

and we are finished again by l; or z # 0 in A. If this is the case, (R is QAI)

then for some integers

z
u 2u, Cl, c2, Cu; ClZ 0 and Cu + + c2z + ClZ 0.

ClZ # 0 implies p does not divide cI. Then Cu()u + + c2()2 + ClZ

and ClZ # 0 in A. This gives

c z)
u + + c2() 2 + Cl(Z)_ Cu(bn + + b a0

u n 2
+ bfa) u +

+ c2(bnn + + ba2 + ba) 2 + cl(bnn + + ba2 + bl)
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Note that the coefficient of a in the last equation is ClbI. If p does

not divide bI, then p does not divide ClbI which implies a is QAI by ().

If p divides bI but does not divide b2, let

b3a3 b2a2. --w z b1 --z --z,w z bla b a
n + + + Then a blan

because A has characteristic p, which divides bI.-- Cu()u + + c2()2 + cl

__
Cu(bn + + ba2)U +

Note that the coefficient of--a2 here is Clb2, and since p does not divide

2
Clb2, a is QI by (i). If p divides b1 and b

2
but not b3, let v-- z bla- b2a

and do as before, since again v- z Since there is b which is not divisible
Y

by p we eventually reach a stage where a is QAI by (1). In any case, a in R

implies a is QAI. Hence A R/c(M) is a QAl-rlng.

THEOREM 32. Suppose R is a QAl-ring. Then R is a subdirect sum of prime

QAl-rings and hence a subdirect sum of periodic fields and orders in algebraic

rational division algebras.

PROOF. Let F be the family of all maximal multiplicative systems in R.

By Lemma 30, R is a subdirect sum of the integral domains {R/c(M)}M E F’ and

Lemma 31 implies that each R/c(M) is a prime QAl-ring. Theorem 18 and

Theorem 19 yield the desired form for the subdlrect summands.

The example at the end of Section 2 shows that the converse of Theorem 32

fails to hold. The reader is encouraged to compare Theorem 32 to [5, Theorem
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