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1. Introduction. Many evolutionary processes can be described with the help of

differential equations. At the same time, the solutions of a small number of linear dif-

ferential equations can be found as well-known functions. That is why it is necessary

to prove some approximate methods for solving different kinds of differential equa-

tions. One of the most practically used methods is the monotone-iterative technique

of Lakshmikantham [1, 2, 3].

In this note, this method is well grounded for a special type of differential equa-

tions. We studied the case when the right part of the equation depends on a piecewise

constant function. We note that some qualitative properties of the solutions of dif-

ferential equations with a piecewise constant function (DEPCF) such as uniqueness,

oscillation, and periodicity are investigated in [4]. Research in this direction is moti-

vated by the fact that DEPCF represent a hybrid of continuous and discrete dynamical

systems and combine the properties of both differential and difference equations.

2. Preliminary notes and definitions. Let T > 0 and 0 = t0 < t1 < t2 < ··· < tp <
tp+1 = T be fixed numbers.

Definition 2.1. The function g(t) : [0,T ]→R is called a step function if g(t)= gn
for tn ≤ t < tn+1 where gn = const, n= 0,1, . . . ,p.

Consider the initial value problem (IVP) for the differential equation with a step

function

x′ = f (x(t),x(g(t))) for t ∈ [0,T ], x(0)= c0, (2.1)

where x ∈R, f :R×R→R, c0 is an arbitrary constant, g(t) is a step function.

We denote by PC1([0,T ],R) the set of all functions u ∈ C([0,T ],R) for which the

derivative u′(t) exists and is piecewise continuous in [0,T ] with points of disconti-

nuity of first kind at the points tn, n= 1,2, . . . ,p, u′(tn)=u′(tn+0).
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Definition 2.2. The functionx(t) is a solution of the IVP (2.1) in the interval [0,T ]
if the following conditions are fulfilled:

(1) x(t)∈ PC1([0,T ],R).
(2) The function x(t) turns (2.1) into identities for t ∈ [0,T ].
Definition 2.3. The function v(t)∈ PC1([0,T ],R) is called a lower (upper) solu-

tion of the IVP (2.1) if

v′(t)≤ (≥)f (v(t),v(g(t))), v(0)≤ (≥)c0. (2.2)

Definition 2.4. The function u(t) is called a minimal (maximal) solution of the

IVP (2.1) if it is a solution of the IVP (2.1) and, for any other solution x(t) of the IVP

(2.1), the inequality u(t)≤ (≥)x(t) holds.

Lemma 2.5. Let the following conditions be satisfied:

(1) the function g(t) : [0,T ]→ R is a step one and 0 ≤ g(t) ≤ tn for t ∈ [tn,tn+1),
n= 0,1, . . . ,p;

(2) M and N are positive constants such that (M+N)T ≤ 1;

(3) the function p(t)∈ PC1([0,T ],R) satisfies the inequalities

p′(t)≥−Mp(t)−Np(g(t)) for t ∈ [0,T ], p(0)≥ 0. (2.3)

Then p(t)≥ 0 for t ∈ [0,T ].
Proof

Case 1. Let p(0) > 0. Suppose that there exists a point t ∈ (0,T ] such that p(t) < 0.

And let

ξ = inf
{
t ∈ [0,T ] : p(t)≤ 0

}
. (2.4)

Then ξ ∈ (0,T ].
We consider the following two cases.

Case 1.1. Let ξ �= T . Denote λ = max0≤t≤ξ p(t), λ > 0. Then there exists a point

η∈ [0,ξ) such that p(η)= λ. It follows from the mean value theorem that there exists

ξ0 ∈ (η,ξ) for which p(ξ)−p(η) = p′(ξ0)(ξ−η). On the other hand, p(ξ)−p(η) ≤
0−λ=−λ= λ1 < 0. Then

λ1 ≥ p′
(
ξ0
)
(ξ−η). (2.5)

It follows from condition (3) of Lemma 2.5 that p′(ξ0) ≥ −Mp(ξ0)−Np(g(ξ0)).
Since g(ξ0)≤ ξ0 < ξ, the inequalities p(ξ0)≤ λ, p(g(ξ0))≤ λ hold. Then

−Mp(ξ0
)−Np(g(ξ0

))≥ λ1(M+N). (2.6)

It follows from inequalities (2.5) and (2.6) that λ1 ≥ λ1(M+N)(ξ−η) which is equiv-

alent to 1 ≤ (M +N)(ξ −η). Since (ξ −η) < T , the inequality 1 < (M +N)T holds.

The last inequality contradicts condition (2) of Lemma 2.5. Therefore, the inequality

p(t) > 0 holds for t ∈ [0,T ].
Case 1.2. Let ξ = T . Then p(t) > 0 for t ∈ [0,T ) and p(T)= 0, that is, p(t)≥ 0 for

t ∈ [0,T ].
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Case 2. Let p(0) = 0. Suppose there exists a point t ∈ (0,T ] such that p(t) < 0.

And let

ζ = sup
{
t ∈ [0,T ] : p(s)= 0 for s ∈ [0, t]}. (2.7)

We consider the following two cases.

Case 2.1. Let ζ = 0.

Case 2.1.1. There exists a point τ > 0 for which p(t) > 0 for t ∈ (0,τ]. If we

consider the point τ instead of the point 0 and follow the proof of Case 1, we get

p(t)≥ 0 for t ∈ [τ,T], that is, p(t)≥ 0 for t ∈ [0,T ].
Case 2.1.2. There exists a point τ ∈ (0, t1) such that p(τ) < 0,p′(τ) < 0. According

to condition (3) of Lemma 2.5, the inequalityp′(τ)≥−Mp(τ)−Np(g(τ)) holds. From

condition (1) of Lemma 2.5 and the inequality τ < t1, it follows that g(τ) = g0 = 0,

that is, p(g(τ))= 0. Then p′(τ)≥−Mp(τ) > 0 which leads to a contradiction. Hence

the inequality p(t)≥ 0 holds for t ∈ [0,T ].
Case 2.2. Let ζ > 0. If we consider the point ζ instead of the point 0 and follow

the proof of Case 2.1, we get p(t)≥ 0 for t ∈ [τ,T], that is, p(t)≥ 0 for t ∈ [0,T ].
Consider the initial value problem for the linear differential equation with a step

function

x′(t)= ax(t)+bx(g(t)), x(0)= c0, (2.8)

where a, b, c0 are constants.

Lemma 2.6. Let a, b, c0 be constants and the function g(t) : [0,T ]→R be a step one

such that 0 ≤ gn ≤ tn for t ∈ [tn,tn+1), n = 0,1, . . . ,p. Then the initial value problem

for the linear differential equation (2.8) has a unique solution for t ∈ [0,T ].
The proof of Lemma 2.6 is trivial. From Lemma 2.6, the validity of the following

result follows.

Corollary 2.7. Let c0 = 0, then the IVP (2.8) has a unique solution x(t) = 0 for

t ∈ [0,T ].
Consider the IVP

x′(t)= ax(t)+bx(g(t))+f (t,g(t)), x(0)= c0, (2.9)

where a, b, c0 are constants, f : [0,T ]×[0,T ]→R.

Theorem 2.8. Let the function f ∈ C([0,T ]×[0,T ],R) and the function g(t) be a

step one such that 0≤ g(t)≤ tn for t ∈ [tn,tn+1), n= 0,1, . . . ,p. Then the initial value

problem for the linear differential equation (2.9) has a unique solution for t ∈ [0,T ].
Proof

Case 1. Let a �= 0.

Let t ∈ [t0, t1). Consider the IVP

x′(t)= ax(t)+bs0+f(t,0), x(0)= c0, (2.10)

where s0 = x(g0)= c0.
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The solution of the IVP (2.10) exists for t ≥ 0 and satisfies the equality

x0(t)= eat
(∫ t

0
e−aτf (τ,0)dτ+c0

)
+(eat−1

)
ba−1c0. (2.11)

Let t ∈ [t1, t2). Consider the IVP

x′(t)= ax(t)+bs1+f
(
t,g1

)
, x

(
t1
)= c1, (2.12)

where s1 = x(g1)= x0(g1), c1 = x0(t1). The solution of the IVP (2.12) exists for t ≥ t1
and satisfies the equality

x1(t)= ea(t−t1)
(
x0
(
t1
)+
∫ t
t1
e−a(τ−t1)f

(
τ,g1

)
dτ
)
+(ea(t−t1)−1

)
ba−1x0

(
g1
)
. (2.13)

Let t ∈ [t2, t3). Consider the IVP

x′(t)= ax(t)+bs2+f
(
t,g2

)
, x

(
t2
)= c2, (2.14)

where s2 = x(g2), c2 = x1(t2). Since g2 ≤ t2, then s2 = xk(g2) where

k=



0 for g2 ∈
[
0, t1

]
,

1 for g2 ∈
(
t1, t2

]
.

(2.15)

The solution of the IVP (2.14) exists for t ≥ t1 and satisfies the equality

x2(t)= ea(t−t2)
(
x1
(
t2
)+
∫ t
t2
e−a(τ−t2)f

(
τ,g2

)
dτ
)
+(ea(t−t2)−1

)
ba−1xk

(
g2
)
. (2.16)

With the help of the solution xn−1(t) in the interval [tn−1, tn) and the steps method,

we construct a solution xn(t) of the IVP

x′(t)= ax(t)+bsn+f
(
t,gn

)
, x

(
tn
)= cn for t ∈ [tn,tn+1

)
, (2.17)

where sn = xn−i(gn), cn = xn−1(tn) and i≤n. The solution of the IVP (2.17) exists for

t ≥ tn and satisfies the equality

xn(t)= ea(t−tn)
(
xn−1

(
tn
)+
∫ t
tn
e−a(τ−tn)f

(
τ,gn

)
dτ
)
+(ea(t−tn)−1

)
ba−1xn−i

(
gn
)
.

(2.18)

Case 2. Let a= 0. Consider the following two cases.

Case 2.1. Let b �= 0. Using the steps method, we construct the functions xn(t),
t ∈ [tn,tn+1), n= 0,1,2, . . . ,p as solutions of the IVP

x′(t)= bsn+f
(
t,gn

)
, x

(
tn
)= cn, (2.19)

where sn = xn−i(gn), cn = xn−1(tn) for 0<n≤ p and i≤n.

Therefore,

xn(t)=
∫ t
tn
f
(
τ,gn

)
dτ+bxn−i

(
gn
)(
t−tn

)+xn−1
(
tn
)
. (2.20)
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Case 2.2. Let b = 0. Using the steps method, we construct the functions xn(t), t ∈
[tn,tn+1), n = 0,1,
2, . . . ,p as solutions of the IVP

x′(t)= f (t,gn), x
(
tn
)= cn, (2.21)

where cn = xn−1(tn).
Therefore,

xn(t)=
∫ t
tn
f
(
τ,gn

)
dτ+xn−1

(
tn
)
. (2.22)

Define the function

x(t)=




x0(t) for t ∈ [0, t1),
x1(t) for t ∈ [t1, t2),
...

xp(t) for t ∈ [tp,tp+1
]
.

(2.23)

The function x(t) is a solution of the IVP (2.9) in [0,T ]. Suppose there exist two dif-

ferent solutions x(t) and y(t) of the IVP (2.9). Define the function q(t)= x(t)−y(t),
t ∈ [0,T ]. The function q(t) satisfies the IVP (2.8), where c0 = 0. By the Corollary 2.7,

it follows that q(t)= 0 for t ∈ [0,T ]. Therefore the IVP (2.9) has a unique solution.

3. Main results. We will apply the monotone-iterative technique to find an approx-

imate solution of the initial value problem for a nonlinear differential equation with

a step function.

Theorem 3.1. Let the following conditions be fulfilled:

(1) the function g(t) ∈ ([0,T ],R) is a step one such that 0 ≤ g(t) ≤ tn for t ∈
[tn,tn+1), n= 0,1, . . . ,p;

(2) M and N are positive constants such that (M+N)T ≤ 1;

(3) the function f ∈ C(R2,R) and for x1 ≥ x2, y1 ≥y2, the inequality

f
(
x1,y1

)−f (x2,y2
)≥−M(x1−x2

)−N(y1−y2
)

(3.1)

holds;

(4) the functions v0(t) andw0(t) are lower and upper solutions of the IVP (2.1) and

v0(t)≤w0(t) for t ∈ [0,T ].
Then there exist two sequences of functions {vn(t)}∞0 and {wn(t)}∞0 such that

(a) the sequences are increasing and decreasing, respectively;

(b) the functions vn(t), wn(t) are lower and upper solutions of the IVP (2.1);

(c) the sequences are uniformly convergent in the interval [0,T ];
(d) the limits v(t)= limn→∞vn(t), w(t)= limn→∞wn(t) are minimal and maximal

solutions of the IVP (2.1), respectively.
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Proof. Let the function η(t) ∈ C([0,T ],R), v0(t) ≤ η(t) ≤ w0(t), be fixed. Con-

sider the initial value problem for the linear differential equation with a step function

x′(t)= f (η(t),η(g(t)))−M(x(t)−η(t))−N(x(g(t))−η(g(t))),
x(0)= c0.

(3.2)

By Theorem 2.8, the IVP (3.2) has a unique solution x(t) for t ∈ [0,T ]. Define the

mapping A by the equality Aη(t)= x(t) where x(t) is the unique solution of the IVP

(3.2). We prove that the operator A satisfies the following properties:

(i) v0(t)≤Av0(t), w0(t)≥Aw0(t);
(ii) for any function u1(t),u2(t)∈ PC1([0,T ],R) such that v0(t)≤u1(t)≤u2(t)

≤w0(t), the inequality Au1(t)≤Au2(t) holds.

Indeed, let Av0(t) = v1(t). The function v1(t) is continuous and it is the solution

of the IVP (3.2) for η(t)= v0(t). Set p(t)= v1(t)−v0(t). Then p′(t)= v′1(t)−v′0(t)≥
v′1(t)−f(v0(t),v0(g(t)))=−Mp(t)−Np(g(t)) and p(0)= v1(0)−v0(0)≥ 0.

By Lemma 2.5 the function p(t) is nonnegative in [0,T ], that is, Av0(t) ≥ v0(t).
Let Aw0(t)=w1(t). The function w1(t) is continuous and it is a solution of (3.2) for

η(t)=w0(t). Set p(t)=w0(t)−w1(t). Then

p′(t)≥ f (w0(t),w0
(
g(t)

))−f (w0(t),w0
(
g(t)

))
+M(w1(t)−w0(t)

)+N(w1
(
g(t)

)−w0
(
g(t)

))
=−Mp(t)−Np(g(t)), p(0)≥ 0.

(3.3)

By Lemma 2.5 the function p(t) is nonnegative in [0,T ], that is, Aw0(t) ≤ w1(t).
Therefore, property (i) is satisfied.

Let u1,u2 ∈ PC1([0,T ],R) and v0(t) ≤ u1(t) ≤ u2(t) ≤ w0(t). If x1(t) = Au1(t)
and x2(t)=Au2(t), then the function p(t)= x2(t)−x1(t) satisfies the equality

p′(t)= f (u2(t),u2
(
g(t)

))−M(x2(t)−u2(t)
)−N(x2

(
g(t)

)−u2
(
g(t)

))
−f (u1(t),u1

(
g(t)

))+M(x1(t)−u1(t)
)+N(x1

(
g(t)

)−u1
(
g(t)

))
.

(3.4)

Due to Theorem 3.1(3), we getp′(t)≥−M(x2(t)−x1(t))−N(x2(g(t))−x1(g(t)))=
−Mp(t)−Np(g(t)) and p(0) = 0. By Lemma 2.5 the inequality p(t) ≥ 0 holds, that

is, Au1(t)≤Au2(t). Therefore, property (ii) is satisfied.

Define the sequences {vn(t)}∞0 and {wn(t)}∞0 with the help of the equalities vn(t)=
Avn−1(t), wn(t)=Awn−1(t), n≥ 1. By the proof of Theorem 2.8 we get

v(0)n (t)= e−Mt
(
c0+

∫ t
0
eMτϕ(0)n−1(τ,0)dτ

)

+(e−Mt−1
)
NM−1c0 for t ∈ [0, t1),

(3.5)

v(m)n (t)= e−M(t−tm)
(
v(m−1)
n

(
tm
)+
∫ t
tm
eM
(
τ−tm

)
ϕ(m)n−1(τ,gm)dτ

)

+(e−M(t−tm)−1
)
NM−1v(m−i)n

(
gm
)

for t ∈ [tm,tm+1
)
, m= 1,2, . . . ,p, i≤m,

(3.6)
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w(0)n (t)= e−Mt
(
c0+

∫ t
0
eMτψ(0)n−1(τ,0)dτ

)

+(e−Mt−1
)
NM−1c0 for t ∈ [0, t1),

(3.7)

w(m)n (t)= e−M(t−tm)
(
w(m−1)
n

(
tm
)+
∫ t
tm
eM(τ−tm)ψ(m)n−1

(
τ,gm

)
dτ
)

+(e−M(t−tm)−1
)
NM−1w(m−i)n

(
gm
)

for t ∈ [tm,tm+1
)
, m= 1,2, . . . ,p, i≤m,

(3.8)

vn(t)=




v(0)n (t) for t ∈ [0, t1),
v(1)n (t) for t ∈ [t1, t2),
...

v(p)n (t) for t ∈ [tp,tp+1
]
,

wn(t)=




w(0)n (t) for t ∈ [0, t1),
w(1)n (t) for t ∈ [t1, t2),
...

w(p)n (t) for t ∈ [tp,tp+1
]
,

(3.9)

where, for m= 0,1, . . . ,p,

ϕ(m)n−1

(
t,gm

)=Mv(m)n−1(t)+Nv(m)n−1

(
gm
)+f (v(m)n−1(t),v

(m)
n−1

(
gm
))
,

ψ(m)n−1

(
t,gm

)=Mw(m)n−1(t)+Nw(m)n−1

(
gm
)+f (w(m)n−1(t),w

(m)
n−1

(
gm
))
.

(3.10)

By properties (i) and (ii) of the operator A, the following inequalities hold:

v0(t)≤ v1(t)≤ ··· ≤ vn(t)≤wn(t)≤ ··· ≤w1(t)≤w0(t) for t ∈ [0,T ]. (3.11)

The sequences {vn(t)}∞0 and {wn(t)}∞0 are equicontinuous and uniformly bounded

in the intervals [tm,tm+1), m = 0,1, . . . ,p. Therefore, they are uniformly convergent

on [tm,tm+1). We denote limn→∞v
(m)
n (t)= v(m)(t) and limn→∞w

(m)
n (t)=w(m)(t).

Taking the limit as n→∞ into equalities (3.6) and (3.8), we obtain that the functions

v(m)(t) and w(m)(t) are solutions of the integral equations,

v(m)(t)= e−M(t−tm)
(
v(m−1)(tm)+

∫ t
tm
eM(τ−tm)ϕ(m)

(
τ,gm

)
dτ
)

+(e−M(t−tm)−1
)
NM−1v(m−i)

(
gm
)

for t ∈ [tm,tm+1
)
, i≤m,

w(m)(t)= e−M(t−tm)
(
w(m−1)(tm)+

∫ t
tm
eM(τ−tm)ψ(m)

(
τ,gm

)
dτ
)

+(e−M(t−tm)−1
)
NM−1w(m−i)

(
gm
)

for t ∈ [tm,tm+1
)
, i≤m,

(3.12)

where, for m= 0,1, . . . ,p,

ϕ(m)
(
t,gm

)=Mv(m)(t)+Nv(m)(gm)+f (v(m)(t),v(m)(gm)),
ψ(m)

(
t,gm

)=Mw(m)(t)+Nw(m)(gm)+f (w(m)(t),w(m)(gm)).
(3.13)
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Define the functions

v(t)=




v(0)(t) for t ∈ [0, t1),
v(1)(t) for t ∈ [t1, t2),
...

v(p)(t) for t ∈ [tp,tp+1
]
,

w(t)=




w(0)(t) for t ∈ [0, t1),
w(1)(t) for t ∈ [t1, t2),
...

w(p)(t) for t ∈ [tp,tp+1
]
.

(3.14)

From equalities (3.12) it follows that the functions v(t) and w(t) are solutions of

the IVP (2.1). We prove that v(t) and w(t) are, respectively, minimal and maximal

solutions of the IVP (2.1). Let x(t) be an arbitrary solution of the IVP (2.1) in [0,T ]
such that v0(t)≤ x(t)≤w0(t).

Assume that vn(t) ≤ x(t) ≤wn(t) in [0,T ] for some n. Set p(t) = x(t)−vn+1(t).
Then we get

p′(t)= f (x(t),x(g(t)))−f (vn(t),vn(g(t)))+M(vn+1(t)−vn(t)
)

+N(vn+1
(
g(t)

)−vn(g(t)))

≥−Mp(t)−Np(g(t)) for t ∈ [0,T ],
p(0)= 0.

(3.15)

By Lemma 2.5 the inequality p(t) ≥ 0 holds, that is, x(t) ≥ vn+1(t) for t ∈ [0,T ].
By arguments analogous to those above, we get x(t)≤wn+1(t) for t ∈ [0,T ].

By induction we obtain that vn(t)≤ x(t)≤wn(t) for any n∈N∪{0}. After passing

to the limit for n→∞ we get v(t) ≤ x(t) ≤w(t), that is, v(t) is a minimal solution

of the IVP (2.1) and w(t) is a maximal solution of the IVP (2.1).

Remark 3.2. If the conditions of Theorem 3.1 are fulfilled and the IVP (2.1) has a

unique solution x(t)∈ [0,T ], then there exist two sequences {vn(t)}∞0 and {wn(t)}∞0
that are uniformly convergent to the unique solution x(t) in the interval [0,T ].
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