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unify a lot of results due to Adly, Huang, Jou-Yao, Kazmi, Noor, Noor-Al-Said, Noor-Noor,
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1. Introduction. In 1996, Adly [1] used the resolvent operator technique for maxi-

mal monotone mapping to study a general class of variational inclusions with single-

valued mappings. Afterwards, Huang [4] and M. A. Noor [10] extended this technique

for a completely general class of variational inclusions with set-valued mappings and

a class of general set-valued variational inclusions with compact-valued mappings, re-

spectively. Recently, Shim et al. [14] extended the results in [1, 4, 10] to the generalized

set-valued strongly nonlinear quasi-variational inclusions without compactness.

In this paper, we first introduce a new class of completely generalized multivalued

nonlinear quasi-variational inclusions for multivalued mappings. Motivated and in-

spired by the methods of Aldy [1], Huang [4], M. A. Noor [10], and Shim et al. [14], we

construct two new iterative algorithms for solving the completely generalized multi-

valued nonlinear quasi-variational inclusions with bounded closed valued mappings.

We also establish four existence theorems of solutions for the class of completely gen-

eralized multivalued nonlinear quasi-variational inclusions involving strongly mono-

tone, relaxed Lipschitz and generalized pseudocontractive multivalued mappings, and

give some convergence results of iterative sequences generated by the algorithms. Our

results extend, improve and unify a lot of results due to Adly [1], Huang [2, 3, 4], Jou

and Yao [5], Kazmi [6], M. A. Noor [8, 9, 10], M. A. Noor and Al-Said [11], M. A. Noor

and K. I. Noor [12], M. A. Noor et al. [13], Shim et al. [14], Siddiqi and Ansari [15, 16],

Verma [18, 19], Yao [20], and Zhang [21].

2. Preliminaries. Let H be a real Hilbert space endowed with a norm ‖·‖ and an

inner product 〈·,·〉, 2H , and CB(H) denote the families of all nonempty subsets and
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all nonempty bounded closed subsets of H, respectively. Let I stand for the identity

mapping on H, and H(·,·) be the Hausdorff metric on CB(H).
Given single-valued mappings g,h : H → H, multivalued mappings A,B,C,D,E :

H → 2H and nonlinear mappings N,M : H ×H → H. Suppose that W : H → 2H is a

maximal monotone mapping and f ∈H. We consider the following problem.

Find u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, v ∈ Du, w ∈ Eu such that gu−hw ∈
dom(W) and

f ∈N(x,y)−M(z,v)+W(gu−hw), (2.1)

which is called completely generalized multivalued nonlinear quasi-variational inclu-

sion.

It is known that the subdifferential of a proper convex lower semicontinuous func-

tion is a maximal monotone mapping. But the converse is not true.

Special cases. (i) If f = 0, C =D = I, and M(x,x)= 0 for all x ∈H, then problem

(2.1) is equivalent to finding u ∈ H, x ∈ Au, y ∈ Bu, w ∈ Eu such that gu−hw ∈
dom(W) and

0∈N(x,y)+W(gu−hw), (2.2)

which is called the generalized set-valued strongly nonlinear quasi-variational inclu-

sion, studied by Shim et al. [14].

(ii) If f = h = 0, C = D = E = I, M(x,x) = 0 for all x ∈ H, then problem (2.1)

collapses to finding u∈H, x ∈Au, y ∈ Bu such that gu∈ dom(W) and

0∈N(x,y)+W(gu), (2.3)

which is known as the general set-valued variational inclusion, introduced and studied

by Noor [10].

(iii) If f = g = 0, C = D = I, M(x,x) = 0, N(x,y) = ax−by , cx = −hx for all

x,y ∈H, where a,b :H →H are mappings, then problem (2.1) is equivalent to finding

u∈H, x ∈Au, y ∈ Bu, and w ∈ Eu such that cw ∈ dom(W) and

0∈ ax−by+W(cw). (2.4)

Variational inclusion like (2.4) have been studied in [4].

(iv) If f = 0, A= B = C =D = E = I,M(x,x)= 0, N(x,x)= ax−bx for all x,y ∈H,

where a,b :H →H are mappings, then problem (2.1) collapses to finding u∈H such

that gu−hu∈ dom(W) and

0∈ au−bu+W(gu−hu). (2.5)

This kind of problems have been studied in [17].
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(v) If f = 0, C =D = I, M(x,x) = 0 for all x ∈H, and W = ∂ϕ, where ∂ϕ denotes

the subdifferential of a proper convex lower semicontinuous function ϕ : H → R∪
{+∞}, then problem (2.1) collapses to finding u ∈ H, x ∈ Au, y ∈ Bu, w ∈ Eu such

that gu−hw ∈ dom(∂ϕ) and

〈
N(x,y),v−gu+hw〉≥ϕ(gu−hw)−ϕ(v), ∀v ∈H, (2.6)

which is called the generalized set-valued nonlinear quasi-variational inclusion, and

studied in [14].

(vi) If f = 0, A= B = E = I, N(x,x)= gx, hx = 0 for all x ∈H and W = ∂ϕ, where

∂ϕ is as above, then problem (2.1) is equivalent to finding u ∈ H, x ∈ Cu, y ∈ Du
such that gu∈ dom(∂ϕ) and

〈
gu−M(x,y),v−gu〉≥ϕ(gu)−ϕ(v), ∀v ∈H, (2.7)

which is known as the multivalued mixed variational inequality, introduced and stud-

ied by M. A. Noor and K. I. Noor [12].

(vii) If f = 0, C =D = E = I, M(x,x)= hx = 0 for all x ∈H, and W = ∂ϕ where ∂ϕ
is as in (v), then problem (2.1) collapses to finding u ∈H, x ∈ Au, y ∈ Bu such that

gu∈ dom(∂ϕ) and

〈
N(x,y),v−gu〉≥ϕ(gu)−ϕ(v), ∀v ∈H, (2.8)

which is called the generalized multivalued mixed variational inequality, introduced

and studied by M. A. Noor et al. [13].

(viii) If f = 0, C = D = E = I, M(x,x) = hx = 0 for all x ∈ H, W = ∂ϕ, where

ϕ = IK(u), the indicator function of closed convex set K(u) in H defined by

IK(u)(x)=



0, x ∈K(u),
+∞, x 
∈K(u), (2.9)

then problem (2.1) is equivalent to finding u ∈ H, x ∈ Au, y ∈ Bu such that gu ∈
K(u) and

〈
N(x,y),v−gu〉≥ 0, ∀v ∈K(u), (2.10)

which is known as the generalized multivalued quasi-variational inequality, introduced

and studied by M. A. Noor [9].

For appropriate and suitable choices of the mappings g,h,A, B,C ,D, E,N,M ,W , the

element f ∈H, a number of known classes of variational inequalities, quasi-variational

inequalities, and quasi-variational inclusions, studied by several researchers including

Aldly [1], Huang [2, 3], Jou and Yao [5], Kazmi [6], M. A. Noor [7, 8], M. A. Noor and

Al-Said [11], Siddiqi and Ansari [15, 16], Uko [17], Verma [18, 19], Yao [20], and Zhang

[21], can be obtained as special cases of problem (2.1). This reveals that the completely

generalized multivalued nonlinear quasi-variational inclusion (2.1) is the more general

and unifying one.
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Let W : H → 2H be a maximal monotone mapping. Then for a given ρ > 0, the

resolvent operator associated with W is defined by

JWρ (u)= (I+ρW)−1(u), ∀u∈H. (2.11)

It is known that the resolvent operator JWρ is single-valued and nonexpansive.

Definition 2.1. A mapping g : H → H is said to be s-strongly monotone and t-
Lipschitz continuous if there exist constants s > 0, t > 0 such that

〈gx−gy,x−y〉 ≥ s‖x−y‖2, ‖gx−gy‖ ≤ t‖x−y‖, ∀x,y ∈H, (2.12)

respectively.

Definition 2.2. A mapping N :H×H →H is said to be t-Lipschitz continuous with

respect to the first argument if there exists a constant t > 0 such that

∥∥N(x,u)−N(y,u)∥∥≤ t‖x−y‖, ∀x,y,u∈H. (2.13)

In a similar way, we can define Lipschitz continuity of the mapping N with respect

to the second argument.

Definition 2.3. A multivalued mapping A : H → CB(H) is said to be t-strongly

monotone with respect to the first argument of N :H×H →H, if there exists a constant

t > 0 such that

〈
N(x,q)−N(y,q),u−v〉≥ t‖u−v‖2, ∀u,v,q ∈H, x ∈Au, y ∈Av. (2.14)

Definition 2.4. A multivalued mapping A : H → CB(H) is said to be t-relaxed

Lipschitz with respect to the first argument of N :H×H →H, if there exists a constant

t > 0 such that

〈
N(x,q)−N(y,q),u−v〉≤−t‖u−v‖2, ∀u,v,q ∈H, x ∈Au, y ∈Av. (2.15)

Definition 2.5. A multivalued mapping A :H → CB(H) is said to be t-generalized

pseudocontractive with respect to the second argument of N :H×H →H, if there exists

a constant t > 0 such that

〈
N(q,x)−N(q,y),u−v〉≤ t‖u−v‖2, ∀u,v,q ∈H, x ∈Au, y ∈Av. (2.16)

Definition 2.6. A multivalued mapping A : H → CB(H) is said to be t-Lipschitz

continuous, if there exists a constant t > 0 such that

H(Ax,Ay)≤ t‖x−y‖, ∀x,y ∈H. (2.17)

3. Main results. Now we invoke the resolvent operator technique to prove that

the completely generalized multivalued nonlinear quasi-variational inclusion (2.1) is

equivalent to a fixed point problem.
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Lemma 3.1. Let ρ and t be positive parameters. Then the following statements are

equivalent:

(a) the completely generalized multivalued nonlinear quasi-variational inclusion

(2.1) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, v ∈ Du, w ∈ Eu with

gu−hw ∈ dom(W);
(b) there exist u∈H, x ∈Au, y ∈ Bu, z ∈ Cu, v ∈Du, w ∈ Eu satisfying

gu= hw+JWρ
(
gu−hw−ρN(x,y)+ρM(z,v)+ρf ); (3.1)

(c) the multivalued mapping G :H → 2H defined by

Gq =
⋃

z∈Aq,y∈Bq,z∈Cq,
v∈Dq,w∈Eq

[
(1−t)q+t(q−gq+hw

+JWρ
(
gq−hw−ρN(x,y)
+ρM(z,v)+ρf ))], ∀q ∈H,

(3.2)

has a fixed point u∈H.

Proof. It is evident that

f ∈N(x,y)−M(z,v)+W(gu−hw)
⇐⇒ gu−hw−ρN(x,y)+ρM(z,v)+ρf ∈ (I+ρW)(gu−hw)
⇐⇒ gu−hw = JWρ

(
gu−hw−ρN(x,y)+ρM(z,v)+ρf ),

(3.3)

which means that (a) and (b) are equivalent. Clearly, u∈H is a fixed point of G if and

only if there exist x ∈Au, y ∈ Bu, z ∈ Cu, v ∈Du, and w ∈ Eu satisfying

u= (1−t)u+t(u−gu+hw+JWρ (gu−hw−ρN(x,y)+ρM(z,v)+ρf )). (3.4)

That is, (b) and (c) are equivalent. This completes the proof.

Remark 3.2. Lemma 3.1 is a generalization of Lemma 3.1 in [1, 4, 6, 8, 9, 10, 11, 12,

13, 14, 15, 16, 21], [2, Lemma 2.1], [3, Lemma 3.4], [5, Theorems 3.1–3.3], and [18, 19,

Lemma 3.2].

Lemma 3.1 is very important from the numerical and approximation point of views.

Based on Lemma 3.1 and Nadler’s result, we suggest the following general and unified

algorithms for the completely generalized multivalued nonlinear quasi-variational in-

clusion (2.1).

Algorithm 3.3. Let g,h :H →H, A,B,C,D,E :H → CB(H), N,M :H×H →H. For

given u0 ∈ H, x0 ∈ Au0, Y0 ∈ Bu0, z0 ∈ Cu0, v0 ∈ Du0, and w0 ∈ Eu0, compute
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{un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {vn}n≥0, {wn}n≥0 from the iterative scheme

un+1 = (1−t)un+t
(
un−gun+hwn

+JWρ
(
gun−hwn−ρN

(
xn,yn

)+ρM(zn,vn)+ρf )), (3.5)

xn ∈Aun,
∥∥xn−xn+1

∥∥≤ (1+(n+1)−1)H(Aun,Aun+1
)
,

yn ∈ Bun,
∥∥yn−yn+1

∥∥≤ (1+(n+1)−1)H(Bun,Bun+1
)
,

zn ∈ Cun,
∥∥zn−zn+1

∥∥≤ (1+(n+1)−1)H(Cun,Cun+1
)
,

vn ∈Dun,
∥∥vn−vn+1

∥∥≤ (1+(n+1)−1)H(Dun,Dun+1
)
,

wn ∈ Eun,
∥∥wn−wn+1

∥∥≤ (1+(n+1)−1)H(Eun,Eun+1
)
,

(3.6)

for all n≥ 0 where t and ρ are positive parameters with t ≤ 1.

Algorithm 3.4. Let g,h :H →H, A,B,C,D,E :H → CB(H), N,M :H×H →H. For

given u0 ∈ H, x0 ∈ Au0, y0 ∈ Bu0, z0 ∈ Cu0, v0 ∈ Du0, and w0 ∈ Eu0, compute

{un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {vn}n≥0, {wn}n≥0 from the iterative scheme

gun+l = hwn+JWρ
(
gun−hwn−ρN

(
xn,yn

)+ρM(zn,vn)+ρf ), ∀n≥ 0, (3.7)

where {xn}n≥0, {yn}n≥0, {zn}n≥0, {vn}n≥0, and {wn}n≥0 satisfy (3.6) and ρ is a posi-

tive parameter.

Remark 3.5. Algorithms 3.3 and 3.4 include [2, Algorithm 2.1], Algorithms 3.3 and

3.4 in [3, 4, 10, 11, 14, 15, 16, 21], Algorithms 4.3 and 4.4 in [8, 9], Algorithms 4.1–4.3

in [12, 13], and Algorithm 3.1 in [18, 19] as particular cases.

Next we discuss those conditions under which the approximate solution, obtained

from Algorithm 3.3 or Algorithm 3.4, converges to the exact solution of the completely

generalized multivalued nonlinear quasi-variational inclusion (2.1).

Theorem 3.6. Let g,h : H → H be a-Lipschitz continuous and b-Lipschitz con-

tinuous, respectively, and g be c-strongly monotone. Let N,M : H ×H → H be α-

Lipschitz continuous and γ-Lipschitz continuous in the first arguments, respectively,

and β-Lipschitz continuous and δ-Lipschitz continuous in the second arguments, respec-

tively. Suppose that A,B,C,D,E : H → CB(H) are m-Lipschitz continuous, p-Lipschitz

continuous, q-Lipschitz continuous, r -Lipschitz continuous, and s-Lipschitz continuous,

respectively,A is ξ-strongly monotone with respect to the first argument ofN and C is η-

relaxed Lipschitz with respect to the first argument ofM . Let f ∈H, k= 2
√

1−2c+a2+
2bs, j = βp+δr , L = (αm+γq)2−j2, T = ξ+η− (1−k)j, and S = 2k−k2. If there

exists a constant ρ > 0 satisfying

k+ρj < 1, (3.8)

and one of the following conditions:

L > 0, |T |>
√
SL,

∣∣ρ−TL−1
∣∣< L−1

√
T 2−SL;

L= 0, T > 0, ρ > (2T)−1S;

L < 0,
∣∣ρ−TL−1

∣∣> (−L)−1
√
T 2−SL,

(3.9)
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then the completely generalized multivalued nonlinear quasi-variational inclusion (2.1)

has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, v ∈ Du, w ∈ Eu with gu−hw ∈
dom(W) and the sequences {un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {vn}n≥0, and {wn}n≥0

generalized by Algorithm 3.3 converge strongly to u, x, y , z, v , and w, respectively.

Proof. Since g is a-Lipschitz continuous and c-strongly monotone, it follows that

∥∥un−un+1−
(
gun−gun−1

)∥∥2

= ∥∥un−un−1

∥∥2−2
〈
gun−gun−1,un−un−1

〉+∥∥gun−gun−1

∥∥2

≤ (1−2c+a2)∥∥un−un−1

∥∥2.

(3.10)

Note that A is m-Lipschitz continuous and ξ-strongly monotone with respect to the

first argument of N, C is q-Lipschitz continuous and η-relaxed Lipschitz with respect

to the first argument of M , and N and M are α-Lipschitz continuous and γ-Lipschitz

continuous with respect to the first arguments, respectively. It is easy to verify that

∥∥un−un−1−ρ
(
N
(
xn,yn

)−N(xn−1,yn
)−M(zn,vn)+M(zn−1,vn

))∥∥2

= ∥∥un−un−1

∥∥2−2ρ
〈
N
(
xn,yn

)−N(xn−1,yn
)
,un−un−1

〉
+2ρ

〈
M
(
zn,vn

)−M(zn−1,vn
)
,un−un−1

〉

+ρ2
∥∥N(xn,yn)−N(xn−1,yn

)−M(zn,vn)+M(zn−1,vn
)∥∥2

≤
[
1−2ρ(ξ+η)+ρ2(αm+γq)2(1+n−1)2

]∥∥un−un−1

∥∥2.

(3.11)

Using (3.5), (3.6), (3.10), and (3.11), the nonexpansivity of JWρ , the Lipschitz continu-

ity of B, D, E, and the Lipschitz continuity of N and M with respect to the second

arguments, we know that
∥∥un+1−un

∥∥≤ (1−t)∥∥un−un−1

∥∥+t∥∥un−un−1−
(
gun−gun−1

)∥∥+t∥∥hwn−hwn−1

∥∥
+t∥∥JWρ (gun−hwn−ρN

(
xn,yn

)+ρM(zn,vn)+ρf )

−JWρ
(
gun−1−hwn−1−ρN

(
xn−1,yn−1

)+ρM(zn−1,vn−1
)+ρf )∥∥

≤ (1−t)∥∥un−un−1

∥∥+2t
∥∥un−un−1−

(
gun−gun−1

)∥∥+2t
∥∥hwn−hwn−1

∥∥
+t∥∥un−un−1−ρ

(
N
(
xn,yn

)−N(xn−1,yn
)−M(zn,vn)+M(zn−1,vn

))∥∥
+tρ∥∥N(xn−1,yn

)−N(xn−1,yn−1
)∥∥+tρ∥∥M(zn−1,vn

)−M(zn−1,vn−1
)∥∥

≤ (1−(1−θn)t)∥∥un−un−1

∥∥,
(3.12)

where

θn = 2
√

1−2c+a2+2bs
(
1+n−1)

+
√

1−2ρ(ξ+η)+ρ2(αm+γq)2(1+n−1
)2

+ρ(βp+δr)(1+n−1)

�→ θ = k+
√

1−2ρ(ξ+η)+ρ2(αm+γq)2+ρj,

(3.13)
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as n→∞. Equation (3.8) ensures that

θ < 1⇐⇒
√

1−2ρ(ξ+η)+ρ2(αm+γq)2 < 1−k−ρj
⇐⇒ Lρ2−2ρT <−S.

(3.14)

It follows from (3.14) and one of (3.9) that θ < 1. Let P = 2−1(1+θ). From (3.13) we

conclude that there exists a positive integer N0 such that θn < P < 1 for all n ≥ N0.

Thus (3.12) ensures that

∥∥un+1−un
∥∥≤ (1−(1−P)t)∥∥un−un−1

∥∥, ∀n≥N0. (3.15)

Since t ∈ (0,1], (3.15) yields that {un}n≥0 is a Cauchy sequence in H. In view of (3.6)

and the Lipschitz continuity of A, B, C , D, and E, we obtain that {xn}n≥0, {yn}n≥0,

{zn}n≥0, {vn}n≥0, {wn}n≥0 are Cauchy sequences in H. Let un →u∈H, xn → x ∈H,

yn→y ∈H, zn→ z ∈H, vn→ v ∈H, and wn→w ∈H as n→∞. Observe that

d(x,Au)= inf
{‖x−l‖ : l∈Au}

≤ ∥∥x−xn∥∥+H(Aun,Au) �→ 0 as n �→∞, (3.16)

which implies that x ∈Au. Similarly, we can prove that y ∈ Bu, z ∈ Cu, v ∈Du, and

w ∈ Eu. It follows from (3.5) that

u= (1−t)u+t(u−gu+hw+JWρ (gu−hw−ρN(x,y)+ρM(z,v)+ρf )). (3.17)

By virtue of Lemma 3.1, we see that the completely generalized multivalued nonlinear

quasi-variational inclusion (2.1) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, v ∈
Du, and w ∈ Eu. This completes the proof.

Theorem 3.7. Let g, h, N, M , A, B, C , D, E, k, S be as in Theorem 3.6. Sup-

pose that B is ζ-generalized pseudocontractive with respect to the second argument

of N,j =
√

1+2ζ+β2p2+
√

1−2η+γ2q2+δr , L = α2m2−j2, and T = ξ−(1−k)j. If

there exists a constant ρ > 0 satisfying (3.8) and one of (3.9), then the completely gen-

eralized multivalued nonlinear quasi-variational inclusion (2.1) has a solution u ∈ H,

x ∈ Au, y ∈ Bu, z ∈ Cu, v ∈ Du, w ∈ Eu with gu−hw ∈ dom(W) and the se-

quences {un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {vn}n≥0, and {wn}n≥0 generalized by

Algorithm 3.3 converge strongly to u, x, y , z, v , and w, respectively.

Proof. Notice that B is p-Lipschitz continuous and ζ-generalized pseudocontrac-

tive with respect to the second argument of N, and N is β-Lipschitz continuous in the

second argument. It follows that

∥∥un−un−1+N
(
xn−1,yn

)−N(xn−1,yn−1
)∥∥2

= ∥∥un−un−1

∥∥2+2
〈
N
(
xn−1,yn

)−N(xn−1,yn−1
)
,un−un−1

〉

+∥∥N(xn−1,yn
)−N(xn−1,yn−1

)∥∥2

≤
(
1+2ζ+β2p2(1+n−1)2

)∥∥un−un−1

∥∥2.

(3.18)
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Similarly, we have
∥∥un−un−1−ρ

(
N
(
xn,yn

)−N(xn−1,yn
))∥∥

≤
√

1−2ρξ+ρ2α2m2
(
1+n−1

)2∥∥un−un−1

∥∥,∥∥un−un−1+M
(
zn,vn

)−M(zn−1,vn
)∥∥

≤
√

1−2η+γ2q2
(
1+n−1

)2∥∥un−un−1

∥∥.

(3.19)

From (3.5), (3.6), (3.10), (3.18), and (3.19), we get that
∥∥un+1−un

∥∥≤ (1−t)∥∥un−un−1

∥∥+t∥∥un−un−1−
(
gun−gun−1

)∥∥+t∥∥hwn−hwn−1

∥∥
+t∥∥JWρ (gun−hwn−ρN

(
xn,yn

)+ρM(zn,vn)+ρf )

−JWρ
(
gun−1−hwn−1−ρN

(
xn−1,yn−1

)+ρM(zn−1,vn−1
)+ρf )∥∥

≤ (1−t)∥∥un−un−1

∥∥+2t
∥∥un−un−1−

(
gun−gun−1

)∥∥
+2t

∥∥hwn−hwn−1

∥∥+t∥∥un−un−1−ρ
(
N
(
xn,yn

)−N(xn−1,yn
))∥∥

+tρ∥∥un−un−1+N
(
xn−1,yn

)−N(xn−1,yn−1
)∥∥

+tρ∥∥un−un−1+M
(
zn,vn

)−M(zn−1,vn
)∥∥

+tρ∥∥M(zn−1,vn
)−M(zn−1,vn−1

)∥∥
≤ (1−(1−θn)t)∥∥un−un−1

∥∥,
(3.20)

where

θn = 2
√

1−2c+a2+2bs
(
1+n−1)+

√
1−2ρξ+ρ2α2m2

(
1+n−1

)2

+ρ
(√

1+2ζ+β2p2
(
1+n−1

)2+
√

1−2η+γ2q2
(
1+n−1

)2+δr(1+n−1))

�→ θ = k+
√

1−2ρξ+ρ2α2m2+ρj,

(3.21)

as n→∞. By a similar argument used in the proof of Theorem 3.6, the result follows.

This completes the proof.

Remark 3.8. Theorems 3.6 and 3.7 extend Theorem 3.1 in [2, 15, 16, 21], Theorems

4.1 and 4.2 in [3, 4, 5, 14], and Theorem 4.1 in [12, 13] in the following ways:

(i) the set-valued nonlinear generalized variational inclusion in [2], the completely

generalized strongly nonlinear implicit quasi-variational inequality and the general-

ized strongly nonlinear implicit quasi-variational inequality in [3], the variational in-

clusions in [4], the generalized multivalued variational inequality in [5], the multival-

ued mixed variational inequality in [12], the generalized multivalued mixed variational

inequality in [13], the generalized set-valued strongly nonlinear quasi-variational in-

clusion and the generalized set-valued nonlinear quasi-variational inclusion in [14],

the strongly nonlinear variational inequality in [15], the general strongly nonlinear

variational inequality in [16], and the general set-valued strongly nonlinear quasi-

variational inequality in [21] involving strongly monotone mappings are replaced by
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the more general completely generalized multivalued nonlinear quasi-variational in-

clusion involving strongly monotone mappings, relaxed Lipschitz mappings, and gen-

eralized pseudocontractive mappings.

(ii) [2, Algorithm 2.1], Algorithms 3.1 and 3.2 in [3, 4, 14, 15, 16, 21], Algorithms

4.1–4.3 in [12, 13] are replaced by the more general Algorithm 3.3.

(iii) Conditions (3.9) are weaker than the conditions used in [2, 3, 4, 5, 12, 13, 14,

15, 16, 21].

Theorem 3.9. Let g, h, N, M , A, B, C , D, E, f , j, L be as in Theorem 3.6. Let c ≤ 1,

k=√1−2c+a2+2bs, T = ξ+η−(c−k)j, and S = 1−(c−k)2. If there exists a constant

ρ > 0 satisfying

k+ρj < c, (3.22)

and one of (3.9), then the completely generalized multivalued nonlinear quasi-varia-

tional inclusion (2.1) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, v ∈ Du, w ∈
Eu with gu−hw ∈ dom(W) and the sequences {un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0,

{vn}n≥0, and {wn}n≥0 generalized by Algorithm 3.4 converge strongly to u, x, y , z,

v , and w, respectively.

Proof. Using the strong monotonicity of g, (3.7), (3.10), and (3.11), we infer that

∥∥un+1−un
∥∥

≤ c−1
∥∥gun+1−gun

∥∥≤ c−1
∥∥hwn−hwn−1

∥∥
+c−1

∥∥JWρ (gun−hwn−ρN
(
xn,yn

)+ρM(zn,vn)+ρf )

−JWρ
(
gun−1−hwn−1−ρN

(
xn−1,yn−1

)+ρM(zn−1,vn−1
)+ρf )∥∥

≤ 2c−1
∥∥hwn−hwn−1

∥∥+c−1
∥∥un−un−1−

(
gun−gun−1

)∥∥
+c−1

∥∥un−un−1−ρ
(
N
(
xn,yn

)−N(xn−1,yn
)−M(zn,vn)+M(zn−1,vn

))∥∥
+c−1ρ

(∥∥N(xn−1,yn
)−N(xn−1,yn−1

)∥∥+∥∥M(zn−1,vn
)−M(zn−1,vn−1

)∥∥)

≤ θn
∥∥un−un−1

∥∥,
(3.23)

where

θn = c−1
[
2bs

(
1+n−1)+√1−2c+a2

+
√

1−2ρ(ξ+η)+ρ2(αm+γq)2(1+n−1
)2+ρ(βp+δr)(1+n−1)]

�→ θ = c−1
(
k+

√
1−2ρ(ξ+η)+ρ2(αm+γq)2+ρj

)
,

(3.24)

as n→∞. The rest of the argument is the same as in the proof of Theorem 3.6 and is

therefore omitted. This completes the proof.

Theorem 3.10. Let g, h,M ,A, B, C ,D, E, f , c, k, S be as in Theorem 3.9, B, L, j be as

in Theorem 3.7. Let T = ξ−(c−k)j. If there exists a constant ρ > 0 satisfying (3.22) and
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one of (3.9), then the completely generalized multivalued nonlinear quasi-variational

inclusion (2.1) has a solution u ∈ H, x ∈ Au, y ∈ Bu, z ∈ Cu, v ∈ Du, w ∈ Eu with

gu−hw ∈ dom(W) and the sequences {un}n≥0, {xn}n≥0, {yn}n≥0, {zn}n≥0, {vn}n≥0,

and {wn}n≥0 generalized by Algorithm 3.4 converge strongly to u, x, y , z, v , and w,

respectively.

Proof. As in the proofs of Theorems 3.7 and 3.9, we know that

∥∥un+1−un
∥∥

≤ c−1
∥∥hwn−hwn−1

∥∥
+c−1

∥∥JWρ (gun−hwn−ρN
(
xn,yn

)+ρM(zn,vn)+ρf )

−JWρ
(
gun−1−hwn−1−ρN

(
xn−1,yn−1

)+ρM(zn−1,vn−1
)+ρf )∥∥

≤ 2c−1
∥∥hwn−hwn−1

∥∥+c−1
∥∥un−un−1−

(
gun−gun−1

)∥∥
+c−1

∥∥un−un−1−ρ
(
N
(
xn,yn

)−N(xn−1,yn
))∥∥

+c−1ρ
∥∥un−un−1+N

(
xn−1,yn

)−N(xn−1,yn−1
)∥∥

+c−1ρ
∥∥un−un−1+M

(
zn,vn

)−M(zn−1,vn
)∥∥

+c−1ρ
∥∥M(zn−1,vn

)−M(zn−1,vn−1
)∥∥

≤ θn
∥∥un−un−1

∥∥,

(3.25)

where

θn = c−1
[

2bs
(
1+n−1)+√1−2c+a2+

√
1−2ρξ+ρ2α2m2

(
1+n−1

)2

+ρ
(√

1+2ζ+β2p2
(
1+n−1

)2+
√

1−2η+γ2q2
(
1+n−1

)2+δr(1+n−1))]

�→ θ = c−1
(
k+

√
1−2ρξ+ρ2α2m2+ρj

)
,

(3.26)

as n→∞. The rest of the proof follows precisely as in the proof of Theorem 3.6. This

completes the proof.

Remark 3.11. Theorems 3.9 and 3.10 extend, improve, and unify Theorem 3.1 in

[18, 19] and [20, Theorem 3.6].
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