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It is proved that a pair of reciprocally continuous and nonvacuously compatible single-
valued and multivalued maps on a metric space possesses a coincidence. Besides address-
ing two historical problems in fixed point theory, this result is applied to obtain new general
coincidence and fixed point theorems for single-valued and multivalued maps on metric
spaces under tight minimal conditions.
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1. Introduction. The concept of compatible maps has proven useful for general-

izing results in the context of metric fixed point theory for continuous single-valued

and multivalued maps (cf. [1, 2, 4, 11, 15, 16, 20, 21, 22, 23, 30, 31]). Recently, recip-

rocal continuity for a pair of (discontinuous) single-valued maps has been introduced

in [23] and promoted as a means to comprehensive results.

First, we introduce reciprocal continuity for a hybrid pair of single-valued and mul-

tivalued maps, and emulate the joint merits of reciprocal continuity and compati-

bility of a hybrid pair in the setting of metric spaces. We give a general principle

(Theorem 2.8) stating that nonvacuously compatible and reciprocally continuous hy-

brid pair on a metric space has a coincidence. This seems to be of vital interest in view

of a historically significant and negatively settled problem that a pair of continuous

and commuting self-maps on the closed interval [0,1] has a common fixed point (see

[3, 13, 17]) and that continuous and commuting maps on a complete metric space need

not have a coincidence even (see Remark 2.7(v)). This principle presents another view

of a significant result of Jungck [17, Theorem 3.6] on a metric space as well. We apply

Theorem 2.8 to obtain a coincidence and fixed point theorem for a hybrid quadruple

of maps on a metric space satisfying a very general contractive type condition which

includes several general conditions studied by Beg and Azam [1], Ćirić [6], Das and

Naik [10], Jungck [16], Kaneko [19, 20], Rhoades et al. [27], Singh et al. [29], Tan and

Minh [33], and others. One of our results presents another view of recent resolutions

to a still open fixed point problem of Simon Reich (see [4, 5, 8, 9, 25, 26]). Our final

result on a compact metric space extends and generalizes fixed point theorems from

[7, 17, 32, 33].

In this paper, consistent with [22, page 620], (X,d) denotes a metric space, id

the identity map on X,CL(X) (resp., CB(X)) the nonempty closed (resp., closed and

bounded) subsets of X and H for the Hausdorff (resp., generalized Hausdorff) met-

ric on CB(X) (resp., CL(X)). Further, d(A,B) denotes the ordinary distance between
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nonempty subsets A and B of X while d(x,B) stands for d(A,B) when A = {x}. The

set of natural numbers is denoted by N.

2. Reciprocal continuity

Definition 2.1. The maps T : X → CL(X) and f : X → X are reciprocally con-

tinuous on X (resp., at t ∈ X) if and only if fTx ∈ CL(X) for each x ∈ X (resp.,

fTt ∈ CL(X)) and limnfTxn = fM , limnTfxn = Tt whenever {xn} is a sequence in

X such that

lim
n
Txn =M ∈ CL(X), lim

n
fxn = t ∈M. (2.1)

We may use r.c. for “reciprocal continuity” or “reciprocal continuous” as the situ-

ation demands. For self-maps f ,g : X → X, this definition due to Pant [23] reads: f
and g are r.c. if and only if limngfxn = gt and limnfgxn = ft whenever {xn} ⊂ X
is such that limngxn = limnfxn = t ∈ X. Clearly, any continuous pair is reciprocally

continuous but, as the following examples show, the converse is not true.

Example 2.2 (see [24, Example 2.1]). Let X = [0,∞) with the usual metric. Define

g,f :X →X by

gx =




1
2
+x if 0≤ x < 1

2
,

1 if x = 1
2
,

0 if x >
1
2
,

fx =




1
2
−x if 0≤ x < 1

2
,

1
2

if x = 1
2
,

1 if x >
1
2
.

(2.2)

These maps are discontinuous at x = 1/2. However, they are r.c. (take a decreasing

sequence {xn} converging to 0).

Example 2.3. Let X = R1,

TX =




[
1
2
,x+1

]
if x > 0,

{0} if x = 0,[
x−1,−1

2

]
if x < 0,

fx =




2x+1 if x > 0,

0 if x = 0,

2x−1 if x < 0.

(2.3)

Then T and f are r.c. at x = 0 (take xn = 0, n∈N). Notice that there is a discontinuity

at their common fixed point (x = 0).

For continuity of multivalued maps at their fixed and common fixed points, refer

to [12]. The following definition is due to Kaneko and Sessa [20] and Beg and Azam

[1] when T :X → CB(X).

Definition 2.4. The maps T : X → CL(X) and f : X → X are compatible if and

only if fTx ∈ CL(X) for each x ∈X and limnH(Tfxn,fTxn)= 0 whenever {xn} is a

sequence in X such that limnTxn =M ∈ CL(X) and limnfxn = t ∈M .

Evidently commuting maps T , f (i.e., when fTx = Tfx, x ∈ X) are weakly com-

muting (i.e., H(Tfx,fTx) ≤ d(fx,Tx), x ∈ X, [19, 29]), weakly commuting T , f
are compatible, and compatible T , f are weakly compatible (i.e., when fTx = Tfx
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whenever fx ∈ Tx, [18]) but the reverse implication is not true. For an excellent

discussion on the role of weak compatibility in fixed point considerations, refer to

Jungck and Rhoades [18]. For self-maps f ,g : X → X, Definition 2.4 due to Jungck

[15, 16] reads: f and g are compatible if and only if limnd(gfxn,fgxn)= 0 wherever

{xn} is a sequence in X such that limnfxn = limngxn = t ∈X. Notice that the maps

g, f of Example 2.2 are not compatible (take {xn} as in Example 2.2). So r.c. need

not imply compatibility. Taking X as in Example 2.2 and defining fx = 3x2/(x2+8)
and gx = x, if x < 2, gx = 2 if x ≥ 2, one may conclude that f , g are r.c. but not

compatible (take xn = 4, n ∈ N). Hence we assert that: the r.c. and compatibility are

independent concepts.

Following Itoh and Takahashi [14], T : X → CL(X) and f : X → X are IT-commuting

(commuting in the sense of Itoh-Takahashi [14]) at a point v ∈ X if Tfv ⊂ fTv .

Further, T and f are IT-commuting on X if they are IT-commuting at each point v ∈X.

We remark that the IT-commutativity of a hybrid pair (T ,f ) at a pointv is more general

than its compatibility (cf. [31, Example 1]) and weak compatibility at the point v .

Example 2.5. Let X = [0,∞) be endowed with the usual metric and

Tx =


[0,x] if x < 2,

[4,2+x] if x ≥ 2,
fx =



x if x < 2,

4 if x ≥ 2.
(2.4)

We see that T and f are compatible for x < 2 but not for x ≥ 2 (e.g., take xn = 2+n,

n∈N). Further, T and f are not r.c. (e.g., take xn = 2−1/n, n∈N).

Example 2.6. Let X = [2,∞) with the usual metric and Tx = {1+x} and fx =
2x+1. We see that there does not exist a sequence {xn} ⊂ X such that {fxn} and

{Txn} both converge to the same element in X. Thus requirements of compatibility

are vacuously satisfied .

Remark 2.7. (i) If a compatible pair (T ,f ) is such that Tt = fM , then it is evident

from Definitions 2.1 and 2.4 that the continuity of one of T or f is sufficient to ensure

the r.c. of the pair (T ,f ).
(ii) If T and f are r.c. and nonvacuously compatible, then Tt = fM . See the proof

of Theorem 2.8.

(iii) The r.c. at a point t ∈X may be verified by considering all sequences {xn} ⊂X
such that limnfxn = t ∈M = limnTxn. If there does not exist such a sequence then

the definition holds vacuously, and the maps are r.c. (see Example 2.6). This observa-

tion applies to the compatibility of T and f as well. Hence nonvacuous compatibility

of T and f implies the existence of at least a sequence {xn} in X such that {fxn} and

{Txn} both converge as per requirements of Definition 2.4.

(iv) If the pair (T ,f ) is compatible at a point v ∈X and v is a coincidence point of T
and f , that is, fv ∈ Tv , then fTv = Tfv (see [20, page 260]). Indeed, commutativity,

weak commutativity, and compatibility of T and f are equivalent at a coincidence

point v of T and f .

(v) A pair of continuous and commuting selfmaps of a complete metric space need

not have a coincidence; for example, gx = 1+x and fx = x, x ∈ [0,∞). (Notice the

vacuous compatibility of g and f .)
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The following is the main result of this section. In all that follows, C(T ,f ) stands

for the collection of coincidence points of T and f , that is, C(T ,f )= {v : fv ∈ Tv}.
Theorem 2.8. Let (X,d) be a metric space and T : X → CL(X) and f : X → X. If

T and f are reciprocally continuous and nonvacuously compatible on X then C(T ,f )
is nonempty. Further, T and f have a common fixed point ft, provided fft = ft for

some t ∈ C(T ,f ).
Proof. Since T and f are nonvacuously compatible, there exits a sequence {xn}

in X such that {fxn} and {Txn} converge, respectively, to t ∈X andM ∈ CL(X) such

that t ∈ M and limnH(Tfxn,fTxn) = 0. This, in view of the r.c. of T and f , yields

H(Tt,fM) = 0, and Tt = fM . Now, t ∈M implies ft ∈ fM . Therefore ft ∈ Tt, and

C(T ,f ) is nonempty. Further, ft = ffT implies ft ∈ fTt = Tft (cf. Remark 2.7(i)).

This completes the proof.

For a better appreciation of Theorem 2.8 and the relative roles of r.c. and compati-

bility, consider the following result of Mizoguchi and Takahashi [21, Theorem 3].

Theorem 2.9. Let K be a closed convex subset of a uniformly convex Banach space.

Let T :K→ CB(X) and f :K→K be such that Tx is convex for each x ∈K,H(Tx,Ty)≤
q‖x−y‖, x,y ∈K, 0≤ q < 1, and ‖fx−fp‖ ≤ ‖x−p‖, x ∈K, p ∈ F(f), where F(f)
denotes the set of fixed points of f . If T and f are IT-commuting on K, then T and f
have a common fixed point, that is, there exists z ∈ F(f) with fz ∈ Tz.

Further, Theorem 2.8 applies to discontinuous maps and a common fixed point

may be a point of discontinuity as well (see Example 2.3). Notice that, besides several

stronger conditions on the space, T of Theorem 2.9 is a multivalued contraction and

f is nonexpansive about fixed points.

3. Results on metric spaces and Reich’s problem. First, we give a very general

coincidence and fixed point theorem under very tight conditions. Let ψ denote the

family of maps φ from the set R+ of nonnegative reals to itself such that φ(t) < t for

all t > 0.

Theorem 3.1. Let (X,d) be a metric space and S,T : X → CL(X) and f ,g : X → X
such that

(1) S(X) ⊂ g(X) and the pair (S,f ) is reciprocally continuous and nonvacuously

compatible.

If there exists φ∈ψ such that

(2) H(Sx,Ty)≤φ(M(x,y)) for x, y in X, where

M(x,y)=max
{
d(fx,gy),d(fx,Sy),d(gy,Ty),d(fx,Ty),d(gy,Sx)

}
, (3.1)

then C(S,f ) and C(T ,g) are nonempty. Further,

(Ia) S and f have a common fixed point ft, provided fft = ft for some t ∈
C(S,t);

(Ib) T and g have a common fixed point gu, provided ggu= gu and T , g are

IT-commuting at u∈ C(T ,g);
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(Ic) S, T , f , and g have a common fixed point, provided (Ia) and (Ib) both are

true.

Proof. By Theorem 2.8, (1) implies that C(S,f ) is nonempty, that is, ft ∈ St for

some t ∈ X. Since S(X) ⊂ g(X), there is a point u ∈ X such that ft = gu ∈ St. So

by (2),

d(gu,Tu)≤H(St,Tu)
≤φ(max

{
d(ft,gu),d(f t,St),d(gu,Tu),d(f t,Tu),d(gu,St)

})

=φ(d(gu,Tu))<d(gu,Tu) if gu �∈ Tu.
(3.2)

So gu∈ Tu and C(T ,g) is nonempty.

(Ia) and (Ib) may be shown following the last part of the proof of Theorem 2.8. Now

(Ic) is immediate.

Several contractive conditions studied in [1, 4, 6, 10, 11, 12, 16, 18, 19, 20, 27, 28,

29, 33] are special cases of (2). For example, if we take φ(t) = qt (0 ≤ q < 1), f = g,

S = T , and T : X → X, then we obtain the condition studied in [10]. Notice that the

contractive condition studied in [6] is a special case of that of [10].

Reich [25, 26] posed the following question: let (X,d) be a complete metric space

and T : X → CB(X) such that H(Tx,Ty) ≤ k(d(x,y))d(x,y) for all distinct x,y ∈
X, where k : (0 : ∞) → (0,1) with limr→t+ supk(r) < 1 for each t > 0. Then, does

T have a fixed point? Mizoguchi and Takahashi [21] have shown that T has a fixed

point when limr→t+ k(r) < 1 for each t ≥ 0. Chang [4] has generalized this result, and

Theorem 3.1 presents an extension of Chang’s main result [4, Theorem 1]. However,

Reich’s problem remains open and needs further resolution.

The following example shows that the nonvacuous compatibility of one of the pairs

(S,f ) or (T ,g) is essential even if f = g = id.

Example 3.2 (see [28]). Let X = {1,2,3,4} with metric d defined by

d(1,2)= d(3,4)= 2, d(1,3)= d(2,4)= 1, d(1,4)= d(2,3)= 3
2
. (3.3)

Define S and T by S1 = S4 = {2}, S2 = S3 = {1} and T1 = T3 = {4}, T2 = T4 = {3}.
Take f = g = id. Then Definition 2.4 is satisfied with φ(t) = 3t/4. All conditions of

Theorem 3.1 are satisfied except (1). Indeed the pairs (S, id) and (T , id) are vacuously

compatible.

The following result generalizes several main results from [1, 11, 16, 18, 19, 20]

and others.

Corollary 3.3. Let (X,d) be a complete metric space and S,T : X → CL(X), f ,g :

X →X such that

(3) S(X) ⊂ g(X), T(X) ⊂ f(X), and the pair (S,f ) is compatible and reciprocally

continuous.

If there exists q ∈ (0,1) such that
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(4) H(Sx,Ty)≤ qm(x,y) for x, y in X, where

m(x,y)=max
{
d(fx,gy),d(fx,Sx),d(gy,Ty),

1
2

[
d(fx,Ty)+d(gy,Sx)]

}
, (3.4)

then C(S,f ) and C(T ,g) are nonempty. Further, conclusions (Ia), (Ib), and (Ic)

are also true.

Proof. Since S(X) ⊂ g(X) and T(X) ⊂ f(X), we construct the sequences {xn},
{yn} ⊂X as in [11, 31] such that, for each n∈N,

y2n−1 = gx2n−1 ∈ Sx2n−2, y2n = fx2n ∈ Tx2n−1. (3.5)

Then as in [11],

d
(
y2n−1,y2n

)≤ q−1/2d
(
y2n−2,y2n−1

)
,

d
(
y2n,y2n+1

)≤ q−1/2d
(
y2n−1,y2n

)
.

(3.6)

So {yn} converges to a point t ∈X, [11, Theorem 2]. By (4),

H
(
Sx2n,Tx2n−1

)≤ qm(x2n,x2n−1
)

≤ qmax
{
d
(
y2n,y2n−1

)
,d
(
y2n,y2n+1

)}
�→ 0 as n �→∞. (3.7)

Therefore, limk,n→∞H(Sx2n,Sx2k) ≤ limk,n→∞d(y2n−1,y2k−1) = 0, and {Sx2n} is

Cauchy in CL(X). The spaceX being complete, the hyper space CL(X) is also complete,

and {Sx2n} converges to an M in CL(X). So

d(t,M)≤ d(t,gx2n−1
)+H(Sx2n−2,M

)
�→ 0 as n �→∞, t ∈M. (3.8)

Thus, for the sequence {xn} in X, we have {Sx2n} and {gx2n−1} converging, respec-

tively, to M and t ∈M . Therefore the compatibility of the pair (S,g) is nonvacuous.

Hence the proof is immediate from Theorem 3.1 by observing that (4) implies (2).

Remark 3.4. (i) It is evident from the proof of Theorem 3.1 that ft ∈ St and ft =
gu∈ Tu, that is, (S,t) and (T ,g)may have different coincidence points with ft = gu.

See Example 3.5 in support of this observation, which applies to Corollary 3.3 as well.

(ii) The power of Corollary 3.3 is appreciated by observing that the main result

of [11, Theorem 2] is obtained under condition (4) when all the maps S, T , f , g are

continuous and the pairs (S,f ) and (T ,g) are compatible. Moreover, Corollary 3.3

generalizes several other interesting results from [1, 16, 19, 20] and the references

therein.

(iii) If f = id under the condition (4) of Corollary 3.3, then the pair (S,f ) is au-

tomatically compatible and r.c. Thus if f = g = id then Corollary 3.3 states that

S,T : X → CL(X), satisfying condition (4), have a common fixed point in complete X.
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Therefore, several general results surveyed in [21] are contained in Corollary 3.3 (e.g.,

Theorems 12, 15, and 16).

Example 3.5. LetX = [0,∞) be endowed with the usual metric. Let f ,g,S,T :X →X
be such that fx = 8x4, gx = 8x8, Sx = x4+7/16, and Tx = x8+7/16. Evidently,

for any x,y ∈ X, d(Sx,Ty) = 1/8d(fx,gy), that is, condition (4) is satisfied with

q = 1/8. Further, S(X) = T(X) = [7/16,∞] ⊂ X = f(X) = g(X), the pair (S,f ) is

compatible and continuous. So all the hypotheses of Corollary 3.3 are satisfied and

f(1/2)= S(1/2) and g(2−1/2)= T(2−1/2), that is, f , S have a coincidence at x = 1/2,

and g, T have a (different) coincidence at x = (2−1/2). Notice that f(1/2) = g(2−1/2)
and the pair (T ,g) is not compatible.

Corollary 3.6. Let f , g, S, T be self-maps of a complete metric space (X,d) such

that S(X) ⊂ g(X), T(X) ⊂ f(X), and the pair (S,f ) is compatible and reciprocally

continuous. If there exists q ∈ (0,1) such that d(Sx,Ty) ≤ qm(x,y) for all x, y in

X, then

(IIa) S and f have a common fixed point;

(IIb) T and g have a coincidence at x =u∈X;

(IIc) f , g, S, and T have a common fixed point provided that T and g are weakly

compatible.

The tightness of the conditions in this result is evident from the fact that Jungck’s

[16, Theorem 3.1] is Corollary 3.6(IIc) with the r.c. replaced by continuity of f , g, and

the weak compatibility of T , g (at u∈X) replaced by the compatibility of T , g on X.

4. Results on compact spaces. We apply Corollary 3.3 to obtain a new coincidence

theorem for a hybrid of multivalued and single-valued maps on the setting of a com-

pact metric space generalizing and extending [7, Theorem 1], [16, Theorem 3.2], and

relevant results of Smithson [32] and Tan and Minh [33].

Theorem 4.1. Let f , g be continuous self-maps of a compact metric space (X,d)
and let S,T : X → CB(X) be continuous such that S(X) ⊂ g(X), T(X) ⊂ f(X), and the

pair (S,f ) is compatible. If H(Sx,Ty) <m(x,y) (see condition (4)) whenm(x,y) > 0,

then C(S,f ) and C(T ,g) are nonempty. Further, (Ia)–(Ic) are also true.

Proof. In view of the conclusions of Corollary 3.3, it is enough to show that

C(S,t) and C(T ,g) are nonempty. We claim that m(x,y) = 0 for some x,y ∈ X.

Otherwise the function w(x,y) = H(Sx,Ty)/m(x,y) is continuous and satisfies

w(x,y) < 1 for (x,y) ∈ X ×X. Since X ×X is compact, there exist v,z ∈ X such

that w(x,y) ≤ w(v,z) = q < 1 for x,y ∈ X. Consequently, H(Sx,Ty) ≤ qm(x,y)
for x,y ∈ X and some q ∈ (0,1). So, by Corollary 3.3 (see also Remark 3.4(i)), there

exist u,t ∈ X such that ft ∈ St and ft = gu ∈ Tu, and we have m(t,u) = 0, con-

tradicting m(t,u) > 0. Thus m(x,y)= 0 for some x,y ∈X. Consequently, fx = gy ,

fx ∈ Sx, gy ∈ Ty , and this completes the proof.

Corollary 4.2. Let f , g, S, and T be continuous self-maps of a compact metric

space (X,d) such that S(X)⊂ g(X), T(X)⊂ f(X), and the pair (S,f ) is compatible. If

d(Sx,Ty) <m(x,y) when m(x,y) > 0, then conclusions (IIa)–(IIc) are true.
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Its proof may also be completed using Corollary 3.6 and following the proof of

Theorem 4.1. Jungck [16, Theorem 3.2] is Corollary 3.6(IIc) when the pair (T ,g) is

also compatible on X.
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