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We discuss the harmonicity of horizontally conformal maps and their relations with the
spectrum of the Laplacian. We prove that if φ : M → N is a horizontally conformal map
such that the tension field is divergence free, then φ is harmonic. Furthermore, if N is
noncompact, then φ must be constant. Also we show that the projection of a warped
product manifold onto the first component is harmonic if and only if the warping function
is constant. Finally, we describe a characterization for a horizontally conformal map with
a constant dilation preserving an eigenfunction.
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1. Introduction. The properties for horizontally conformal maps are studied by

many authors (see [1, 2, 5, 8] and the references therein). Since a horizontally con-

formal map is a Riemannian submersion if the dilation is constant 1, the notion of

horizontally conformal maps is a generalized concept of Riemannian submersions.

Let Mn and Nm be two Riemannian manifolds of dimensions n and m, respec-

tively, and let φ : M → N be a horizontally conformal map with dilation ρ. In [8],

Kasue and Washio gave curvature formula for horizontally conformal maps which is

a generalization of O’Neill’s curvature formula for Riemannian submersions. Also it

is well known (see [1, 8]) that if φ has minimal fibers and ∇ρ is vertical, then φ is

harmonic.

We describe here some characterizations for the harmonicity of horizontally con-

formal maps. In particular, we consider the projections of a warped product man-

ifold onto each component manifold. Those are examples of horizontally confor-

mal maps. We show that the projection of a warped product manifold onto the first

component is a horizontally conformal map if and only if the warping function is

constant.

Finally, we consider the spectrum of the Laplacian and its relations with horizontally

conformal maps. In [6], Gilkey and Park studied the spectrum of the Laplacian and

Riemannian submersions. They proved that a Riemannian submersion φ : M → N
commutes with the Laplacian if and only if φ∗ preserves the eigenfunctions of the

Laplacian. In [10], the author showed that, for horizontally conformal maps, a similar

result hold. If a horizontally conformal map preserves an eigenfunction, then the

dilation of the horizontally conformal map is given by the square root of the ratio of

eigenvalues or a geometric identity must hold.

Throughout, every manifold is connected and smooth, and a compact manifold is

assumed to be compact without boundary otherwise stated.
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2. Harmonicity of horizontally conformal maps. In this section, we describe basic

notions and properties for horizontally weakly conformal maps, harmonic maps and

harmonic morphisms, and their relations.

Let (Mn,g) and (Nm,h) be Riemannian manifolds of dimensions n andm, respec-

tively. Let φ : M → N be a smooth map. We say that φ is a harmonic map if it is a

critical point of energy functional, or equivalently the tension field of φ defined by

τ(φ)= trace(∇dφ), which is a section of induced bundle φ−1TN, vanishes. For more

detail for harmonic maps, see [4]. The covariant derivative of dφ, ∇dφ is called the

second fundamental form of φ.

Now for each point x ∈ M , the vertical space of φ at x is defined by TVx M =
ker(dφx). Let THx M denote the orthogonal complement of TVx M in the tangent space

TxM , called the horizontal space. Let TVM and THM , respectively, denote the corre-

sponding vertical and horizontal distributions in the tangent bundle TM . We say that

φ is horizontally (weakly) conformal if, for each point x ∈ M at which dφx ≠ 0, the

restriction dφx|THM : THx M → Tφ(x)N is conformal and surjective. Thus, in this case,

there is a nonnegative function ρ on M satisfying

φ∗h= ρ2g on THM. (2.1)

The function ρ is called the dilation of φ. Note that ρ2 is a smooth function and

actually equal to |dφ|2/m, where m= dim(N).
On the other hand, harmonic morphisms are maps preserving the harmonic struc-

tures of Riemannian manifolds. More precisely, φ is called a harmonic morphism if

for any function f which is harmonic on an open subset U of N with φ−1(U)≠∅, the

composition f ◦φ is harmonic on φ−1(U). Fuglede [5] and Ishihara [7] proved that a

smooth mapφ :M →N is a harmonic morphism if and only ifφ is both harmonic and

horizontally conformal.

Before going on, we would like to mention a formula for the tension field of a

horizontally conformal map (see [1, 8]). Let φ : M → N be a horizontally conformal

map. Then, the tension field of φ is given by

τ(φ)= dφ
((

1−m
2

)
∇ logρ2−κ

)
(2.2)

on M0 = {x ∈ M : dφx ≠ 0}, where n = dim(M), m = dim(N), and κ is the mean

curvature of the fibers.

Here we prove the characterization theorem due to Fuglede [5] in case dim(M) =
dim(N).

Theorem 2.1 (see [5]). Let φ : (M,g) → (N,h) be a horizontally conformal map

with dilation ρ. Assume that dim(M) = dim(N). Then ρ is constant if and only if φ is

harmonic and so harmonic morphism.

Proof. Let dim(M)= dim(N)=n. Then, the mean curvature of the fibers vanishes

trivially and so (2.2) reduces to

τ(φ)= (2−n)dφ(∇ logρ). (2.3)

If n= 2, then from (2.3), we obviously obtain τ(φ)= 0.
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Now assume that n≥ 3. Since φ is a horizontally conformal with dilation ρ, taking

the norm of tension field τ(φ), we have

∣∣τ(φ)∣∣= (n−2)|∇ρ|. (2.4)

Hence ρ is constant if and only if τ(φ)= 0, that is, φ is harmonic.

Now we consider a general case, that is, the case when dim(M) ≠ dim(N). In [9],

Ishihara and Yano proved that if M is compact and φ :M →N is a smooth map, such

that the tension field τ(φ) is parallel, thenφ is harmonic. For a horizontally conformal

map, a similar result holds with a weaker condition.

Theorem 2.2. Let M be a compact manifold and let φ : (Mn,g) → (Nm,h) be a

horizontally conformal map. If τ(φ) is divergence free, then φ is harmonic and so is a

harmonic morphism. Furthermore, if N is noncompact, φ must be constant.

Proof. Assume that n≥m. Recall that (see [9])

div
(
dφ·τ(φ))= ∣∣τ(φ)∣∣2+〈dφ,∇(τ(φ))〉. (2.5)

Choose an orthonormal frame {e1, . . . ,en} so that {e1, . . . ,em} is a basis for THM and

{em+1, . . . ,en} is a basis for TVM . Then {dφ(ei)/ρ}mi=1 becomes a local orthonormal

frame on N at which ρ ≠ 0. Thus, it is easy to see for a horizontally conformal map,

〈
dφ,∇(τ(φ))〉=

m∑
i=1

〈
dφ
(
ei
)
,∇φ−1TN

ei τ(φ)
〉
N

=
m∑
i=1

〈
dφ
(
ei
)
,∇Ndφ(ei)τ(φ)

〉
N

= ρ2 div
(
τ(φ)

)◦φ= 0.

(2.6)

Integrating (2.5) over M , we have τ(φ)= 0 by Stokes’ theorem. Hence φ is harmonic

and so a harmonic morphism.

On the other hand, it is well known (see [5]) that a harmonic morphism is an open

map and soφ(M) is open inN. Also sinceφ(M) is compact, it is closed. Consequently,

if φ is nonconstant, φ(M)=N since both M and N are connected.

If φ : (Mn,g) → (Nm,h) is a harmonic morphism with constant dilation ρ and f
is a nonconstant eigenfunction f on N, that is, ∆Nf =−λf for some λ ∈ R, then the

composition f ◦φ is an eigenfunction on M . In fact, it is easy to compute the Hessian

of the composition f ◦φ,

∇d(f ◦φ)= df ◦∇dφ+∇df(dφ,dφ). (2.7)

Let φ be a horizontally conformal map with dilation ρ. Choose a local orthonormal

frame {e1, . . . ,en} on M so that {e1, . . . ,em} is a basis for the horizontal space THM
and {em+1, . . . ,en} is a basis for the vertical space TVM . Then {dφ(ei)/ρ}mi=1 is a local

orthonormal frame on N at which ρ ≠ 0. Taking the trace of ∇d(f ◦φ) with respect

to {ei} in (2.7), we obtain

∆M(f ◦φ)= (df ◦φ)·τ(φ)+ρ2(∆Nf )◦φ, (2.8)
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and so harmonicity of φ and the hypothesis that f is an eigenfunction imply

∆M(f ◦φ)=−λρ2(f ◦φ). (2.9)

For harmonicity of a horizontally conformal map related with eigenfunctions, we

have the following theorem.

Theorem 2.3. Let φ : (Mn,g) → (Nm,h) be a horizontally conformal map with

constant dilation ρ. Let f be a nonconstant eigenfunction f onN, that is,∆Nf =−λf for

some λ∈R. If∇(f ◦φ) is vertical, then φ is harmonic and so is a harmonic morphism.

Proof. Recall that from (2.2) and the assumption that ρ is constant,

τ(φ)=−dφ(κ). (2.10)

Then,

(df ◦φ)·τ(φ)=−(df ◦φ)·dφ(κ)=−〈∇(f ◦φ),κ〉= 0. (2.11)

The last equality follows from the facts that ∇(f ◦φ) is vertical and the mean curva-

ture, κ, of the fibers is horizontal. Since f is nonconstant, the set {y ∈ N : dfy = 0}
is discrete in N and so τ(φ)= 0 on M .

Next, we consider the Riemannian submersions related with warped product man-

ifolds. Riemannian submersions are special cases of horizontally conformal maps. In

fact, a Riemannian submersion is a horizontally conformal map with dilation ρ = 1.

Let (B,gB) and (F,gF) be Riemannian manifolds and let α be a positive smooth

function defined on B. Then, a product manifoldM = B×αF with metric g = gB+α2gF
is called the warped product manifold.

Theorem 2.4. Let φ : M = B×α F → B be the projection defined by φ(x,y) = x.

Then φ is a harmonic map if and only if α is constant.

Proof. Note that φ is a Riemannian submersion. Thus, φ is harmonic if and only

if the fibers are minimal submanifolds of M .

Let x ∈ B be a point and consider the fiber φ−1(x)= F and the inclusion

ι :
(
φ−1(x),f (x)2gF

)
�→ (M,g). (2.12)

Define a tensor (normal connection) T on φ−1(x) by

TVW = (∇VW)⊥ =∇dι(V,W)∈ THM. (2.13)

Then the mean curvature vector, κ, is defined by κ = trace(T). Recall (see [3]) that for

warped product metric g,

TVW =−〈V,W〉g∇αα . (2.14)

Choosing an orthonormal basis {E1, . . . ,Ep} on φ−1(x), obtain

κ =
p∑
i=1

TEiEi =−p
∇α
α
, (2.15)
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where p = dim(F). Therefore, φ−1(x) is minimal if and only if ∇α(x) = 0. Hence, φ
is harmonic if and only if for any x ∈ B, the fiber φ−1(x) is minimal, or equivalently

∇α= 0.

Example 2.5. LetM = (0,∞)×r Sn−1 with flat metric g = dr 2+r 2g0, where g0 is the

standard metric on Sn−1. Then, the projectionφ :M → (0,∞),φ(r ,x)= r is obviously

a Riemannian submersion. However, φ is not a harmonic map since α(r) = r is not

constant. In fact, if φ is harmonic, then φ is a harmonic function. But the Laplacian

for g is given by

∆= ∂2

∂r 2
+ (n−1)

r
∂
∂r
+∆Sn−1 . (2.16)

So ∆φ= 0 if and only if α′ = 0.

Example 2.6. Let M = B×α F be a warped product manifold. Define ψ :M → F by

ψ(x,y)=y . Then, ψ is a harmonic morphism with dilation α and the fibers ψ−1(y)
are totally geodesic submanifolds of M and so are minimal.

3. Spectrum and horizontally conformal maps. In this section, we discuss the

spectrum of the Laplacian and its relations with horizontally conformal maps. In [6],

Gilkey and Park studied the spectrum of the Laplacian and Riemannian submersions.

They showed that a Riemannian submersion φ : M → N satisfies ∆Mφ∗ = φ∗∆N for

functions on N if and only if φ∗ preserves the eigenfunctions of the Laplacian ∆N .

We say that φ∗ : C∞(N)→ C∞(M) preserves the eigenfunctions of the Laplacian if for

any λ∈R there exists µ = µ(λ)∈R such that

φ∗E
(
λ,∆N

)⊂ E(µ,∆M), (3.1)

where E(λ,∆N) is the eigenvalue defined by

E
(
λ,∆N

)= {f ∈ C∞(N) :∆Nf =−λf
}
, (3.2)

and E(µ,∆M) is defined similarly. In [10], the author proved similar results for hori-

zontally conformal maps. That is, a horizontally conformal map φ :M → N between

Riemannian manifolds commutes with the Laplacian if and only if it preserves an

eigenvalue. Furthermore if φ is surjective, the dilation is given by the square of the

ratio of the eigenvalues. For a horizontally conformal map which is not surjective, we

have the following property.

Theorem 3.1. Let φ : (Mn,g) → (Nm,h) be a horizontally conformal map with

constant dilation ρ. Assume that M is compact. Suppose that f ∈ E(λ,∆N) and f ◦φ∈
E(µ,∆M). Then ρ = √µ/λ or

∫
M

〈∇(f ◦φ),κ〉= 0, (3.3)

or equivalently ∫
M
(f ◦φ)div(κ)= 0, (3.4)

where div denotes the divergence operator.
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Proof. If λ= 0, then f is constant and so∇(f ◦φ)= 0. We may assume that λ≠ 0

and ρ ≠
√
µ/λ. Recall that (2.8)

∆M(f ◦φ)= (df ◦φ)·τ(φ)+ρ2(∆Nf )◦φ. (3.5)

Thus (
ρ2λ−µ)f ◦φ= df ◦τ(φ), (3.6)

and so (
ρ2λ−µ)f ◦φ= df ◦τ(φ)= 〈∇(f ◦φ),κ〉. (3.7)

Since ρ2λ−µ ≠ 0 and M is compact, we obtain

∫
M

〈∇(f ◦φ),κ〉= 0. (3.8)

Example 3.2. Let B and F be compact Riemannian manifolds and letM = B×αF be

a warped product manifold. Define the projection φ :M → B by φ(x,y)= x. Suppose

that f ∈ E(λ,∆B) and f ◦φ∈ E(µ,∆M). Then φ is a Riemannian submersion and so it

follows from [6] that λ= µ.

On the other hand, if ∇(f ◦φ) is vertical, then φ is harmonic and so α is constant.

Since ∇(f ◦φ)=∇Bf , ∇(f ◦φ) is vertical if and only if f is constant or equivalently

λ= 0= µ.

Example 3.3. Let B and F be compact Riemannian manifolds and letM = B×αF be

a warped product manifold. Define the projection ψ :M → F by ψ(x,y)=y . Suppose

that f ∈ E(λ,∆F ) and f ◦φ∈ E(µ,∆M). Then ψ is a harmonic morphism with dilation

α. If λ is not zero, then it follows from [10] that α is constant given by
√
µ/λ. Hence,

M = B×α F is a product manifold up to homothety.
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