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A geometric conception is a method of a geometry construction. The Riemannian geometric
conception and a new T-geometric one are considered. T-geometry is built only on the
basis of information included in the metric (distance between two points). Such geometric
concepts as dimension, manifold, metric tensor, curve are fundamental in the Riemannian
conception of geometry, and they are derivative in the T-geometric one. T-geometry is
the simplest geometric conception (essentially, only finite point sets are investigated) and
simultaneously, it is the most general one. It is insensitive to the space continuity and
has a new property: the nondegeneracy. Fitting the T-geometry metric with the metric
tensor of Riemannian geometry, we can compare geometries, constructed on the basis of
different conceptions. The comparison shows that along with similarity (the same system
of geodesics, the same metric) there is a difference. There is an absolute parallelism in
T-geometry, but it is absent in the Riemannian geometry. In T-geometry, any space region
is isometrically embeddable in the space, whereas in Riemannian geometry only convex
region is isometrically embeddable. T-geometric conception appears to be more consistent
logically, than the Riemannian one.
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1. Introduction. A conception of geometry is a method (a set of principles), used

for the construction of geometry. We use the term “Euclidean geometry” as a col-

lective concept with respect to the terms “proper Euclidean geometry” and “pseudo-

Euclidean geometry.” In the first case, the eigenvalues of the metric tensor matrix

have similar signs, in the second case, they have different signs. The same interre-

lation takes place between the terms “Riemannian geometry,” “proper Riemannian

geometry”, and “pseudo-Riemannian geometry.” The proper Euclidean geometry can

be constructed on the basis of different geometric conceptions. For instance, we can

use the Euclidean axiomatic conception (Euclidean axioms), or the Riemannian concep-

tion of geometry (dimension, manifold, metric tensor, curve). We can use the metric

conception of geometry (topological space, metric, curve). In any case, we obtain the

same proper Euclidean geometry. From the point of view of this geometry, it is of no

importance which one of the possible geometric conceptions is used for the geometry

construction. It means that the category of geometry conception is metageometric.

However, if we are going to generalize (to modify) the Euclidean geometry, it appears

to be very important to determine which of the many possible geometric conceptions

is to use for the generalization. The point is that generalization requires some mod-

ification of the original (fundamental) statements of geometry in the scope of the

same geometric conception. As far as the fundamental statements differ from one
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geometric conception to another, we are forced to modify the different statements,

which leads naturally to different results.

If we use the Euclidean geometric conception, which contains only axioms and no

numerical characteristics, the only possible modification consists of changing some

axioms by others. In this case, some new geometries appear, which hardly may be

considered a generalization of the Euclidean geometry. They are rather its different

modifications.

Some fundamental statements of the Riemannian geometric conception contain

numerical characteristics, as far as we set the dimension n and the metric tensor gik,
i,k= 1,2, . . . ,n, consisting of several functions of one point, that is, of one argument

x = {xi}, i= 1,2, . . . ,n. Varyingn and gik, we obtain a class of Riemannian geometries,

where each geometry is labeled by several functions of one point.

Recently, a new geometric conception of the Euclidean geometry construction was

suggested, see [9, 11]. The Euclidean geometry appears to be formulated only in terms

of the metric ρ, setting distance between all pairs of points of the space. Such a geo-

metric conception is the most general, in the sense that all information on geometry

is concentrated on one function of two points. It is evident that one function of two

points contains more information, than several functions of one point (it is supposed

that the set of points is continual). At some choice of the point set Ω, where the

metric and the geometry are set, the n-dimensional Euclidean geometry appears. At

another choice of the metric, another generalized geometry appears on the same set

Ω. This geometry will be referred to as tubular geometry, or briefly T-geometry. All

things being equal, the set of all T-geometries appears to be more powerful, than the

set of all Riemannian geometries. This conception will be referred to as T-geometric

conception, although the term “metric conception of geometry” fits more.

The point is that this term has been occupied. By the metric (or generalized Rie-

mannian) geometry [2, 4, 15] is meant usually a geometry, constructed on the basis

of the metric geometric conception, whose fundamental statements are topology and

metric, that is, the metric is not set on an arbitrary set of points, but on the topological

space, where, in particular, concepts of continuity and of a curve are defined.

What actually is happening is that the metric geometric conception contains an ex-

cess of fundamental statements. This excess appears as follows. Imagine that some

conception A of Euclidean geometry contains some set of independent fundamental

statements a. Let b be some set of corollaries of the fundamental statements a. Con-

sider now the set a∪b as a set of fundamental statements of a geometric conception.

It is another conception A′ of the Euclidean geometry. Its fundamental statements

a∪b are not independent. Now we can obtain the conception A, or some other geo-

metric conception, depending on how the fundamental statements a∪b are used. By

obtaining generalized geometries, we may not vary the fundamental statements inde-

pendently. To avoid contradiction, we have to take into account mutual dependence

of the fundamental statements.

If we know nothing about mutual dependence of fundamental statements a∪b,

the geometric conception may appear to be eclectic. We risk to obtain contradictions,

or artificial constraints on the generalized geometries obtained. In the case of the

metric conception of the proper Euclidean geometry, the statements of the properties
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of the topological space and those of the curve are corollaries of metrical statements.

They may be removed completely from the set of fundamental statements of the

conception.

However, there are problems connected with the fact that we have some precon-

ceptions on what is the geometry in general. In particular, it is a common practice to

consider that the concept of the curve is an attribute of any geometry, which is used

for description of the real space (or space-time). It is incorrect, and manifests itself,

in particular, in the imposition of some unjustified constraints (triangle inequality)

on metric, which makes the situation difficult. These preconceptions have a metalogic

character. They are connected with the association properties of the human thinking.

Overcoming these preconceptions needs a serious analysis.

A cause for writing this paper is a situation, arising after the appearance and discus-

sion of papers on T-geometry [9, 11], which mean essentially a construction of a new

geometric conception. Such a situation took place in the second half of the nineteenth

century, when the non-Euclidean geometries appeared, and the most part of the math-

ematical community considered sceptically the applications of the Riemannian (and

non-Euclidean) geometry to the real space geometry. The appearance of Riemannian

geometries meant the appearance of a new geometric conception. The reason of scep-

tical relation of the mathematical community to Riemannian geometry has not been

analyzed up till now, though it was described in [5].

The appearance of a more general conception of geometry is important for applica-

tions of geometry. Geometry is a ground of the space-time model, and the appearance

of a new more general geometric conception poses the question as to whether the mi-

crocosm space-time geometry has been chosen optimally. If the existing space-time

geometry is not optimal, it must be revised. The space-time geometry revision is to

be accompanied by a revision of basic statements of physics as a science founded

on the space-time model. For instance, the appearance of Riemannian geometries and

the realization of the fact that a new conception of geometry appears together with

their appearance, has lead finally to a revision of the space-time conception and to

the creation of the general relativity theory.

Until the appearance of T-geometries, there was only one uniform isotropic ge-

ometry suitable for the space-time description. It is the Minkowski geometry. An al-

ternative to the Minkowski geometry to be anywhere reasonable did not exist. After

realization of the fact that nondegenerate geometries (T-geometries) are as good as

degenerate (Riemannian) geometries, a class of geometries suitable for the descrip-

tion of uniform isotropic space-time appears. This class includes the Minkowski ge-

ometry. The uniform isotropic geometries of this class are labeled by a function of

one argument. Geometries of the class differ in a value and character of nondegen-

eracy. All geometries of this class except for the Minkowski geometry appear to be

nondegenerate. In nondegenerate geometry, a motion of free particles appears to be

initially stochastic, whereas in degenerate geometry it is initially deterministic. It is

well known, that the motion of microparticles (electrons, protons, etc.) is stochastic. It

seems incorrect to choose such a space-time model, where the microparticle motion is

deterministic, and thereafter to introduce additional hypotheses (principles of quan-

tum mechanics), providing stochasticity of microparticle motion. It is more reasonable
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to choose at once such a space-time geometry which provides the microparticle mo-

tion stochasticity. It is desirable to choose from the class of uniform nondegenerate

geometries, precisely that geometry which agrees optimally with experimental data.

If the complete agreement with experimental data appears to be impossible, we can

add supplementary hypotheses, as it is made in quantum mechanics. In any case, the

space-time geometry is to be chosen optimally. The choice of the Minkowski geometry

as a space-time model for microcosm is not optimal certainly. A use of the Minkowski

geometry as a space-time model for microcosm is explained by the absence of alter-

native (i.e., essentially by a use of the Riemannian conception of geometry).

Thus, after the appearance of a new conception of geometry and the appearance

of an alternative to the Minkowski geometry, a revision of the space-time model is a

logical necessity. This revision must be carried out independently of that whether the

new version of the space-time model explains all quantum effects, or only part of them.

In the last case, we should add some hypotheses explaining that part of experimental

data, which is not explained by the revised space-time model. In any case, we should

use the most suitable space-time geometry among all possible ones.

Note that this conclusion does not agree with the viewpoint of most of physicists,

dealing with relativistic quantum theory. Many of them suppose that any revision of

the existing space-time model is justified only in the case, it explains at least one of the

experiments that cannot be explained by the existing theory. We agree with such a po-

sition, provided that the existing theory modification does not concern the principles

of the quantum theory and space-time model. At the appearance of a more general

conception of geometry, we are forced to choose an optimal geometry independently

of whether the new model solves all problems, or only part of them. Another view-

point: when anybody suggests either to solve all problems by means of a revision of

the space-time geometry, or, if it appears to be impossible, to abandon from revision

at all and to use certainly nonoptimal geometry, which seems to be too extremistic.

Now results of the application of nondegenerate geometry for the space-time de-

scription seem to be rather optimistic, because we succeeded to choose such a non-

degenerate geometry containing the quantum constant � as a parameter, that sta-

tistical description of stochastic particle motion in this space-time coincides with the

quantum description in terms of Schrödinger equation in the conventional space-time

model [10, 12]. Further development of the conception will show whether explanation

of relativistic quantum effects is possible.

In the present paper, a new geometric conception based on the concept of distance

and only distance is considered. In general, the idea of the geometry construction on

the basis of the distance is natural and not new. The geometric conception, where the

distance (metric) is a basic concept, is natural to be referred to as metric conception

of geometry. Usually the term “metric geometry” is used for a geometry constructed

on the base of the metric space.

Definition 1.1. The metric spaceM = {ρ,Ω} is the setΩ of points P ∈Ω, equipped

by the metric ρ, setting on Ω×Ω
ρ :Ω×Ω �→D+ ⊂R, D+ = [0,∞),

ρ(P,P)= 0, ρ(P,Q)= ρ(Q,P), ∀P,Q∈Ω, (1.1)
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ρ(P,Q)= 0, iff P =Q, ∀P,Q∈Ω, (1.2)

ρ(P,Q)+ρ(Q,R)≥ ρ(P,R), ∀P,Q,R ∈Ω. (1.3)

There is a generalization of metric geometry, known as distance geometry [3], which

differs from the metric geometry in absence of constraints (1.3). The main problem

of the metric geometric conception is a construction of geometric objects, that is,

different sets of points in the metric space. For instance, to construct such a geo-

metric object as the shortest, we are forced to introduce the concept of a curve as a

continuous mapping of a segment of real axis on the space

L : I �→Ω, I = [0,1]⊂R. (1.4)

The shortest, passing through points P and Q, is defined as a curve segment of the

shortest length. On the one hand, the introduction of the concept of a curve means

a rejection from the pure metric conception of geometry, as far as we are forced to

introduce concepts that are not defined via metric. On the other hand, if the concept

of a curve is not introduced, it is not clear how to build such geometric objects that are

analogs of Euclidean straight and plane. Without the introduction of these objects, the

metric geometry looks as a very poor (slightly informative) geometry. Such a geometry

cannot be used as a model of the real space-time.

Essentially, the problem of constructing a pure metric conception of geometry is

set as follows. Is it possible to construct on the basis of only metric such a geometry

that was as informative as the Euclidean geometry? In other words, is it possible to

construct the Euclidean geometry, setting in some way the metric on Ω×Ω, where

Ω is a properly chosen set of points? More concretely this problem is formulated as

follows.

Let ρE be the metric of n-dimensional proper Euclidean space on Ω×Ω. Is it pos-

sible on the base of information contained in ρE to reconstruct the Euclidean geome-

try, that is, to determine the dimension n, to introduce rectilinear coordinate system

and metric tensor in it, to construct k-dimensional planes k = 1,2, . . . ,n, and to test

whether the reconstructed geometry is proper Euclidean? If yes, and the information

contained in metric is sufficient for the construction of proper Euclidean geometry,

the used prescriptions can be used for the construction of a geometry with other met-

ric. As a result each metric ρ corresponds to some metric geometry Tρ , constructed

on the base of the metric and only metric. Any such a geometry Tρ is not less infor-

mative than the proper Euclidean one in the sense that any geometric object in the

proper Euclidean geometry corresponds to a geometric object in the metric geometry

Tρ constructed according to the same prescriptions as those of the proper Euclidean

geometry. This geometric object may appear to bear little resemblance to its Euclidean

analog. Besides, due to the symmetry of the Euclidean space (presence of a motion

group), different geometric objects in Tρ may have the same Euclidean analog. For

instance, in the Euclidean geometry any two different points P and Q, lying on the

Euclidean straight L, determine this straight. In metric geometry Tρ analogs of the

Euclidean straight �PQ, �P1Q1 , P1,Q1 ∈ �PQ, determined by different pairs P , Q and

P1, Q1, are different, in general, if the metric does not satisfy condition (1.3).
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There exists a positive solution of the stated problem, that is, the amount of in-

formation, contained in the metric, is sufficient for constructing the metric geometry

which is not less informative, than the Euclidean one. The corresponding theorem has

been proved [13].

Apparently, Menger [6] succeeded to approach most closely the positive solution of

the mentioned problem, but he failed to solve it completely. The reason of his failure

is some delusion, which may be qualified as “associative prejudice.” An overcoming

of this prejudice results a construction of a new geometric conception, where all in-

formation on geometry are contained in metric. The new conception generates a class

of T-geometries, which may be considered a generalization of conventional metric

geometry on the base of the metric space M = {ρ,Ω}. Formally this generalization is

approached at the expense of reducing the number of fundamental concepts that are

necessary for the geometry construction, and at the expense of elimination of con-

straints (1.2) and (1.3) imposed on metric. Besides, instead of the metric ρ we use the

quantity σ = (1/2)ρ2, known as world function [14]. The world function is supposed

to be real. It means that the metric ρ may be either nonnegative, or pure imaginary

quantity. This extends the capacities of geometry. Now we can consider the Minkowski

geometry as a special case of T-geometry and use this latter as a space-time geometry.

The concept of the curve (1.4) is not used at the construction of geometry, that is, it is

not a fundamental concept; although the geometry construction has been completed,

nothing prevents from introducing the curve by means of the mapping (1.4).

But the curve L appears to be not an attribute of geometry. It is some additional

object external with respect to geometry. A corollary of this is an appearance of a new

geometry property, which is referred to as nondegeneracy. Euclidean and Riemann-

ian geometries have no nondegeneracy. They are degenerate geometries. Associative

prejudice is a delusion appearing when properties of one object are attributed by mis-

take to another object. We illustrate by a simple example, which is perceived now as a

grotesque. It is known that Ancient Egyptians believed that all rivers flow towards the

North. This delusion seems now to be nonsense. But many years ago it had a weighty

foundation. The Ancient Egyptians lived on a vast flat plane and knew only one river:

the Nile, which flew exactly towards the North and had no tributaries on the Egyptian

territory. The North direction was a preferred direction for Ancient Egyptians who

observed motion of heavenly bodies regularly. It was the direction toward the fixed

North star. They did not connect the direction of the river flow with the plane slope,

as we do now. They connected the direction of the river flow with the preferred spatial

direction towards the North. We are interested now in that kind of mistake made An-

cient Egyptians, believing that all rivers flow towards the North, and how could they

overcome their delusion.

Their delusion was not a logical mistake, because the logic has no relation to this

mistake. The delusion was connected by an associative property of human thinking,

when the property A is attributed to the object B on the basis that in all known cases

the property A accompanies the object B. Such an association may be correct or not.

If it is erroneous, as in the given case, it is very difficult to discover the mistake. At any

rate it is difficult to discover the mistake by means of logic, because such associations

appear before the logical analysis, and the subsequent logical analysis is carried out
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on the basis of the existing associations. Imagine that in the course of a voyage, an

Ancient Egyptian scientist arrived the Tigris, which is the nearest to Egypt river. He

discovers a water stream which flows, first, not outright and, second, not towards

the North. Does he discover his delusion? Most likely not. At any rate not at once.

He starts to think that the water stream, flowing before him, is not a river. A ground

for such a conclusion is his initial belief that “real” river is to flow, first, directly and,

second, towards the North. Besides, the Nile was very important in the life of Ancient

Egyptians, and they were often apt to idolize the Nile. The delusion about the direction

of the river flow can be overcome only after that, when one has discovered sufficiently

many different rivers, flowing towards different directions, and the proper analysis of

this circumstance has been carried out.

Thus, to overcome the associating delusion, it is not sufficient to present another

object B, which has not the property A, because we may doubt of whether the pre-

sented object is to be classified really as the object B. Another attendant circumstances

are also possible.

If the established association between the object and its property is erroneous, we

can say it is an associative delusion or an associative prejudice. The usual method of

overcoming the associative prejudices is a consideration of wider set of phenomena,

where the established association between the propertyA and the object Bmay appear

to be violated, and the associative prejudice is discovered.

The associative prejudices are very stable. It is very difficult to overcome them,

when they have been established, because they cannot be disproved logically. On the

other hand, fixing incorrect correlations between objects of real world, the associative

prejudices point out a wrong way for investigations.

Associative prejudices are known in the history of science. For instance, the known

statement of the Ptolemaic doctrine that the Earth is placed in the centre of universe,

and heaven bodies rotate around it, is an example of the associative prejudice. In this

case, the property of being a centre of a planetary system is attributed to the Earth,

whereas such a centre is the Sun. Overcoming this prejudice was long and difficult,

because in contrast to the prejudice of Ancient Egyptians it can be disproved neither

logically, nor experimentally.

Another example of associative prejudice is that in the nineteenth century the pop-

ular opinion that the Cartesian coordinate system is an attribute of geometry. This

viewpoint appeared, when the analytic geometry was discovered, and the Cartesian

coordinate system became to serve as a tool in description of geometric objects of

Euclidean geometry. Using analytic description of Euclidean geometry, many mathe-

maticians of the nineteenth century applied Cartesian coordinates almost always and

were inclined to believe that the Cartesian coordinates are an attribute of any geometry

at all. On the other hand, nonuniform (Riemannian) geometry cannot be constructed

in the Cartesian coordinate system. Any attempt to write the Riemannian geometry

metric tensor in a Cartesian coordinates turns nonuniform (Riemannian) geometry

to uniform (i.e., Euclidean) geometry. In other words, the Cartesian coordinate sys-

tem discriminates any nonuniform geometry. It is known [5] that the mathematicians

of nineteenth century were biased against the consideration of the Riemannian ge-

ometry as a really existing geometry. It seems that this skepticism in the relation of
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Riemannian geometry is connected with the associative prejudice, when the Cartesian

coordinate system is considered to be an attribute of any geometry. As the coordi-

nate system appears to be a way of the geometry description but its attribute, the

scepticism disappears.

Now the viewpoint that the concept of the curve (1.4) is a fundamental concept (i.e.,

it is applied to the construction of any geometry) holds much favor. This viewpoint

is based on the circumstance that the curve is used in the construction of all known

(Riemannian and metric) geometries. Such a viewpoint is an associative prejudice (of

the kind of the statement of Ancient Egyptians that all rivers flow towards the North).

To prove this, it is sufficient to construct a sufficiently informative geometry without

using the curve concept (1.4). Such a geometry (T-geometry) has been constructed [9].

Constructing the new conception of geometry, its author did not think that he did

not use the curve concept and overcame some prejudice. The point is that the metric

ρ(x,y), considered to be a function of two variable points x and y , contains much

more information than the metric tensor gik(x), which is several functions of one

variable point x. The author believed that the information contained in the metric is

sufficient for constructing geometry, and he wanted to construct a geometry on the

base of only this information. It is possible, provided that the curve concept is ignored.

He did not suspect that he overcame the associative preconception on fundamental

role of the curve and, hence, created a new conception of geometry. All this became

clear well later at the realization and discussion of the obtained results.

In the second section, the T-geometric technique is described, and we show that

the Euclidean geometry can be formulated in terms of only metric. The method of the

geometric objects construction in T-geometry is described in the third section. The

fourth section is devoted to the convexity problem. In the fifth and sixth sections, we

compare solutions of the parallelism problem in Riemannian and tubular geometries.

2. σ -space and T-geometry. T-geometry is constructed on σ -space V = {σ,Ω},
which is obtained from the metric space after removal of constraints (1.2) and (1.3)

and the introduction of the world function σ

σ(P,Q)≡ 1
2
ρ2(P,Q), ∀P,Q∈Ω, (2.1)

instead of the metric ρ.

Definition 2.1. The σ -space V = {σ,Ω} is a nonempty set Ω of points P with

given on Ω×Ω real function σ

σ :Ω×Ω �→R, σ(P,P)= 0, σ(P,Q)= σ(Q,P) ∀P,Q∈Ω. (2.2)

The function σ is known as the world function [14], or σ -function. The metric ρ
may be introduced in the σ -space by means of the relation (2.1). If σ is positive, the

metric ρ is also positive, but if σ is negative, the metric is imaginary.

Definition 2.2. The nonempty point set Ω′ ⊂ Ω of σ -space V = {σ,Ω} with the

world function σ ′ = σ |Ω′×Ω′ , which is a contraction σ on Ω′×Ω′, is called σ -subspace

V ′ = {σ ′,Ω′} of σ -space V = {σ,Ω}.
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Further, the world functionσ ′ = σ |Ω′×Ω′ , which is a contraction ofσ will be denoted

σ . Any σ -subspace of the σ -space is a σ -space.

Definition 2.3. The σ -space V = {σ,Ω} is called isometrically embeddable in the

σ -space V ′ = {σ ′,Ω′}, if there exists such a monomorphism f :Ω→Ω′, that σ(P,Q)=
σ ′(f (P),f (Q)), for all P , for all Q∈Ω, f(P),f (Q)∈Ω′.

Any σ -subspace V ′ of the σ -space V = {σ,Ω} is isometrically embeddable in it.

Definition 2.4. Two σ -spaces V = {σ,Ω} and V ′ = {σ ′,Ω′} are called to be iso-

metric (equivalent), if V is isometrically embeddable in V ′, and V ′ is isometrically

embeddable in V .

Definition 2.5. The σ -space M = {ρ,Ω} is called a finite σ -space, if the set Ω
contains a finite number of points.

Definition 2.6. The σ -subspace Mn(�n) = {σ,�n} of the σ -space V = {σ,Ω},
consisting of n+1 points �n = {P0,P1, . . . ,Pn} is called the nth order σ -subspace.

The T-geometry is a set of all propositions on properties of σ -subspaces of σ -space

V = {σ,Ω}. Presentation of T-geometry is produced on the language, containing only

references to σ -function and constituents of σ -space, that is, to its σ -subspaces.

Definition 2.7. A description is called σ -immanent, if it does not contain any

reference to objects or concepts other than finite subspaces of the metric space and

its world function (metric).

The description σ -immanence provides independence of the description on the

method of description. In this sense, the σ -immanence of a description in T-geometry

recalls the concept of covariance in Riemannian geometry. The covariance of some

relation in Riemannian geometry means that the considered relation is valid in all

coordinate systems and, hence, describes only the properties of the Riemannian ge-

ometry in itself. The covariant description provides a cutting-off from the coordinate

system properties, considering the relation in all coordinate systems at once. The σ -

immanence provides a truncation from the methods of description by the absence

of a reference to objects, which do not relate to geometry itself (coordinate system,

concept of curve, dimension).

The basic elements of T-geometry are the finite σ -subspaces Mn(�n), that is, the

finite sets

�n = {P0,P1, . . . ,Pn
}⊂Ω. (2.3)

The main characteristic of the finite σ -subspace Mn(�n) is its length |M(�n)|.
Definition 2.8. The squared length |M(�n)|2 of the nth order σ -subspace

M(�n)⊂Ω of the σ -space V = {σ,Ω} is the real number.

∣∣M(�n)∣∣2 = (n!Sn
(
�n))2 = Fn

(
�n), (2.4)



742 YURI A. RYLOV

where Sn(�n) is the volume of the (n+1)-edron, whose vertices are placed at points

�n ≡ {P0,P1, . . . ,Pn} ⊂Ω, defined by means of relations

Fn :Ωn+1 �→R, Ωn+1 =
n+1�
k=1

Ω, n= 1,2, . . . , (2.5)

Fn
(
�n)= det

∥∥(P0Pi ·P0Pk
)∥∥, P0,Pi,Pk ∈Ω, i,k= 1,2, . . . ,n, (2.6)(

P0Pi ·P0Pk
)≡ Γ(P0,Pi,Pk

)≡ σ(P0,Pi
)+σ(P0,Pk

)−σ(Pi,Pk), i,k= 1,2, . . . ,n, (2.7)

where the function σ is defined via the metric ρ by the relation (2.1) and �n de-

notes n+1 points (2.3).

The meaning of the written relations is as follows. In the special case, when the

σ -space is the Euclidean space and its σ -function coincides with the σ -function of

Euclidean space, any two points P0, P1 determine the vector P0P1, and the relation

(2.7) is a σ -immanent expression for the scalar product (P0Pi ·P0Pk) of two vectors.

Then the relation (2.6) is the Gram’s determinant for n vectors P0Pi, i= 1,2, . . . ,n, and

Sn(�n) is the Euclidean volume of the (n+1)-edron with vertices at the points �n.

The idea of constructing the T-geometry is very simple. All relations of proper Eu-

clidean geometry are written in the σ -immanent form and declared to be valid for

any σ -function. This results that any relation of proper Euclidean geometry corre-

sponds to some relation of T-geometry. It is important that in the relations declared

to be of T-geometry, only the properties (2.1) were used. The special properties of the

Euclidean σ -function are not to be taken into account. The metric part of these rela-

tions was formulated and proved by Menger [6]. We present this result in our desig-

nations in the form of theorem

Theorem 2.9. Theσ -spaceV ={σ,Ω} is isometrically embeddable inn-dimensional

proper Euclidean space En, if and only if any (n+2)th order σ -subspaceM(�n+2)⊂Ω
is isometrically embeddable in En.

Unfortunately, the formulation of this theorem is not σ -immanent, as it contains

a reference to n-dimensional Euclidean space En which is not defined σ -immanently.

A more constructive version of the σ -space Euclideaness conditions is formulated in

the form

(I)

∃�n ⊂Ω, Fn
(
�n)≠ 0, Fn+1

(
Ωn+2)= 0, (2.8)

(II)

σ(P,Q)= 1
2

n∑
i,k=1

gik
(
�n)[xi(P)−xi(Q)][xk(P)−xk(Q)], ∀P,Q∈Ω, (2.9)

where the quantities xi(P), xi(Q) are defined by the relations

xi(P)=
(
P0Pi ·P0P

)
, xi(Q)=

(
P0Pi ·P0Q

)
, i= 1,2, . . . ,n. (2.10)
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The contravariant components gik(�n), (i,k= 1,2, . . . ,n) of the metric tensor

are defined by its covariant components gik(�n), (i,k = 1,2, . . . ,n) by means

of the relations

n∑
k=1

gik
(
�n)gkl(�n)= δli, i, l= 1,2, . . . ,n, (2.11)

where

gik
(
�n)= Γ(P0,Pi,Pk

)
, i,k= 1,2, . . . ,n. (2.12)

(III) The relations

Γ
(
P0,Pi,P

)= xi, xi ∈R, i= 1,2, . . . ,n, (2.13)

considered to be equations for the determination of P ∈ Ω, have always one

and only one solution.

(IIIa) Relations (2.13), considered to be equations for determination of P ∈Ω, have

always no more than one solution.

Remark 2.10. Condition (2.8) is a corollary of condition (2.9). It is formulated in

the form of a special condition, in order that a determination of the dimension being

separated from the determination of coordinate system.

Condition (I) determines the space dimension. Condition (II) describes σ -immanen-

tly the scalar product properties of the proper Euclidean space. Setting n+1 points

�n satisfying condition (I), we determine n-dimensional basis of vectors in Euclidean

space. Relations (2.11) and (2.12) determine covariant and contravariant components

of the metric tensor, and relations (2.10) determine covariant coordinates of points

P and Q on this basis. Relation (2.9) determines the expression for σ -function for

two arbitrary points in terms of the coordinates of these points. Finally, condition (III)

describes the continuity of the set Ω and a possibility to construct a manifold on it.

Necessity of conditions (I), (II), and (III) for Euclideaness of the σ -space is evident. We

can prove their sufficiency [13]. The connection of conditions (I), (II), and (III) with the

Euclideaness of the σ -space can be formulated in the form of a theorem.

Theorem 2.11. The σ -space V = {σ,Ω} is the n-dimensional Euclidean space, if

and only if the σ -immanent conditions (I), (II), and (III) are fulfilled.

Remark 2.12. If the σ -space is proper Euclidean, the eigenvalues of the matrix

gik(�n), i,k= 1,2, . . . ,n must have the same sign, otherwise it is pseudo-Euclidean.

The theorem states that it is sufficient to know the metric (world function) to con-

struct Euclidean geometry. The information, contained in the concepts of topological

spaces and curves, used in metric geometry, appears to be excess.

The proof of this theorem can be found in [13]. A similar theorem for another (but

close) necessary and sufficient conditions have been proved in [9]. Here, we show only

constructive character of conditions (I), (II), and (III) for proper Euclidean space. It

means that starting from an abstract σ -space satisfying conditions (I), (II), and (III),

we can determine dimension n and construct a rectilinear coordinate system with
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conventional description of the proper Euclidean space in it. We construct sequentially

straight two-dimensional plane and so forth, up to the n-dimensional plane coincide

with the set Ω. To construct all these objects, we need to develop the technique of

T-geometry.

Definition 2.13. The finite σ -spaceMn(�n)= {σ,�n} is called oriented
��������������������������������������������������������������������������������������������������������������������������������������������������������������������→
Mn(�n),

if the order of its points �n = {P0,P1, . . . ,Pn} is fixed.

Definition 2.14. The nth order multivector mn is the mapping

mn : In �→Ω, In ≡ {0,1, . . . ,n}. (2.14)

The set In has a natural ordering, which generates an ordering of imagesmn(k)∈Ω
of points k∈ In. The ordered list of images of points in In has a one-to-one connection

with the multivector and may be used as the multivector descriptor. Different versions

of the point list will be used for writing the nth order multivector descriptor,

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→
P0P1 ···Pn ≡ P0P1 ···Pn ≡

���������������������������→
�n. (2.15)

The originals of the points Pk in In are determined by the order of the point Pk in the list

of descriptor. Index of the point Pk has nothing to do with the original of Pk. Further,

we will use the descriptor,
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→
P0P1 ···Pn of the multivector instead of the multivector.

In this sense, the nth order multivector
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→
P0P1 ···Pn in the σ -space V = {σ,Ω} may be

defined as the ordered set {Pl}, l= 0,1, . . . ,n of n+1 points P0,P1, . . . ,Pn, belonging to

the σ -space V . The point P0 is the origin of the multivector
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→
P0P1 ···Pn. Suppose that

mn(In) of the set In contains k points (k≤n+1). The set of allnth order multivectors

mn constitutes the set Ωn+1 =⊗n+1
k=1 Ω, and any multivector

���������������������������→
�n ∈Ωn+1.

Definition 2.15. The scalar σ -product (
���������������������������→
�n· ����������������������→�n) of twonth order multivectors

���������������������������→
�n

and
����������������������→
�n is the real number

( ���������������������������→
�n · ����������������������→�n

)
= det

∥∥(P0Pi ·Q0Qk
)∥∥, i,k= 1,2, . . . ,n,

���������������������������→
�n,

����������������������→
�n ∈Ωn+1, (2.16)

(
P0Pi ·Q0Qk

)≡ σ(P0,Qi
)+σ(Q0,Pk

)−σ(P0,Q0
)−σ(Pi,Qk),

P0,Pi,Q0,Qk ∈Ω.
(2.17)

Definition 2.16. The length | ���������������������������→�n| of the nth order multivector
���������������������������→
�n is the number

∣∣∣ ���������������������������→�n
∣∣∣=




∣∣∣∣
√( ���������������������������→

�n · ���������������������������→�n
)∣∣∣∣, ( ���������������������������→

�n · ���������������������������→�n
)
≥ 0,

i
∣∣∣∣
√( ���������������������������→

�n · ���������������������������→�n
)∣∣∣∣, ( ���������������������������→

�n · ���������������������������→�n
)
< 0,

(2.18)

where
���������������������������→
�n ∈Ωn+1.

In the case when the multivector does not contain similar points, it coincides with

the oriented finite σ -subspace, and it is a constituent of the σ -space. In the case when

at least two points of the multivector coincide, the multivector length vanishes and

the multivector is considered to be null multivector. The null multivector is not a finite
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σ -subspace, but a use of null multivectors assists in creating a more simple technique.

Manipulation with numbers written in Arabic numerals (where zero is present) is sim-

pler than the same manipulation with numbers written in Roman numerals (where

zero is absent). Something like that takes place in the case of multivectors. Essen-

tially, the multivectors are basic objects of T-geometry. As to continual geometric

objects, which are the analogs of planes, spheres, ellipsoids, and so forth, they are

constructed by means of skeleton-envelope method (see next section) with multivec-

tors, or finite σ -subspaces used as skeletons. As a consequence, the T-geometry is

presented σ -immanently, that is, without reference to objects, external with respect

to the σ -space.

Definition 2.17. Two nth order multivectors
���������������������������→
�n ����������������������→

�n are collinear
���������������������������→
�n ‖ ����������������������→�n, if

( ���������������������������→
�n · ����������������������→�n

)2 =
∣∣∣ ���������������������������→�n

∣∣∣2 ·
∣∣∣ ����������������������→�n∣∣∣2

. (2.19)

Definition 2.18. Two collinear nth order multivectors
���������������������������→
�n and

����������������������→
�n are similarly

oriented
���������������������������→
�n �

����������������������→
�n (parallel), if ( ���������������������������→

�n · ����������������������→�n
)
=
∣∣∣ ���������������������������→�n

∣∣∣·∣∣∣ ����������������������→�n∣∣∣. (2.20)

They have opposite orientation
���������������������������→
�n ↑↓ ����������������������→�n (antiparallel), if( ���������������������������→

�n · ����������������������→�n
)
=−

∣∣∣ ���������������������������→�n
∣∣∣·∣∣∣ ����������������������→�n∣∣∣. (2.21)

The vector P0P1 =
���������������������→
�1 is the first order multivector.

Definition 2.19. Thenth order σ -subspaceM(�n) of nonzero length |M(�n)|2 =
Fn(�n)≠ 0 determines the set of points �(�n) called the nth order tube by means of

the relation

�
(
�n)≡��n =

{
Pn+1 | Fn+1

(
�n+1)= 0

}
, Pi ∈Ω, i= 0,1 . . . ,n+1, (2.22)

where the function Fn is defined by the relations (2.5), (2.6), and (2.7).

In arbitrary T-geometry, the nth order tube is an analog of the n-dimensional prop-

erly Euclidean plane.

Definition 2.20. The section �n;P of the tube �(�n) at the point P ∈ �(�n) is

the set �n;P (�(�n)) of points belonging to the tube �(�n)

�n;P
(
�
(
�n))=

{
P ′ |

l=n∧
l=0

σ
(
Pl,P ′

)= σ(Pl,P)
}
, P ∈�

(
�n), P ′ ∈Ω. (2.23)

Note that �n;P (�(�n)) ⊂ �(�n), because P ∈ �(�n). Indeed, whether the point P
belongs to �(�n) depends only on values of n+1 quantities σ(Pl,P), l= 0,1, . . . ,n. In

accordance with (2.23), these quantities are the same for both points P and P ′. Hence,

any running point P ′ ∈�(�n), if P ∈�(�n).
In the proper Euclidean space, the nth order tube is an n-dimensional plane con-

taining the points �n, and its section �n;P (�(�n)) at the point P consists of one

point P .
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Now we can construct the proper Euclidean space and rectilinear coordinate system

in it on the basis of only the σ -function. It is known that the σ -space V = {σ,Ω} is

the proper Euclidean space, but its dimension is not known. To determine the dimen-

sion n, take two different points P0,P1 ∈Ω, F1(�1)= 2σ(P0,P1)≠ 0.

(1) Construct the first order tube �(�1). If �(�1) = Ω, then the dimension of the

σ -space V is n = 1. If Ω\�(�1) ≠ ∅, there exists P2 ∈ Ω, P2 ∉ �(�1), and hence,

F2(�2)≠ 0.

(2) Construct the second order tube �(�2). If �(�2)=Ω thenn= 2, otherwise there

exists P3 ∈Ω, P3 ∉�(�2), and hence, F3(�3)≠ 0.

(3) Construct the third order tube �(�3). If �(�3)=Ω then n= 3, otherwise there

exists P4 ∈Ω, P4 ∉�(�3), and hence, F4(�4)≠ 0.

(4) And so forth.

Continuing this process, we determine such n+ 1 points �n that the condition

�(�n)=Ω and, hence, conditions (2.8) are fulfilled. Then by means of the relation

xi(P)= Γ
(
P0,Pi,P

)
, i= 1,2, . . .n, (2.24)

we attribute the covariant coordinates x(P) = {xi(P)}, i = 1,2, . . . ,n to all P ∈Ω. Let

x = x(P)∈Rn and x′ = x(P ′)∈Rn. Substituting Γ(P0,Pi,P)= x and Γ(P0,Pi,P ′)= x′i
in (2.9), we obtain the conventional expression for the world function of the Euclidean

space in the rectilinear coordinate system

σ
(
P,P ′

)= σE(x,x′)= 1
2

n∑
i,k=1

gik
(
�n)(xi−x′i)(xk−x′k), (2.25)

where gik(�n), defined by the relations (2.12) and (2.11), is the contravariant metric

tensor in this coordinate system.

Condition (III) of Theorem 2.11 states that the mapping

x :Ω �→Rn (2.26)

described by the relation (2.24), is a bijection, that is, for all y ∈ Rn there exists one

and only one point Q∈Ω, such that y = x(Q).
Thus, on the base of the world function given on the abstract set Ω×Ω, we can

determine the dimension n of the Euclidean space, construct rectilinear coordinate

system with the metric tensor gik(�n) = Γ(P0,Pi,Pk), i,k = 1,2, . . . ,n, and describe

all geometrical objects which are determined in terms of coordinates. The Euclidean

space and Euclidean geometry are described in terms and only in terms of the world

function (metric).

Conditions (I), (II), and (III), formulated in the σ -immanent form, admit to construct

the proper Euclidean space, using only information contained in the world function.

The σ -immanence of the formulation admits us to state that information contained in

the world function, is sufficient for the construction of any T-geometry. Substitution

of condition (III) by the condition (IIIa) leads to a reduction of constraints. At the

fulfillment of conditions (I), (II), and (IIIa) the σ -space appears to be isometrically

embeddable in n-dimensional Euclidean space. It may be piecewise continuous, or
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even discrete. Such a σ -space can be obtained, removing arbitrary number of points

from n-dimensional Euclidean space.

3. Skeleton-envelope method of geometric objects construction

Definition 3.1. A geometric object � is some σ -subspace of the σ -space.

In T-geometry, a geometric object � is described by means of the skeleton-envelope

method. It means that any geometric object � is considered to be a set of intersections

and joins of elementary geometric objects (EGO).

Definition 3.2. An elementary geometric object � ⊂ Ω is a set of zeros of the

envelope function

f�n :Ω �→R, �n ≡ {P0,P1, . . . ,Pn
}⊂Ω, (3.1)

that is,

�= �f
(
�n)= {R | f�n(R)= 0

}
. (3.2)

The finite set �n ⊂ Ω of parameters of the envelope function fn� is a skeleton of

EGO �⊂Ω. The set �⊂Ω of points forming EGO is called the envelope of its skeleton

�n. For continuous T-geometry the envelope � is usually a continual set of points. The

envelope function f�n , determining EGO is a function of the running point R ∈Ω and

of parameters �n ⊂Ω. The envelope function f�n is supposed to be an algebraic func-

tion of s arguments w = {w1,w2, . . . ,ws}, s = (n+2)(n+1)/2. Each of the arguments

wk = σ(Qk,Lk) is a σ -function of two arguments Qk,Lk ∈ {R,�n}, either belonging

to the skeleton �n, or coinciding with the running point R.

Consider examples of some simplest EGOs,

�
(
P0,P1

)= {R | fP0P1(R)= 0
}
, fP0P1(R)=

√
2σ

(
P0,P1

)−√2σ
(
P0,R

)
(3.3)

is a sphere, passing through the point P1 and having its center at the point P0. The

ellipsoid ��, passing through the point P2 and having the focuses at the points P0, P1

(P0 ≠ P1) is described by the relation

��
(
P0,P1,P2

)= {R | fP0P1P2(R)= 0
}
, (3.4)

where the envelope function fP0P1P2(R) is defined by the equation,

fP0P1P2(R)=
√

2σ
(
P0,P2

)+√2σ
(
P1,P2

)−√2σ
(
P0,R

)−√2σ
(
P1,R

)
. (3.5)

If the focuses at P0, P1 coincide (P0 = P1), the ellipsoid ��(P0,P1,P2) degenerates into

a sphere �(P0,P2). If the points P1, P2 coincide (P1 = P2), the ellipsoid ��(P0,P1,P2)
degenerates into a tube segment �[P0P1] between the points P0, P1 of the tube �P0P1 ,

�[P0P1] = ��
(
P0,P1,P1

)= {R | fP0P1P1(R)= 0
}
, (3.6)

fP0P1P1(R)= S2
(
P0,R,P1

)≡ √2σ
(
P0,P1

)−√2σ
(
P0,R

)−√2σ
(
P1,R

)
. (3.7)
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In the proper Euclidean geometry, �[P0P1] is simply a segment of the straight between

the points P0, P1.

The most important and interesting EGOs arise, when values of the envelope func-

tion f�n(R) coincide with those of the function Fn+1(�n,R), determined by rela-

tion (2.6) and proportional to the squared length of the finite σ -subspace, consisting

of n+ 2 points �n, R. This object is called the nth order natural geometric object

(NGO). It is defined by the relation (2.22). In the case of proper Euclidean geometry, it

coincides with an n-dimensional plane.

Another function f generates another envelope of elementary geometrical objects

for the given skeleton �n. For instance, the set of two points {P0,P1} forms a skeleton

not only for the tube �P0P1 , but also for the segment �[P0P1] of the tube (straight) (3.6),

and for the tube ray �[P0P1], which is defined by the relation

�[P0P1] =
{
R | S2

(
P0,P1,R

)= 0
}
, (3.8)

where the function S2 is defined by relation (3.7).

4. Interrelation between T-geometric and Riemannian conceptions of geometry

Definition 4.1. The geometric conception is a totality of principles of the geom-

etry construction.

Compare the Riemannian conception of geometry and that of T-geometry. The n-

dimensional Riemannian geometry Rn = {g,K,�n} is introduced on n-dimensional

manifold �n in some coordinate system K by setting the metric tensor gik(x),
i,k = 1,2, . . . ,n. Thereafter, using definition (1.4) of the curve that always can be in-

troduced on the manifold �n, we introduce the concept of geodesic �[xx′] as the

shortest curve connecting points with coordinates x and x′. In the Riemannian space

Rn = {g,K,�n} we introduce the world function σR(x,x′) between points x and x′

defined by the relation

σR
(
x,x′

)= 1
2

(∫
�[xx′]

√
gikdxidxk

)2

, (4.1)

where �[xx′] denotes a segment of geodesic connecting points x and x′.
T-geometry can be introduced on any set Ω, including the manifold �n. To set T-

geometry on �n, it is insufficient to introduce the metric tensorgik(x), i,k= 1,2, . . . ,n,

because it determines only the first derivatives of the world function at coinciding

points

gik(x)=−σik′(x,x)≡−
[
σ
(
x,x′

)
∂xi∂x′k

]
x′=x

. (4.2)

This is insufficient for the determination of the world function. For setting T-geometry

in a way to be consistent with the Riemannian geometry, we should set σ(x,x′) =
σR(x,x′), whereσR(x,x′) is defined by relation (4.1). Now we can construct geometric

objects by the method described above. The T-geometry, introduced in such a way,

will be referred to as σ -Riemannian geometry, to distinguish the different conceptions

(i.e., rules of construction) of geometry.
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Note that the world function, consistent with Riemannian geometry on the manifold,

may be set as a solution of equations in partial derivatives. For instance, the world

function can be defined as the solution of the differential equation [14]

σigik(x)σk = 2σ, σi ≡ ∂σ
∂xi

, i= 1,2, . . . ,n, (4.3)

satisfying conditions (2.2).

The basic geometric objects of Riemannian geometry, geodesic segments �[xx′],

coincide with the first order NGOs in T-geometry, the tube segments �[xx′] defined

by relations (3.6). Thus we can say upon this partial coincidence of the two geomet-

ric conceptions (Riemannian and σ -Riemannian ones). But such a coincidence is not

complete. There are some difference that appears sometimes essential.

Consider the case where the manifold �n coincides withRn and metric tensor gik =
const, i,k = 1,2, . . . ,n, g = det‖gik‖ ≠ 0 is the metric tensor of the proper Euclidean

space. The world function is described by relation (2.25), and the proper Riemannian

space En = {gE,K,Rn} is the proper Euclidean space. Here gE denotes the metric tensor

of the proper Euclidean space.

Now consider the proper Riemannian space Rn = {gE,K,D}, where D ⊂Rn is some

region of the proper Euclidean space En = {gE,K,Rn}. If this region, D is convex,

that is, any segment �[xx′] of a straight passing through points x,x′ ∈D belongs to

D(�[xx′] ⊂D), the world function of the proper Riemannian space Rn = {gE,K,D} has

the form (2.25), and the proper Riemannian space Rn = {gE,K,D} can be embedded

isometrically to the proper Euclidean space En = {gE,K,Rn}.
If the regionD is not convex, the system of geodesics in the region Rn = {gE,K,D} is

not a system of straights, and world function (4.1) is not described by relation (2.25).

In this case, the region D cannot be embedded isometrically in En = {gE,K,Rn}, in

general. It seems to be paradoxical that one (nonconvex) part of the proper Euclidean

space cannot be embedded isometrically to it, whereas another (convex) part can.

The convexity problem appears to be rather complicated, and most of mathemati-

cians prefer to go around this problem, dealing only with convex regions [1]. In T-

geometry there is no convexity problem. Indeed, according to Definition 2.2 a subset

of points of σ -space is always embeddable isometrically in the σ -space. From the

viewpoint of T-geometry, a removal of any region Rn = {gE,K,D} from the proper

Euclidean space Rn = {gE,K,Rn} cannot change shape of geodesics (first order NGOs).

It leads only to holes in geodesics, making them discontinuous. The continuity is a

property of the coordinate system, used in the proper Riemannian geometry as a main

tool of description. Using continuous coordinate systems for description, we transfer

constraints imposed on coordinate system to the geometry itself.

Insisting on continuity of geodesics, we overestimate the importance of continuity

for geometry and attribute continuous geodesics (the first order NGOs) to any proper

Riemannian geometry, whereas the continuity is a special property of the proper

Euclidean geometry. From the viewpoint of T-geometry, the convexity problem is an

artificial problem. The existence of the convexity problem in the Riemannian concep-

tion of geometry and its absence from the T-geometric conception means that the

second conception of geometry is more perfect.
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5. Collinearity in Riemannian and σ -Riemannian geometry. We return to the

Riemannian spaceRn = {g,K,D},D ⊂Rn, which generates the world functionσ(x,x′)
defined by relation (4.1). Then the σ -space V = {σ,D} appears. It will be referred to as

σ -Riemannian space. We are going to compare the concept of collinearity (parallelism)

of two vectors in the two spaces.

The world function σ = σ(x,x′) of both σ -Riemannian and Riemannian spaces sat-

isfies the system of equations [7] (the paper [7] is hardly available for English speaking

reader. Survey of main results of [7] in English may be found in [8], see also [11]).

σlσ lj
′
σj′ = 2σ, σ

(
x,x′

)= σ(x′,x),
σ(x,x)= 0, det

∥∥σi‖k∥∥≠ 0,

det
∥∥σik′∥∥≠ 0, σi‖k‖l = 0,

(5.1)

where the following designations are used

σi ≡ ∂σ
∂xi

, σi′ ≡ ∂σ
∂x′i

, σik′ ≡ ∂2σ
∂xi∂x′k

, σ ik
′
σlk′ = δil. (5.2)

Here the primed index corresponds to the point x′, and unprimed index corresponds

to the point x. Symbol ‖ before index i denotes covariant derivative ∇̃x′i with respect

to xi (σk‖i ≡ ∇̃x′i σk). The derivative ∇̃x′i is the covariant derivative with respect to

with xi with the Christoffel symbol

Γ ikl ≡ Γ ikl
(
x,x′

)≡ σis′σkls′ , σkls′ ≡ ∂3σ
∂xk∂xl∂x′s

. (5.3)

For instance,

Gik ≡Gik
(
x,x′

)≡ σi‖k ≡ ∂σi
∂xk

−Γ lik
(
x,x′

)
σl ≡ ∂σi

∂xk
−σiks′σls′σl

Gik‖l ≡ ∂Gik∂xl
−σils′σjs′Gjk−σkls′σjs′Gij.

(5.4)

Summation from 1 to n is produced over repeated indices. The covariant derivative

∇̃x′i with respect to xi with the Christoffel symbol Γ ikl(x,x′) acts only on the point x
and on unprimed indices. It is called the tangent derivative, because it is a covariant

derivative in the Euclidean space Ex′ which is tangent to the Riemannian space Rn
at the point x′. The covariant derivative ∇̃xi′ with respect to x′i with the Christoffel

symbol Γ i
′
k′l′(x,x′) acts only on the point x′ and on primed indices. It is a covariant

derivative in the Euclidean space Ex that is tangent to the σ -Riemannian space Rn at

the point x [7].

In general, the world function σ carries out the geodesic mapping Gx′ : Rn→ Ex′ of

the Riemannian space Rn = {g,K,D} on the Euclidean space Ex′ = {g,Kx′ ,D}, tangent

to Rn = {g,K,D} at the point x′ [7]. This mapping transforms the coordinate system K
in Rn into the coordinate system Kx′ in Ex′ . The mapping is geodesic in the sense that

it conserves the lengths of segments of all geodesics, passing through the point of

contact x′ and angles between them at this point.

The tensor Gik defined by (5.4) is the metric tensor at the point x in the tangent

Euclidean space Ex′ . The covariant derivatives ∇̃x′i and ∇̃x′k commute identically, that
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is, (∇̃x′i ∇̃x
′
k −∇̃x

′
k ∇̃x

′
i )Als ≡ 0, for any tensor Als [7]. This shows that they are covariant

derivatives in the flat space Ex′ .
The system of equations (5.1) contains only world function σ and its derivatives,

nevertheless the system of equations (5.1) is not σ -immanent, because it contains

a reference to a coordinate system. It does not contain the metric tensor explicitly.

Hence, it is valid for any Riemannian space Rn = {g,K,D}. All the relations written

above are valid as well for the σ -space V = {σ,D}, provided that the world function

σ is coupled with the metric tensor by relation (4.1).

The σ -immanent expression for scalar product (P0P1 ·Q0Q1) of the two vectors

P0P1 and Q0Q1 in the proper Euclidean space has the form

(
P0P1 ·Q0Q1

)≡ σ(P0,Q1
)+σ(Q0,P1

)−σ(P0,Q0
)−σ(P1,Q1

)
. (5.5)

This relation can be easily proved as follows.

In the proper Euclidean space three vectors P0P1, P0Q1, and P1Q1 are coupled by

the relation

∣∣P1Q1

∣∣2 = ∣∣P0Q1−P0P1

∣∣2 = ∣∣P0P1

∣∣2+∣∣P0Q1

∣∣2−2
(
P0P1 ·P0Q1

)
, (5.6)

where (P0P1 ·P0Q1) denotes the scalar product of two vectors P0P1 and P0Q1 in the

proper Euclidean space. It follows from (5.6) that

(
P0P1 ·P0Q1

)= 1
2

{∣∣P0Q1

∣∣2+∣∣P0P1

∣∣2−∣∣P1Q1

∣∣2
}
. (5.7)

Substituting the point Q1 by Q0 in (5.7), we obtain

(
P0P1 ·P0Q0

)= 1
2

{∣∣P0Q0

∣∣2+∣∣P0P1

∣∣2−∣∣P1Q0

∣∣2
}
. (5.8)

Subtracting (5.8) from (5.7) and using the properties of the scalar product in the proper

Euclidean space, we obtain

(
P0P1 ·Q0Q1

)= 1
2

{∣∣P0Q1

∣∣2+∣∣Q0P1

∣∣2−∣∣P0Q0

∣∣2−∣∣P1Q1

∣∣2
}
. (5.9)

Taking into account that |P0Q1|2 = 2σ(P0,Q1), we obtain the relation (5.5) from rela-

tion (5.9).

The two vectors P0P1 and Q0Q1 are collinear P0P1 ‖ Q0Q1 (parallel or antiparallel),

provided that cos2θ = 1, where θ is the angle between the vectors P0P1 and Q0Q1.

Taking into account that

cos2θ =
(
P0P1 ·Q0Q1

)2(
P0P1 ·P0P1

)(
Q0Q1 ·Q0Q1

) =
(
P0P1 ·Q0Q1

)2∣∣P0P1

∣∣2 ·∣∣Q0Q1

∣∣2 , (5.10)

we obtain the following σ -immanent condition of the two vectors collinearity

P0P1 ‖Q0Q1 :
(
P0P1 ·Q0Q1

)2 = ∣∣P0P1

∣∣2 ·∣∣Q0Q1

∣∣2. (5.11)

The collinearity condition (5.11) is σ -immanent, because by means of (5.5) it can

be written in terms of the σ -function only. Thus, this relation describes the vectors

collinearity in the case of arbitrary σ -space.
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We describe this relation for the case of σ -Riemannian geometry. Let the coor-

dinates of points P0, P1, Q0, Q1 be respectively x, x +dx, x′, and x′ +dx′. Then

writing (5.5) and expanding it over dx and dx′, we obtain

(
P0P1 ·Q0Q1

)≡ σ(x,x′ +dx′)+σ(x′,x+dx)−σ(x,x′)−σ(x+dx,x′ +dx′)
= σl′ dx′l′ + 1

2
σl′,s′ dx′l

′
dx′s

′ +σidxi+ 1
2
σi,k dxidxk

−σidxi−σl′ dx′l′ − 1
2
σi,k dxidxk−σi,l′ dxidx′l′ − 1

2
σl′,s′ dx′l

′
dx′s

′

(
P0P1 ·Q0Q1

)=−σi,l′ dxidx′l′ = −σil′ dxidx′l′ .
(5.12)

Here the comma means differentiation. For instance, σi,k ≡ ∂σi/∂xk. We obtain for

|P0P1|2 and |Q0Q1|2

∣∣P0P1

∣∣2 = gikdxidxk,
∣∣Q0Q1

∣∣2 = gl′s′ dx′l′ dx′s′ , (5.13)

where gik = gik(x) and gl′s′ = gl′s′(x′). Then the collinearity condition (5.11) is writ-

ten in the form (
σil′σks′ −gikgl′s′

)
dxidxkdx′l

′
dx′s

′ = 0. (5.14)

Take into account that in the Riemannian space, the metric tensor gl′s′ at the point

x′ can be expressed via the world function σ of points x, x′ by means of relation [7]

gl′s′ = σil′Gikσks′ , gl
′s′ = σil′Gikσks′ , (5.15)

where the tensor Gik is defined by relation (5.4), and Gik is defined by the relation

GilGlk = δik. (5.16)

Substituting the first relation (5.4) in (5.14) and using designation

ui =−σil′ dx′l′ , ui =Gikuk =−σil′gl′s′ dxs′ (5.17)

we obtain

(
δliδ

s
k−gikGls

)
ulus dxidxk = 0. (5.18)

The vector ui is the vector dx′i′ = gi′k′ dx′k
′

transported parallelly from the point x′

to the point x in the Euclidean space Ex′ tangent to the Riemannian space Rn. Indeed,

ui =−σil′gl′s′ dx′s , ∇̃x′k
(−σil′gl′s′)≡ 0, i,k= 1,2, . . . ,n (5.19)

and tensor −σil′gl′s′ is the operator of the parallel transport in Ex′ , because

[−σil′gl′s′]x=x′ = δs′i′ (5.20)
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and the tangent derivative of this operator is equal to zero identically. For the same

reason, that is, because of

[
σil

′
gl′s′σks

′]
x=x′ = gi

′k′ , ∇̃x′s
(
σil

′
gl′s′σks

′)≡ 0 (5.21)

Gik = σil′gl′s′σks′ is the contravariant metric tensor in Ex′ , at the point x.

Relation (5.18) contains vectors at the point x only. At fixed ui = −σil′ dx′l′ it

describes a collinearity cone, that is, a cone of infinitesimal vectors dxi at the point x
parallel to the vector dx′i′ at the point x′. Under some conditions, the collinearity

cone can degenerates into a line. In this case there is only one direction parallel to the

fixed vector ui. We investigate when this situation takes place.

At the point x two metric tensors gik and Gik are connected by the relation [7]

Gik
(
x,x′

)= gik(x)+
∫ x′
x
Fikj′′s′′

(
x,x′′

)
σj

′′(
x,x′′

)
dx′′s

′′
, (5.22)

where, according to [7],

σi
′ = σli′σl =Gl′i′σl′ = gl′i′σl′ . (5.23)

Integration does not depend on the path, because it is produced in the Euclidean

space Ex′ . The two-point tensor Filk′j′ = Filk′j′(x,x′) is the two-point curvature tensor,

defined by the relation

Filk′j′ = σilj′‖k′ = σilj′,k′ −σsj′k′σsm′
σilm′ = σi|l‖k′‖j′ , (5.24)

where one vertical stroke denotes usual covariant derivative and two vertical strokes

denote tangent derivative. The two-point curvature tensor Filk′j′ has the following

symmetry properties

Filk′j′ = Flik′j′ = Filj′k′ , Filk′j′
(
x,x′

)= Fk′j′il(x′,x). (5.25)

It is connected with the one-point Riemann-Christoffel curvature tensor riljk by means

of the relations

riljk =
[
Fikj′l′ −Fijk′l′

]
x′=x = fikjl−fijkl, fiklj =

[
Fikj′l′

]
x′=x. (5.26)

In the Euclidean space, the two-point curvature tensor Filk′j′ vanishes as well as the

Riemann-Christoffel curvature tensor riljk.
We introduce the designation

∆ik =∆ik
(
x,x′

)=
∫ x′
x
Fikj′′s′′

(
x,x′′

)
σj

′′(
x,x′′

)
dx′′s

′′
(5.27)

and choose the geodesic �xx′ as the path of integration. It is described by the relation

σi
(
x,x′′

)= τσi(x,x′) (5.28)

which determines x′′ as a function of parameter τ . Differentiating with respect to τ ,

we obtain

σik′′
(
x,x′′

)
dx′′k

′′ = σi
(
x,x′

)
dτ. (5.29)
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Resolving (5.29) with respect to dx′′ and substituting in (5.27), we obtain

∆ik
(
x,x′

)= σl(x,x′)σp(x,x′)
∫ 1

0
Fikj′′s′′

(
x,x′′

)
σlj

′′(
x,x′′

)
σps

′′(
x,x′′

)
τdτ, (5.30)

where x′′ is determined by (5.28) as a function of τ . We set

Fiklp
(
x,x′

)= Fikj′s′(x,x′)σlj′(x,x′)σps′(x,x′) (5.31)

then

Gik
(
x,x′

)= gik(x)+∆ik(x,x′) (5.32)

∆ik
(
x,x′

)= σl(x,x′)σp(x,x′)
∫ 1

0
Fiklp

(
x,x′′

)
τdτ. (5.33)

Substituting gik from (5.32) in (5.18), we obtain

(
δliδ

s
k−Gls

(
Gik−∆ik

))
ulus dxidxk = 0. (5.34)

And we look for solutions to the equation in the form of expansion

dxi =αui+vi, Gikuivk = 0. (5.35)

Substituting (5.35) in (5.34), we obtain an equation for vi

Glsulus
[
Gikvivk−∆ik

(
αui+vi)(αuk+vk)]= 0. (5.36)

If the σ -Riemannian space V = {σ,D} is σ -Euclidean, then as it follows from (5.33)

∆ik = 0. If V = {σ,D} is the proper σ -Euclidean space, Glsulus ≠ 0, and we obtain two

equations to determine vi

Gikvivk = 0, Gikuivk = 0. (5.37)

The only solution

vi = 0, dxi =αui, i= 1,2, . . . ,n (5.38)

of (5.36) is a solution of (5.34), whereα is an arbitrary constant. In the proper Euclidean

geometry, the collinearity cone always degenerates into a line.

Let now the space V = {σ,D} be the σ -pseudo-Euclidean space of index 1, and

the vector ui be timelike, that is, Gikuiuk > 0. Then (5.37) also have the solution

(5.38). If the vector ui is spacelike, Gikuiuk < 0, then the two equations (5.37) have

a nontrivial solution, and the collinearity cone does not degenerate into a line. The

collinearity cone is a section of the light cone Gikvivk = 0 by the plane Gikuivk = 0.

If the vector ui is null, Gikuiuk = 0, then (5.36) reduces to the form

Gikuiuk = 0, Gikuivk = 0. (5.39)

In this case (5.38) is a solution, but besides, there are spacelike vectors vi that are

orthogonal to null vector ui and the collinearity cone does not degenerate into a line.
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In the case of the proper σ -Riemannian space Gikuiuk > 0, and (5.36) reduces to

the form

Gikvivk−∆ik
(
αui+vi)(αuk+vk)= 0. (5.40)

In this case, ∆ik ≠ 0 in general and the collinearity cone does not degenerate. The

quantity ∆ik depends on the curvature and on the distance between the points x and

x′. The greater are the space curvature and the distance ρ(x,x′), the greater is the

collinearity cone aperture.

In the curved proper σ -Riemannian space, there is an interesting special case where

the collinearity cone degenerates. In any σ -Riemannian space, the following equality

takes place [7]

Gikσk = gikσk, σk ≡ gklσl. (5.41)

Then it follows from (5.32) that

∆ikσk = 0. (5.42)

It means that in the case where the vectorui is directed along the geodesic, connecting

points x and x′, that is, ui = βσi, (5.40) reduces to the form

(
Gik−∆ik

)
vivk = 0, ui = βσi. (5.43)

If ∆ik is small enough when compared to Gik, then the eigenvalues of the matrix

Gik−∆ik have the same sign, as those of the matrix Gik. In this case (5.43) has the

only solution (5.38), and the collinearity cone degenerates.

6. Pseudo-Riemannian geometry and one-dimensionality of the first order tubes.

In general, the collinearity cone does not degenerate even in a flat Riemannian space

if it is not a proper Riemannian one. We have seen this in the previous section for the

collinearity cone of infinitesimal vectors (relations (5.39)). Now we consider the special

case of finite vectors in flat Riemannian space and, in particular, in the Minkowski

space.

We consider the n-dimensional pseudo-Euclidean space En = {g1,K,Rn} of the

index 1, g1 = diag{1,−1,−1, . . . ,−1} to be a special case of n-dimensional pseudo-

Riemannian space. The world function is defined by relation (2.25)

σ1
(
x,x′

)= 1
2

n∑
i,k=1

gik
(
xi−x′i

)(
xk−x′k

)
, gik = diag{1,−1,−1, . . . ,−1}. (6.1)

The geodesic �yy′ is a straight line and is considered in the pseudo-Euclidean ge-

ometry to be the first order NGO, determined by two points y and y ′, that is, it is

determined by two points y and y ′ and by the geometry itself

�yy′ : xi = (yi−y ′i)τ, i= 1,2, . . . ,n, τ ∈R. (6.2)

The geodesic �yy′ is called timelike if σ1(y,y ′) > 0, and it is called spacelike if

σ1(y,y ′) < 0. The geodesic �yy′ is called null if σ1(y,y ′)= 0.
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The pseudo-Euclidean space En = {g1,K,Rn} generates the σ -space V = {σ1,Rn},
where the world function σ1 is defined by relation (6.1). The σ -space V = {σ1,Rn} will

be referred to as σ -pseudo-Euclidean space (special case of σ -Riemannian space). The

first order tube (NGO) �x,x′ in the σ -pseudo-Euclidean space V = {σ1,Rn} is defined

by relation (2.22)

�
(
x,x′

)≡�xx′ =
{
r | F2

(
x,x′,r

)= 0
}
, σ1

(
x,x′

)
≠ 0, x,x′,r ∈Rn, (6.3)

F2
(
x,x′,r

)=
∣∣∣∣∣
(
x′i−xi

)(
x′i−xi) (

x′i−xi
)(
r i−xi)(

ri−xi
)(
x′i−xi) (

ri−xi
)(
r i−xi)

∣∣∣∣∣. (6.4)

In other words, �xx′ = �(x,x′) is also NGO, because it is also determined by two

points x and x′ and the T-geometry itself. The solution of (6.3) and (6.4) yields

�xx′ =
{
r |

⋃
y∈Rn

⋃
τ∈R

r = (x′ −x)τ+y−x∧Γ(x,x′,y)= 0∧Γ(x,y,y)= 0

}
,

x,x′,y,r ∈Rn,
(6.5)

where Γ(x,x′,y)= (x′i−xi)(yi−xi) is the scalar product of the vectors ��������������������������������������→xy and
����������������������������������������������������→
xx′

defined by relation (2.7). In the case of timelike vector
����������������������������������������������������→
xx′, when σ1(x,x′) > 0, there is

a unique null vector ��������������������������������������→xy = ���������������������������������→xx = �→
0 which is orthogonal to the vector

����������������������������������������������������→
xx′. In this case,

the (n−1)-dimensional surface �xx′ degenerates into the one-dimensional straight

�xx′ =
{
r |

⋃
τ∈R

r = (x′ −x)τ
}
, σ1

(
x,x′

)
> 0, x,x′,r ∈Rn. (6.6)

Thus, for timelike vector
����������������������������������������������������→
xx′ the first order tube �xx′ coincides with the geodesic �xx′ .

In the case of spacelike vector
����������������������������������������������������→
xx′ the (n−1)-dimensional tube �xx′ contains the one-

dimensional geodesic �xx′ of the pseudo-Euclidean space En = {g1,K,Rn}. The dif-

ference between �xx′ and �xx′ is conditioned by different definitions of collinearity

in the pseudo-Euclidean space and in the σ -pseudo-Euclidean one. In the pseudo-

Euclidean space En = {g1,K,Rn}, the two vectors are collinear if their rectilinear co-

ordinates are proportional, whereas in the σ -pseudo-Euclidean space V = {σ1,Rn}
they are collinear, provided that they satisfy relation (2.7). For instance, for n = 4

two spacelike vectors a={0,1,0,0} and b={1,1,1,0} are collinear in V = {σ1,R4} and

not collinear in E4 = {g1,K,R4}. The definition of collinearity in V = {σ1,R4} is σ -

immanent, whereas this definition in the pseudo-Euclidean space En = {g1,K,Rn} is

not σ -immanent, because it contains a reference to a coordinate system. From logi-

cal viewpoint the σ -immanent definition is more perfect, because it does not contain

nongeometrical concepts.

For n= 4, the pseudo-Euclidean space E4 = {g1,K,R4}, and the σ -pseudo-Euclidean

space V = {σ1,R4} describe the real space-time (the Minkowski space), using two dif-

ferent geometrical conceptions. In this case the first order NGOs associate with real

physical objects—free particles. For usual free particles, whose world line is timelike

straight, both conceptions give the same result. In general, the pseudo-Euclidean space

E4 = {g1,K,R4} (Riemannian conception) admits the existence of hypothetical parti-

cles (taxyons), moving with the speed, which is more than the speed of the light. It is
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usually supposed that a taxyon is described by the spacelike straight �xx′ . Taxyons

failed to be discovered experimentally.

The σ -pseudo-Euclidean space V = {σ1,R4} admits the existence of taxyons (the

particles, moving with the speed, which is more than the speed of the light) to be

described only by the three-dimensional surface �·
xx′ . It explains the failure of their

discovery by the fact that taxyons are looked for in the form of spacelike straights

(but not in the form of three-dimensional surfaces). It is not clear what means from

physical viewpoint the statement: the particle moving with the speed, which is more

than the speed of the light, is described by means of three-dimensional surface. Maybe,

here the following association is useful.

The particles, whose velocity is more than the speed of the light in the matter (but

not in the vacuum), are known. These are the so-called Cherenkov particles. A charged

Cherenkov particle radiates an electromagnetic emanation in some directions, forming

a cone in the three-dimensional space. The set of all events, describing the motion of

a Cherenkov particle and that of photons radiated by it, forms a three-dimensional

surface �3 in the four-dimensional space-time. The shape of �3 resembles the shape of

the surface �·
xx′ with spacelike vector

����������������������������������������������������→
xx′. Indeed, the surface �3 may be considered

as a set of two-dimensional sections �y of the light cones �y with the vertexy ∈�xx′ ,

where �xx′ is the world line of the Cherenkov particle. The two-dimensional sections

�y of the light cone �y appear as a result of intersection of the �y with some three-

dimensional plane �y , passing through the pointy . The direction of the normal vector

to �y depends on the relative velocity of the Cherenkov particle.

A similar picture arises in the case of the surface �·
xx′ with the spacelike vector

����������������������������������������������������→
xx′. The first order tube �·

xx′ may be considered to be consisting of sections �y =
�y∩�yxx′ , y ∈�xx′

�·
xx′ =

⋃
y∈�xx′

�y∩�yxx′ , (6.7)

where �x is the zeroth order tube (light cone)

�x =
{
r | σ(x,r)= 0

}
, x,r ∈R4,

�yxx′ =
{
r | ( ��������������������������������→yr · ��������������������������������������→yx)= 0∧

( ��������������������������������→yr · ���������������������������������������������������������→yx′)= 0∧y ∈�xx′
}
, x,x′,y,r ∈R4.

(6.8)

Expressions (6.7) and (6.8) are valid in V = {σ1,R4} for timelike and spacelike vec-

tor
����������������������������������������������������→
xx′, but for timelike

����������������������������������������������������→
xx′ the set �y ∩�yxx′ = {y}, and relation (6.7) stops to be

interesting. Expression (6.7) recalls the corresponding relation for Cherenkov particle.

But for the Cherenkov particle the vector
����������������������������������������������������→
xx′ is timelike although it moves with the

speed which is moor than the speed of the light in the matter, whereas for a taxyon

the vector
����������������������������������������������������→
xx′ is spacelike.

7. Discussion. Thus, we see that in theσ -Riemannian geometry at the pointx there

are many vectors parallel to a given vector at the point x′. This set of parallel vectors

is described by the collinearity cone. The degeneration of the collinearity cone into a

line, when there is only one direction, parallel to the given direction, is an exception

rather than a rule, although in the proper Euclidean geometry this degeneration takes

place always. Nonuniformity of space destroys the collinearity cone degeneration.
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In the proper Riemannian geometry, where the world function satisfies system (5.1),

we succeeded in conserving this degeneration to the direction along the geodesic,

connecting points x and x′. This circumstance is very important for the degeneration

of the first order NGOs into geodesic, because the degeneration of NGOs is connected

closely with the collinearity cone degeneration.

Indeed, the definition of the first order tube (2.22), or (6.3) may be written also in

the form

�
(
�1)≡�P0P1 =

{
R | P0P1 ‖ P0R

}
, P0,P1,R ∈Ω, (7.1)

where collinearity P0P1 ‖ P0R of two vectors P0P1 and P0R is defined by the σ -

immanent relation (5.11) which can be written in the form

P0P1 ‖ P0R : F2
(
P0,P1,R

)=
∣∣∣∣∣
(
P0P1 ·P0P1

) (
P0P1 ·P0R

)
(
P0R ·P0P1

) (
P0R ·P0R

)
∣∣∣∣∣= 0. (7.2)

Form (7.1) of the first order tube definition allows us to define the first order tube

�(P0,P1;Q0) passing through the point Q0 collinear to the given vector P0P1. This

definition has the σ -immanent form

�
(
P0,P1;Q0

)= {R | P0P1 ‖Q0R
}
, P0,P1,Q0,R ∈Ω, (7.3)

where collinearity P0P1 ‖ Q0R of the two vectors P0P1 and Q0R is defined by the σ -

immanent relations (5.9) and (5.3). In the proper Euclidean space, tube (7.3) degen-

erates into the straight line passing through point Q0 collinear to the given vector

P0P1.

We define set ωQ0 = {Q0Q |Q∈Ω} of vectors Q0Q . Then

	
(
P0,P1;Q0

)= {Q0Q |Q∈�
(
P0,P1;Q0

)}⊂ωQ0 (7.4)

is the collinearity cone of vectors Q0Q collinear to vector P0P1. Thus, the one-

dimensionality of the first order tubes and the collinearity cone degeneration are a

connected phenomena.

In the Riemannian geometry, the very special property of the proper Euclidean ge-

ometry (the collinearity cone degeneration) is considered to be a property of any ge-

ometry and is extended to the case of Riemannian geometry. The line �, defined as a

continuous mapping (1.4), is considered to be the most important geometric object.

This object is considered to be more important than the metric, and the metric in the

Riemannian geometry is defined in terms of the shortest lines. The use of line as a

basic concept of geometry is inadequate for the description of geometry and poses

problems, which appears to be artificial.

First, the extension of curves introduces nonlocal features in the geometry descrip-

tion. Nonlocality of description manifests itself

(1) in the violation of isometrical embeddability of nonconvex regions in the space,

from which they are cut,

(2) in the violation of absolute parallelism of vectors at different points of space.
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These unnatural properties of Riemannian geometry are corollaries of the metric defi-

nition via concept of a curve. In σ -Riemannian geometry, such properties of Euclidean

geometry as absolute parallelism and isometrical embeddability of nonconvex regions

conserve completely. All this is a manifestation of the negation of nondegeneracy as

a natural property of geometry. But we fail to remove nondegeneracy of nonuniform

geometry. It exists for spacelike vectors even in the Minkowski geometry.

As far as we cannot remove nondegeneracy from Riemannian geometry, it seems

reasonable to recognize that the nondegeneracy is a natural geometric property, and

T-geometric conception is more perfect than the Riemannian conception of geom-

etry. A corollary of this conclusion is a reconstruction of local description and ab-

solute parallelism (the last may be useful for formulation of integral conservation

laws in a curved space-time). Besides, the T-geometric conception is essentially sim-

pler than the Riemannian one. It has simpler structure and uses simpler method

of description. The fundamental mapping (2.14), introducing the multivector in T-

geometry is essentially simpler than fundamental mapping (1.4), introducing the curve

in Riemannian geometry. Mapping (2.14) deals with finite objects. It does not contain

any reference to limiting processes nor limits whose existence should be provided.

Finally, the T-geometry is not sensitive to, whether the real space-time is continu-

ous or only fine-grained. This is important also, because it seems not to be tested

experimentally.
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