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The results of Biswas (2000) are extended to the situation of transversely projective foli-
ations. In particular, it is shown that a transversely holomorphic foliation defined using
everywhere locally nondegenerate maps to a projective space CPn, and whose transition
functions are given by automorphisms of the projective space, has a canonical transversely
projective structure. Such a foliation is also associated with a transversely holomorphic
section ofN⊗−k for each k∈ [3,n+1], whereN is the normal bundle to the foliation. These
transversely holomorphic sections are also flat with respect to the Bott partial connection.
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1. Introduction. A projective structure on a Riemann surface X is defined by giving

a covering of X by holomorphic coordinate charts such that all the transition func-

tions are restrictions of Möbius transformations. It is well known that the notion of a

projective structure can be extended to the situation of foliations (cf. [10]). To define

this generalization, let � be a foliation of codimension two on a real manifold M . Let

{Ui}i∈I be an open covering of M , and let φi : Ui → C be submersions onto the image

such that the fibers of φi are leaves for �. A transversely projective structure on �

is defined by imposing the condition that, for every i,j ∈ I, there is a commutative

diagram

Ui∩Uj
φi

Ui∩Uj
φj

φi
(
Ui∩Uj

) fi,j
φj
(
Ui∩Uj

)
(1.1)

such that fi,j is a restriction of some Möbius transformation [10].

A holomorphic immersion γ :X → CPn of a Riemann surface X is called everywhere

locally nondegenerate if for every x ∈ X, the order of contact of the image γ(U) at

γ(x), where U is a neighborhood of x in X, with any hyperplane in CPn passing

through γ(x) is at most n−1 (see [3, 9]). Two such immersions are called equivalent

if they differ by an automorphism of CPn. A CPn-structure on X is an equivalence

class of an everywhere locally nondegenerate equivariant map of the universal cover

of X into CPn. A CP1-structure on X is the same as a projective structure on X.

If f : X → CPn is a holomorphic map such that the image of f is not contained in

any hyperplane of CPn, then there is a finite subset S ⊂X such that the restriction of
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f to the complement X\S defines a CPn-structure on X\S. Any Riemann surface has

many CPn-structures. In [3], it has been shown that the space of CPn-structures on

X, where n≥ 2, is canonically identified with the Cartesian product of the space of all

projective structures on X with the direct sum
⊕n+1

i=3 H0(X,K⊗iX ).
The notion of a CPn-structure can be extended to the situation of foliations which

will be called a transversely CPn-structure; see Definition 2.3 for the definition of a

transversely CPn-structure.

Let � be a transversely holomorphic foliation of complex codimension one. So the

normal bundle N is a transversely holomorphic line bundle. The normal bundle N is

equipped with the Bott partial connection obtained from the Lie bracket operation of

vector fields. The transversely holomorphic structure of N is compatible with the Bott

partial connection.

We prove that, giving a transversely CPn-structure on � is equivalent to giving a

transversely projective structure on � together with a transversely holomorphic sec-

tion ωk of N⊗−k, for each k ∈ [3,n+1], such that ωk is flat with respect to the Bott

partial connection (see Theorem 2.4). In particular, setting all ωk to be zero we con-

clude that, for any transversely CPn-structure on � there is a canonically associated

transversely projective structure on �. When the foliation is trivial, that is, �= 0, then

Theorem 2.4 is the main result of [3] (see [3, Theorem 5.5]).

It is not easy to directly construct a transversely CPn-structure on a holomorphic

foliation. In fact, when the foliation is trivial, namely we have a Riemann surface X, it

is not easy to construct a map of the universal cover of X to CPn, which is everywhere

locally nondegenerate. However, using Theorem 2.4 we can indirectly construct many

examples of transversely CPn-structures, just as using [3, Theorem 5.5], we can indi-

rectly construct examples of everywhere locally nondegenerate maps of the universal

cover of a Riemann surface to CPn.

2. Transversely projective foliations defined by maps to a projective space. Let

M be a connected smooth real manifold of dimension d+2. Let � be a C∞-subbundle

of rank d of the tangent bundle TM .

Definition 2.1. A transversely holomorphic structure on � is defined by giving

the following data (see [5]):

(1) a covering of M by open subsets Ui, where i runs over an index set I. So we

have
⋃
i∈I Ui =M ;

(2) for each i∈ I, a submersion φi of Ui to an open subset Di of C. The restriction

�|Ui is the kernel of the differential map dφi : TUi→φ∗i TDi;
(3) for every pair i,j ∈ I, there is a commutative diagram of maps

Ui∩Uj
φi

Id Ui∩Uj
φj

φi
(
Ui∩Uj

) fi,j
φj
(
Ui∩Uj

)
,

(2.1)

where fi,j is a holomorphic map.
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Two such data {Ui,φi}i∈I and {Ui,φi}i∈J are called equivalent if their union, namely

{
Ui,φi

}
i∈I∪J , (2.2)

also satisfies the above conditions. A transversely holomorphic structure on � will

mean an equivalence class of data of the above type satisfying the three conditions.

Next we recall the definition of a transversely projective foliation.

Definition 2.2. A transversely projective structure on � is defined by giving a

data {Ui,φi}i∈I exactly as in Definition 2.1, but satisfying the extra condition (apart

from the three conditions) that the holomorphic maps fi,j in condition (3) are of the

form z� (az+b)/(cz+d), where a,b,c,d∈ C are constant scalars and ad−bc = 1,

that is, each fi,j is the restriction of some Möbius transformation; the scalars a, b, c, d
may depend on the index i. As before, two such data {Ui,φi}i∈I and {Ui,φi}i∈J are

called equivalent if their union {Ui,φi}i∈I∪J is also a data for a transversely projective

structure. A transversely projective structure on � will mean an equivalence class of

such data.

Clearly, a transversely projective structure on � defines a transversely holomorphic

structure on �. If �̄ is a transversely holomorphic structure on �, then a transversely

projective structure on �̄ is a transversely projective structure on � such that, the

transversely holomorphic structure defined by it coincides with �̄.

We now recall the notion of a locally nondegenerate immersion of a Riemann surface

into a projective space (see [3, 9]).

Let X be a Riemann surface, that is, a complex manifold of complex dimension one.

Let CPn, n ≥ 1, denote the n-dimensional projective space consisting of all lines in

Cn+1. A holomorphic immersion

γ :X �→ CPn (2.3)

is called everywhere locally nondegenerate if for every x ∈X, the order of contact of

the image γ(U), where U is a neighborhood of x in X, at γ(x) with any hyperplane

in CPn passing through γ(x) is at most n−1. We need to consider a neighborhood in

the definition since γ may not be injective.

An alternative description of the above nondegeneracy condition following [9] is

given below.

Let

0 �→ S �→ V q
���������������������������������������→Q �→ 0 (2.4)

be the universal exact sequence over CPn. The vector bundle V is the trivial vector

bundle with Cn+1 as fiber and S is the tautological line bundle �CPn(−1). Consider the

differential

dγ : TX �→ γ∗TCPn = γ∗Hom(S,Q) (2.5)

of the immersion γ; here TX is the holomorphic tangent bundle of X. Since γ is an

immersion, the homomorphism dγ is injective.
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Now, the homomorphism dγ gives a homomorphism

dγ : T∗X ⊗γ∗S �→ γ∗Q, (2.6)

where T∗X is the holomorphic cotangent bundle of X. Let S1 denote the inverse image

q−1(image(dγ)), where the homomorphism q is defined in (2.4). The subbundle S1 of

γ∗V defines a map

γ1 :X �→G(n+1,2) (2.7)

of X into the Grassmannian of two planes in Cn+1.

Now assume that γ1 is an immersion. Then repeating the above argument we get

a map

γ2 :X �→G(n+1,3) (2.8)

of X into the Grassmannian of three planes in Cn+1.

More generally, inductively we have a map

γi :X �→G(n+1, i+1), (2.9)

where i∈ [1,n−1], by assuming that γi−1 is an immersion. (See also [9, Section 1] for

the details of the construction of the maps γi described above.)

The condition that the map γ, together with each map γi, where i ∈ [1,n−1], is

an immersion, is equivalent to the condition that the map γ is everywhere locally

nondegenerate.

Now, we extend the above notion of everywhere locally nondegenerate map to the

context of foliations, which we call transversely CPn-structure.

Definition 2.3. A transversely CPn-structure on � is defined by giving a data

{Ui,φi}i∈I exactly as in Definition 2.1 satisfying conditions (1) and (2) and the follow-

ing stronger version of (3): for every i∈ I, there is an everywhere locally nondegenerate

map

γi :Di := image
(
φi
)
�→ CPn (2.10)

such that, for every pair i,j ∈ I, there is a commutative diagram of maps

Ui∩Uj
φi

Id Ui∩Uj
φj

φi
(
Ui∩Uj

)
γi

fi,j
φj
(
Ui∩Uj

)
γj

CPn
T

CPn,

(2.11)

where T is an automorphism of CPn, that is, T ∈ GL(n+1,C). As before, two such data

{Ui,φi,γi}i∈I and {Ui,φi,γi}i∈J are called equivalent if their union {Ui,φi,γi}i∈I∪J is
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also a data for a transversely CPn-structure. A transversely CPn-structure on � will

mean an equivalence class of such data.

The above condition forces the map fi,j to be holomorphic. So, a transversely CPn-

structure on � defines a transversely holomorphic structure on �. If �̄ is a transversely

holomorphic structure on �, then a transversely CPn-structure on �̄ is a transversely

CPn-structure on � such that the underlying transversely holomorphic structure co-

incides with �̄.

Note that, a transversely CP1-structure on � is by definition a transversely projec-

tive structure on �.

We fix a transversely holomorphic structure �̄ on �.

The normal bundle

N := TM
�

(2.12)

is a complex line bundle. Therefore, for every integer k ∈ Z, we have a complex line

bundle N⊗k obtained by taking the kth tensor power of the complex line bundle N.

By N⊗−1 we mean the dual line bundle N∗.

Any such line bundle N⊗k has a natural transversely holomorphic structure. This

means that, there is a Dolbeault operator

∂̄N⊗k :N⊗k �→N∗⊗N⊗k =N⊗k−1 (2.13)

satisfying the Leibniz identity. The operator ∂̄N⊗k is simply the Dolbeault operator on

the holomorphic tangent bundle T⊗kC of the complex line C transported to M using

the projections φi. It may be noted that, the condition in Definition 2.1(3) that every

fi,j is holomorphic ensures that these locally defined operators patch compatibly to

define the global differential operator ∂̄N⊗k .
Also, the line bundleN, and hence anyN⊗k, has the Bott partial connection (see [8]).

Recall that, the Lie bracket operation on the sheaf of sections of the tangent bundle

TM defines the Bott partial connection

N �→�∗⊗N (2.14)

along the foliation �. The Jacobi identity for Lie bracket ensures that this partial

connection is flat.

It is easy to see that both the complex structure of N and the transversely holomor-

phic structure ofN are compatible with respect to the Bott partial connection. In other

words, both the complex vector space structure of the fibers of N and the Dolbeault

operator ∂̄N defined in (2.13) commute with the differential operator in (2.14) defining

the Bott connection. Equivalently, parallel translation (for the Bott connection) along

the leaves of the foliation �̄ of holomorphic sections of N remain holomorphic. Also,

parallel translations for the Bott connection commute with multiplication by
√−1 of

the fibers of N.

The Bott partial connection on N induces a flat partial connection on any N⊗k. All

the above compatibility properties of the Bott connection on N evidently remain valid

for any N⊗k.
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Let ��̄(k) denote the space of all globally defined smooth sections s of the com-

plex line bundle N⊗k such that s is transversely holomorphic for the transversely

holomorphic foliation �̄ and it is flat with respect to the Bott partial connection for �̄.

So ��̄(k) is a complex vector space; it need not be of finite dimension. However, in the

situation whereM is compact, it was proved by Duchamp and Kalka [4, Theorem 1.27,

page 323], and also independently by Gómez-Mont [6, Theorem 1, page 169], that the

dimension of ��̄(k) is finite.

Let �(�̄) denote the space of all equivalence classes of transversely projective struc-

tures on the transversely holomorphic foliation �̄. Transversely projective structures

were defined in Definition 2.2 and transversely projective structures on �̄ were de-

fined in the paragraph following Definition 2.2. The space �(�̄) may be empty.

The following theorem is the main result of this section.

Theorem 2.4. There is a canonical bijective map from the space of all transversely

CPn-structures on �̄ and the Cartesian product

�
(
�̄
)×

(n+1⊕
k=3

��(−k)
)
. (2.15)

In particular, a transversely CPn-structure gives a transversely projective structure on

�̄ by simply taking the zero section in ��̄(−k) for all k∈ [3,n+1].

The theorem will be proved after establishing a few lemmas. We start with the

definition of jet bundles and differential operators.

Let E be a holomorphic vector bundle on a Riemann surfaceX, and letn be a positive

integer. The nth-order jet bundle of E, denoted by Jn(E), is defined to be the following

direct image on X:

Jn(E) := p1∗
( p∗2 E
p∗2 E⊗�X×X

(−(n+1)∆
)), (2.16)

wherepi :X×X →X, i= 1,2, is the projection onto the ith factor, and∆ is the diagonal

divisor on X×X. Therefore, for any x ∈X, the fiber Jn(E)x is the space of all sections

of E over the nth-order infinitesimal neighborhood of x.

Let KX denote the holomorphic cotangent bundle of X. There is a natural exact

sequence

0 �→K⊗nX ⊗E �→ Jn(E) �→ Jn−1(E) �→ 0 (2.17)

constructed using the obvious inclusion of �X×X(−(n+1)∆) in �X×X(−n∆). The in-

clusion map K⊗nX
⊗
E→ Jn(E) is constructed by using the homomorphism

K⊗nX �→ Jn(�X), (2.18)

which is defined at any x ∈X by sending (df)⊗n, where f is any holomorphic function

with f(x)= 0, to the jet of the function fn/n! at x.

The sheaf of differential operators Diffn
X(E,F) is defined to be Hom(Jn(E),F). The

homomorphism

σ : Diffn
X(E,F) �→Hom

(
K⊗nX ⊗E,F), (2.19)
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obtained by restricting a homomorphism from Jn(E) to F to the subsheaf K⊗nX
⊗
E in

(2.17), is known as the symbol map.

Let X denote a simply connected open subset of CP1. Take a holomorphic map

γ : X → CPn. Let ζ denote the line bundle γ∗�CPn(1) over X. In the notation of the

exact sequence (2.4), the line bundle �CPn(1) is S∗. Pulling back the universal exact

sequence (2.4) to X and then taking the dual, we have

0 �→ γ∗Q∗ �→W p
������������������������������������������→ ζ �→ 0, (2.20)

whereW is the trivial vector bundle of rank n+1 over X with fiber (Cn+1)∗. Of course,

(Cn+1)∗ = Cn+1.

The trivialization of W induces a homomorphism

p̄ :W �→ Jn(ζ) (2.21)

which can be defined as follows: for any point x ∈X and vectorw ∈Wx in the fiber, let

w̄ denote the unique flat section of W such that w̄(x)=w. Now, p̄(w) is the restric-

tion of the section p(w̄) of ζ to the nth-order infinitesimal neighborhood of x. Recall

that, the fiber Jn(ζ)x is the space of sections of ζ over the nth-order infinitesimal

neighborhood of x.

Lemma 2.5. The map γ is everywhere locally nondegenerate if and only if the ho-

momorphism p̄ in (2.21) is an isomorphism.

Proof. This is a straightforward consequence of the condition of everywhere lo-

cally nondegeneracy. For some point x ∈ X, if p̄x : Wx → Jn(ζ)x is not an isomor-

phism, then take a nonzero vector w in the kernel of p̄x , since Wx = (Cn+1)∗, the

vector w defines a hyperplane H in CPn. Clearly, H contains γ(x). The given condi-

tion p̄x(w)= 0 can be seen to be equivalent to the condition that the order of contact

of H with γ(X) at γ(x) is at least n. In other words, γ is degenerate at x.

Conversely, if γ is degenerate at a point x ∈ X, take a hyperplane H in CPn con-

taining γ(x) such that the order of contact between γ(X) and H at γ(x) is at least

n. Let w ∈ (Cn+1)∗ be a functional defining the hyperplane H. It is easy to see that

p̄x(w)= 0. This completes the proof.

Assume that γ is everywhere locally nondegenerate. So the homomorphism p̄ in

(2.21) gives a trivialization of the jet bundle Jn(ζ). Now, from (2.17) it follows that∧n+1Jn(ζ) is canonically isomorphic to Kn(n+1)/2
X

⊗
ζn+1. The trivialization of Jn(ζ)

induces a trivialization of Kn(n+1)/2
X

⊗
ζn+1. Fix a square-root ξ of the holomorphic

tangent bundle TX . In other words, ξ is a holomorphic line bundle and an isomorphism

between TX and ξ⊗2 is chosen. The above trivialization of Kn(n+1)/2
X

⊗
ζn+1 induces

an isomorphism

Ji
(
ζj
)= Ji(ξnj)⊗(ξnj)∗⊗ζj (2.22)

for every i and j. Indeed, this is an immediate consequence of the fact that ζ and

ξn differ by tensoring with a finite-order line bundle. By a finite-order line bundle we

mean a line bundle some tensor power of which has a canonical trivialization.
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Consider the homomorphism

p̂ :W �→ Jn+1(ζ) (2.23)

which sends any w ∈Wx to the restriction of the section p(w̄) of ζ to the (n+1)th-

order infinitesimal neighborhood of x. Here p as in (2.20) and w̄ as in the definition of

the map p̄ in (2.21). From its definition it is immediate that the composition fn◦p̂◦p̄−1

is the identity map of Jn(ζ), where fn is the projection Jn+1(ζ)→ Jn(ζ) defined in

(2.17). In other words, p̂◦ p̄−1 is a splitting of the jet sequence

0 �→Kn+1
X ⊗ζ �→ Jn+1(ζ) �→ Jn(ζ) �→ 0 (2.24)

defined in (2.17).

There is a unique homomorphism Jn+1(ζ)→Kn+1
X ⊗ζ satisfying the two conditions

that its kernel is the image of p̂◦p̄−1 and the composition of the natural inclusion of

Kn+1
X ⊗ζ in Jn+1(ζ) (as in (2.17)) with it is the identity map of Kn+1

X ⊗ζ. By the earlier

definition of differential operators given in terms of jet bundles, this homomorphism

defines a differential operator

Dγ ∈H0
(
X,Diffn+1

X
(
ζ,Kn+1

X ⊗ζ)). (2.25)

Since Dγ is defined by a splitting of a jet sequence, its symbol is the constant func-

tion 1 (the symbol of a differential operator is defined in (2.19)). Now, using (2.22), the

differential operator Dγ gives a differential operator

D(γ)∈H0
(
X,Diffn+1

X
(
ξn,ξ−n−2)) (2.26)

of symbol 1.

It can be deduced from the definition of jet bundles that, for any holomorphic

vector bundle E, there is a natural injective homomorphism Ji+j(E)→ Ji(Jj(E)) for

any i,j ≥ 0. Therefore, we have a commutative diagram

0 ξ⊗(−n−2) Jn+1
(
ξ⊗n

)
τ

Jn
(
ξ⊗n

)
0

0 KX⊗Jn
(
ξ⊗n

)
J1
(
Jn
(
ξ⊗n

))
Jn
(
ξ⊗n

)
0,

(2.27)

where the injective homomorphism τ is obtained from the above remark.

If

f : Jn
(
ξ⊗n

)
�→ Jn+1(ξ⊗n) (2.28)

is a splitting of the top exact sequence in (2.27), then the composition τ ◦f defines a

splitting of the bottom exact sequence in (2.27). But a splitting of the exact sequence

0 �→KX⊗E �→ J1(E) �→ E �→ 0 (2.29)

is a holomorphic connection on E (see [1]). Furthermore, any holomorphic connection

on a Riemann surface is flat. Therefore, τ ◦f defines a flat connection on Jn(ξ⊗n). Let

∇f denote this flat connection on Jn(ξ⊗n) obtained from a splitting f .
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Since X is simply connected, ∇f gives a trivialization of Jn(ξ⊗n). In other words, if

we choose a point z ∈ X, using parallel translations, Jn(ξ⊗n) gets identified with the

trivial vector bundle over X with Jn(ξ⊗n)z as the fiber.

Fix an isomorphism of the fiber Jn(ξ⊗n)z with Cn+1. As before, let W denote the

trivial vector bundle over X with Cn+1 as the fiber. So we have Jn(ξ⊗n)=W .

For any point y ∈ X, consider the one-dimensional subspace (ξ⊗n⊗KnX)y of the

fiber Jn(ξ⊗n)y given in (2.17). Let

γ :X �→ CPn (2.30)

denote the map that sends any point y ∈ X to the line in Cn+1 that corresponds to

the line (ξ⊗n⊗KnX)y by the isomorphism between the fibers Jn(ξ⊗n)y and Wy .

If we change the isomorphism between Jn(ξ⊗n)z and Cn+1 by an automorphism

A∈ GL(n+1,C), then the map γ is altered by the automorphism A of CPn.

Lemma 2.6. Let f : Jn(ξ⊗n)→ Jn+1(ξ⊗n) be a splitting of the top exact sequence in

(2.27). Then the mapγ constructed in (2.30) fromf is everywhere locally nondegenerate.

Proof. The lemma follows from Lemma 2.5 and the fact that the connection ∇f ,

from which γ is constructed, is given by a splitting f (as in (2.28)). In [3], a different

but equivalent formulation of the lemma can be found.

Two everywhere locally nondegenerate maps f1 and f2 of X into CPn are called

equivalent if there is an automorphism A ∈ Aut(CPn) = PGL(n+1,C) such that A◦
f1 = f2.

Let � denote the space of all equivalence classes of everywhere locally nondegenerate

maps of X into CPn.

Take a differential operator D ∈ H0(X,Diffn+1
X (ξn,ξ−n−2)) of symbol 1. Since the

symbol of D is 1, it gives a splitting of the top exact sequence in (2.27). Denoting this

splitting Jn(ξ⊗n) → Jn+1(ξ⊗n) by D̄, consider τ ◦ D̄, which, as we already noted, is

a flat connection on Jn(ξ⊗n). It may be noted that since ξ⊗2 = TX , the line bundle∧n+1Jn(ξ⊗n) is canonically trivialized.

Let � denote the space of global differential operators

D ∈H0(X,Diffn+1
X

(
ξn,ξ−n−2)) (2.31)

of symbol 1 and satisfying the condition that the connection on
∧n+1Jn(ξ⊗n) induced

by the connection τ ◦D̄ on Jn(ξ⊗n) preserves the trivialization of
∧n+1Jn(ξ⊗n).

From the construction of the differential operator D(γ) in (2.26) it follows that

D(γ)∈�.

Let

F : � �→� (2.32)

be the map that sends any everywhere locally nondegenerate map γ to the differential

operator D(γ) constructed in (2.26).

As above, for a differential operator D ∈�, the corresponding splitting is denoted

by D̄. Let

G : � �→� (2.33)
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be the map that sends any operator D to the map γ constructed in (2.30) using the

splitting f = D̄ as in (2.28).

Lemma 2.7. The map F defined in (2.32) is one-to-one and onto.

Proof. In fact, unraveling the definitions of the maps F and G, defined in (2.32)

and (2.33), respectively, yields that they are inverses of each other. We omit the details;

it can be found in [3].

Let �(X) denote the space of all projective structures on the Riemann surface X. It

is known that �(X) is an affine space for the space of quadratic differentials, namely,

H0(X,K2
X) (see [7]).

Lemma 2.8. There is a natural bijective map between � and the Cartesian product

�(X)×
(n+1⊕
i=3

H0(X,K⊗iX )
)

(2.34)

if n≥ 2. If n= 1, then � is in bijective correspondence with �(X).

Proof. The key input in the proof is [2, Theorem 6.3, page 19]. Now we recall its

statement.

Let Y be a Riemann surface equipped with a projective structure. Let k,l ∈ Z and

let n ∈ N be such that k ∉ [−n+1,0] and l−k−j ∉ {0,1} for any integer j ∈ [1,n].
Then,

H0(Y ,Diffn
Y
(
�k,�l))= n⊕

i=0

H0(Y ,�l−k−2n+2i), (2.35)

where � is the square-root of the canonical bundle defined by the projective structure.

A clarification of the above statement is needed. In [2], a projective structure means

an SL(2,C) structure. But here projective structure means a PGL(2,C) structure. But we

know that a PGL(2,C) structure on a Riemann surface always lifts to an SL(2,C) struc-

ture [7]. Furthermore, the space of such lifts is in bijective correspondence with the

space of theta-characteristics (square-root of the holomorphic cotangent bundle) of Y .

Therefore, given a PGL(2,C) structure P on X, the pair (P,ξ) determines a unique

SL(2,C) structure.

Now, set k=−n and l=n+2 in (2.35). This yields an isomorphism

F :H0(X,Diffn+1
X

(
ξn,ξ−n−2)) �→ n⊕

i=0

H0(X,K⊗iX ). (2.36)

For any D ∈H0(X,Diffn+1
X (ξn,ξ−n−2)), the component of F(D) in

H0(X,K⊗0
X
)=H0(X,�X) (2.37)

is the symbol of D. Furthermore, the condition in the definition of � that, the con-

nection on
∧n+1Jn(ξ⊗n) induced by the connection τ ◦ D̄ on Jn(ξ⊗n) preserves the

trivialization of
∧n+1Jn(ξ⊗n), is actually equivalent to the condition that the com-

ponent of F(D) in H0(X,KX) vanishes (see [3]). Therefore, using F , the space � gets
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identified with the direct sum

n+1⊕
i=2

H0(X,K⊗iX ), (2.38)

if X is equipped with a projective structure.

Using the fact that the space of projective structures on X, namely �(X), is an affine

space for H0(X,K2
X), it is easy to deduce that given any

D ∈H0(X,Diffn+1
X

(
ξn,ξ−n−2)), (2.39)

there is a unique projective structure P ∈ �(X) such that, for the map F in (2.36)

corresponding to P , the component of F(D) in H0(X,K⊗2
X ) vanishes identically. Let

F(D) denote the projection of F(D) in
⊕n+1

i=3 H0(X,K⊗iX ); F corresponds to this unique

projective structure. Now, we have a bijective map

F̄ : � �→�(X)×
(n+1⊕
i=3

H0(X,K⊗iX )
)
, (2.40)

that sends any D to the pair (P,F(D)) constructed above. (See [3, Section 4] for the

details.)

If n = 1, then using [2, Theorem 6.3] and the fact that �(X) is an affine space for

H0(X,K⊗2
X ), it follows immediately that � = �(X). This completes the proof of the

lemma.

For the first part of the proof of Lemma 2.8, we should have directly used [2, Corol-

lary 6.6] instead of deriving it using [2, Theorem 6.3]. Unfortunately, in the statement

of [2, Corollary 6.6], the word “compact” is used which technically makes it useless

for our purpose. But, of course, compactness is not used in the proof of [2, Corollary

6.6]. When [2, 3] were written, we had primarily compact Riemann surfaces in mind.

Combining Lemmas 2.7 and 2.8, we have the following corollary.

Corollary 2.9. There is a natural bijective map

Γ : � �→�(X)×
(n+1⊕
i=3

H0(X,K⊗iX )
)

(2.41)

for n≥ 2. If n= 1 then � is in bijective correspondence with �(X).

When X is a compact Riemann surface, the above corollary is [3, Theorem 5.5].

Again since “compactness” condition is thrown in [3] indiscriminately, a vast part of

it is technically useless for our present purpose. Nevertheless, the ideas of [3] have

been borrowed here.

Let Y ⊂X be a simply connected open subset. Let �Y denote the space of all equiva-

lence classes of everywhere locally nondegenerate maps of Y intoCPn. In other words,

�Y is obtained by substituting Y in place of X in the definition of �. The space of all

projective structures on Y is denoted by �(Y).
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The restriction of ξ to Y defines a square-root of the tangent bundle TY . There is a

natural restriction map �(X)→�(Y) and also there are homomorphisms

H0(X,K⊗iX ) �→H0(Y ,K⊗iY ) (2.42)

for every i ∈ Z defined by restriction of sections. Similarly, we have a map � �→�Y ,

which sends a map γ of X to CPn to the restriction of γ to Y .

Let

ΓY : �Y �→�(Y)×
(n+1⊕
i=3

H0(Y ,K⊗iY )
)

(2.43)

be the isomorphism for Y obtained in Corollary 2.9. The map Γ in Corollary 2.9 has

the property that the following diagram commutes:

�
Γ

�(X)×(⊕n+1
i=3 H0

(
X,K⊗iX

))

�Y
ΓY

�(Y)×(⊕n+1
i=3 H0

(
Y ,K⊗iY

))
.

(2.44)

The vertical maps are defined by restriction. The commutativity of this diagram is

indeed easy to see from the construction of Γ .
Now that we have Corollary 2.9 and (2.44), we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. Assume that n ≥ 2, since the theorem is obvious in the

case of n= 1.

Suppose we are given a transversely CPn-structure, as defined in Definition 2.3.

We assume that all the subsets Di := image(φi) of C in Definition 2.1 are simply

connected. Clearly, this is a harmless assumption.

Consider a triplet (Ui,φi,γi) as in Definition 2.3. Now, using the map Γ in Corollary

2.9, from the everywhere locally nondegenerate map γi we have a projective structure

on Di = image(φi) together with a holomorphic section of T⊗−lDi for all l ∈ [3,n+1].
This projective structure on Di is denoted by �i, and the holomorphic section of T⊗−lDi
obtained above is denoted by ωl

i. The projective structure �i induces a transversely

projective structure on the open subset Ui of M . We denote this transversely pro-

jective structure on Ui by �̄i. The pullback, using the map φi, of the holomorphic

section ωl
i of T⊗−lDi defines a section of N⊗−l over Ui. This section of N⊗−l over Ui

is denoted by ω̄l
i. Since ωl

i is holomorphic, we have the section ω̄l
i over Ui to be

transversely holomorphic. Furthermore, ω̄l
i is obviously flat with respect to the Bott

partial connection. The proof of the theorem is completed by showing that all these

locally defined transversely projective structures �̄i (resp., transversely holomorphic

flat sections ω̄l
i) patch compatibly to define globally on M a transversely projective

structure (resp., transversely holomorphic flat section of N⊗−l).
If we take another triplet (Uj,φj,γj), j ∈ I, as in Definition 2.3, then the two pro-

jective structures on Di∩Dj , namely �i and �j , coincide. This is an immediate con-

sequence of the commutativity of the diagram (2.44). Therefore, we have a projective
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structure on the union Di∪Dj , and hence the two transversely projective structures,

namely �̄i and �̄j , coincide over Ui∩Uj . Consequently, the transversely projective

structures {�̄i}i∈I patch together compatibly to define a transversely projective struc-

ture on �̄. Similarly, from the commutativity of the diagram (2.44), it follows that the

two sections ω̄l
i and ω̄l

j coincide over Ui∩Uj . In other words, these local sections ω̄l
i

of N⊗−l patch together to give an element of ��̄(−l). This completes the proof of the

theorem.

Theorem 2.4 can be considered as a generalization of [10, Theorem 6.1].
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