GENERALIZED TRANSVERSELY PROJECTIVE STRUCTURE ON A TRANSVERSELY HOLOMORPHIC FOLIATION

INDRANIL BISWAS

Received 29 November 2000 and in revised form 4 June 2001

The results of Biswas (2000) are extended to the situation of transversely projective foliations. In particular, it is shown that a transversely holomorphic foliation defined using everywhere locally nondegenerate maps to a projective space \mathbb{CP}^n , and whose transition functions are given by automorphisms of the projective space, has a canonical transversely projective structure. Such a foliation is also associated with a transversely holomorphic section of $N^{\otimes -k}$ for each $k \in [3, n+1]$, where N is the normal bundle to the foliation. These transversely holomorphic sections are also flat with respect to the Bott partial connection.

2000 Mathematics Subject Classification: 37F75, 32H02, 51A45.

1. Introduction. A projective structure on a Riemann surface *X* is defined by giving a covering of *X* by holomorphic coordinate charts such that all the transition functions are restrictions of Möbius transformations. It is well known that the notion of a projective structure can be extended to the situation of foliations (cf. [10]). To define this generalization, let \mathcal{F} be a foliation of codimension two on a real manifold *M*. Let $\{U_i\}_{i \in I}$ be an open covering of *M*, and let $\phi_i : U_i \to \mathbb{C}$ be submersions onto the image such that the fibers of ϕ_i are leaves for \mathcal{F} . A transversely projective structure on \mathcal{F} is defined by imposing the condition that, for every $i, j \in I$, there is a commutative diagram

$$U_{i} \cap U_{j} = U_{i} \cap U_{j}$$

$$\downarrow \phi_{i} \qquad \qquad \qquad \downarrow \phi_{j}$$

$$\phi_{i}(U_{i} \cap U_{j}) \xrightarrow{f_{i,j}} \phi_{j}(U_{i} \cap U_{j})$$

$$(1.1)$$

such that $f_{i,j}$ is a restriction of some Möbius transformation [10].

A holomorphic immersion $y: X \to \mathbb{CP}^n$ of a Riemann surface *X* is called everywhere locally nondegenerate if for every $x \in X$, the order of contact of the image y(U) at y(x), where *U* is a neighborhood of *x* in *X*, with any hyperplane in \mathbb{CP}^n passing through y(x) is at most n-1 (see [3, 9]). Two such immersions are called equivalent if they differ by an automorphism of \mathbb{CP}^n . A \mathbb{CP}^n -structure on *X* is an equivalence class of an everywhere locally nondegenerate equivariant map of the universal cover of *X* into \mathbb{CP}^n . A \mathbb{CP}^n -structure on *X*.

If $f : X \to \mathbb{CP}^n$ is a holomorphic map such that the image of f is not contained in any hyperplane of \mathbb{CP}^n , then there is a finite subset $S \subset X$ such that the restriction of

INDRANIL BISWAS

f to the complement *X**S* defines a \mathbb{CP}^n -structure on *X**S*. Any Riemann surface has many \mathbb{CP}^n -structures. In [3], it has been shown that the space of \mathbb{CP}^n -structures on *X*, where $n \ge 2$, is canonically identified with the Cartesian product of the space of all projective structures on *X* with the direct sum $\bigoplus_{i=3}^{n+1} H^0(X, K_X^{\otimes i})$.

The notion of a \mathbb{CP}^n -structure can be extended to the situation of foliations which will be called a *transversely* \mathbb{CP}^n -structure; see Definition 2.3 for the definition of a transversely \mathbb{CP}^n -structure.

Let \mathcal{F} be a transversely holomorphic foliation of complex codimension one. So the normal bundle N is a transversely holomorphic line bundle. The normal bundle N is equipped with the Bott partial connection obtained from the Lie bracket operation of vector fields. The transversely holomorphic structure of N is compatible with the Bott partial connection.

We prove that, giving a transversely \mathbb{CP}^n -structure on \mathcal{F} is equivalent to giving a transversely projective structure on \mathcal{F} together with a transversely holomorphic section ω_k of $N^{\otimes -k}$, for each $k \in [3, n + 1]$, such that ω_k is flat with respect to the Bott partial connection (see Theorem 2.4). In particular, setting all ω_k to be zero we conclude that, for any transversely \mathbb{CP}^n -structure on \mathcal{F} there is a canonically associated transversely projective structure on \mathcal{F} . When the foliation is trivial, that is, $\mathcal{F} = 0$, then Theorem 2.4 is the main result of [3] (see [3, Theorem 5.5]).

It is not easy to directly construct a transversely \mathbb{CP}^n -structure on a holomorphic foliation. In fact, when the foliation is trivial, namely we have a Riemann surface X, it is not easy to construct a map of the universal cover of X to \mathbb{CP}^n , which is everywhere locally nondegenerate. However, using Theorem 2.4 we can indirectly construct many examples of transversely \mathbb{CP}^n -structures, just as using [3, Theorem 5.5], we can indirectly construct examples of everywhere locally nondegenerate maps of the universal cover of a Riemann surface to \mathbb{CP}^n .

2. Transversely projective foliations defined by maps to a projective space. Let *M* be a connected smooth real manifold of dimension d + 2. Let \mathcal{F} be a C^{∞} -subbundle of rank *d* of the tangent bundle *TM*.

DEFINITION 2.1. A transversely holomorphic structure on \mathcal{F} is defined by giving the following data (see [5]):

- a covering of *M* by open subsets U_i, where *i* runs over an index set *I*. So we have ∪_{i∈I} U_i = M;
- (2) for each $i \in I$, a submersion ϕ_i of U_i to an open subset D_i of \mathbb{C} . The restriction $\mathcal{F}|_{U_i}$ is the kernel of the differential map $d\phi_i : TU_i \to \phi_i^* TD_i$;
- (3) for every pair $i, j \in I$, there is a commutative diagram of maps

$$U_{i} \cap U_{j} \xrightarrow{Id} U_{i} \cap U_{j}$$

$$\downarrow \phi_{i} \qquad \qquad \qquad \downarrow \phi_{j}$$

$$\phi_{i}(U_{i} \cap U_{j}) \xrightarrow{f_{i,j}} \phi_{j}(U_{i} \cap U_{j}),$$

$$(2.1)$$

where $f_{i,j}$ is a holomorphic map.

Two such data $\{U_i, \phi_i\}_{i \in I}$ and $\{U_i, \phi_i\}_{i \in J}$ are called *equivalent* if their union, namely

$$\{U_i, \phi_i\}_{i \in I \cup J},\tag{2.2}$$

also satisfies the above conditions. A *transversely holomorphic* structure on \mathcal{F} will mean an equivalence class of data of the above type satisfying the three conditions.

Next we recall the definition of a transversely projective foliation.

DEFINITION 2.2. A transversely projective structure on \mathcal{F} is defined by giving a data $\{U_i, \phi_i\}_{i \in I}$ exactly as in Definition 2.1, but satisfying the extra condition (apart from the three conditions) that the holomorphic maps $f_{i,j}$ in condition (3) are of the form $z \mapsto (az+b)/(cz+d)$, where $a, b, c, d \in \mathbb{C}$ are constant scalars and ad - bc = 1, that is, each $f_{i,j}$ is the restriction of some Möbius transformation; the scalars a, b, c, d may depend on the index i. As before, two such data $\{U_i, \phi_i\}_{i \in I}$ and $\{U_i, \phi_i\}_{i \in J}$ are called *equivalent* if their union $\{U_i, \phi_i\}_{i \in I \cup J}$ is also a data for a transversely projective structure. A *transversely projective* structure on \mathcal{F} will mean an equivalence class of such data.

Clearly, a transversely projective structure on \mathcal{F} defines a transversely holomorphic structure on \mathcal{F} . If $\overline{\mathcal{F}}$ is a transversely holomorphic structure on \mathcal{F} , then a transversely projective structure on $\overline{\mathcal{F}}$ is a transversely projective structure on \mathcal{F} such that, the transversely holomorphic structure defined by it coincides with $\overline{\mathcal{F}}$.

We now recall the notion of a locally nondegenerate immersion of a Riemann surface into a projective space (see [3, 9]).

Let *X* be a Riemann surface, that is, a complex manifold of complex dimension one. Let \mathbb{CP}^n , $n \ge 1$, denote the *n*-dimensional projective space consisting of all lines in \mathbb{C}^{n+1} . A holomorphic immersion

$$\gamma: X \longrightarrow \mathbb{CP}^n \tag{2.3}$$

is called *everywhere locally nondegenerate* if for every $x \in X$, the order of contact of the image $\gamma(U)$, where U is a neighborhood of x in X, at $\gamma(x)$ with any hyperplane in \mathbb{CP}^n passing through $\gamma(x)$ is at most n-1. We need to consider a neighborhood in the definition since γ may not be injective.

An alternative description of the above nondegeneracy condition following [9] is given below.

Let

$$0 \longrightarrow S \longrightarrow V \xrightarrow{q} Q \longrightarrow 0 \tag{2.4}$$

be the universal exact sequence over \mathbb{CP}^n . The vector bundle *V* is the trivial vector bundle with \mathbb{C}^{n+1} as fiber and *S* is the tautological line bundle $\mathbb{O}_{\mathbb{CP}^n}(-1)$. Consider the differential

$$d\gamma: T_X \longrightarrow \gamma^* T_{\mathbb{CP}^n} = \gamma^* \operatorname{Hom}(S, Q) \tag{2.5}$$

of the immersion γ ; here T_X is the holomorphic tangent bundle of X. Since γ is an immersion, the homomorphism $d\gamma$ is injective.

Now, the homomorphism $d\gamma$ gives a homomorphism

$$d\gamma: T_X^* \otimes \gamma^* S \longrightarrow \gamma^* Q, \tag{2.6}$$

where T_X^* is the holomorphic cotangent bundle of *X*. Let S_1 denote the inverse image $q^{-1}(\text{image}(\overline{dy}))$, where the homomorphism *q* is defined in (2.4). The subbundle S_1 of y^*V defines a map

$$\gamma_1: X \longrightarrow G(n+1,2) \tag{2.7}$$

of *X* into the Grassmannian of two planes in \mathbb{C}^{n+1} .

Now assume that γ_1 is an immersion. Then repeating the above argument we get a map

$$\gamma_2: X \longrightarrow G(n+1,3) \tag{2.8}$$

of *X* into the Grassmannian of three planes in \mathbb{C}^{n+1} .

More generally, inductively we have a map

$$\gamma_i: X \longrightarrow G(n+1, i+1), \tag{2.9}$$

where $i \in [1, n-1]$, by assuming that γ_{i-1} is an immersion. (See also [9, Section 1] for the details of the construction of the maps γ_i described above.)

The condition that the map γ , together with each map γ_i , where $i \in [1, n-1]$, is an immersion, is equivalent to the condition that the map γ is everywhere locally nondegenerate.

Now, we extend the above notion of everywhere locally nondegenerate map to the context of foliations, which we call transversely \mathbb{CP}^n -structure.

DEFINITION 2.3. A transversely \mathbb{CP}^n -structure on \mathcal{F} is defined by giving a data $\{U_i, \phi_i\}_{i \in I}$ exactly as in Definition 2.1 satisfying conditions (1) and (2) and the following stronger version of (3): for every $i \in I$, there is an everywhere locally nondegenerate map

$$\gamma_i : D_i := \operatorname{image}(\phi_i) \longrightarrow \mathbb{CP}^n \tag{2.10}$$

such that, for every pair $i, j \in I$, there is a commutative diagram of maps

where *T* is an automorphism of \mathbb{CP}^n , that is, $T \in GL(n+1,\mathbb{C})$. As before, two such data $\{U_i, \phi_i, \gamma_i\}_{i \in I}$ and $\{U_i, \phi_i, \gamma_i\}_{i \in I \cup J}$ are called *equivalent* if their union $\{U_i, \phi_i, \gamma_i\}_{i \in I \cup J}$ is

154

also a data for a transversely \mathbb{CP}^n -structure. A *transversely* \mathbb{CP}^n -structure on \mathcal{F} will mean an equivalence class of such data.

The above condition forces the map $f_{i,j}$ to be holomorphic. So, a transversely \mathbb{CP}^n structure on \mathcal{F} defines a transversely holomorphic structure on \mathcal{F} . If $\overline{\mathcal{F}}$ is a transversely holomorphic structure on \mathcal{F} , then a transversely \mathbb{CP}^n -structure on $\overline{\mathcal{F}}$ is a transversely \mathbb{CP}^n -structure on \mathcal{F} such that the underlying transversely holomorphic structure coincides with $\overline{\mathcal{F}}$.

Note that, a transversely \mathbb{CP}^1 -structure on \mathcal{F} is by definition a transversely projective structure on \mathcal{F} .

We fix a transversely holomorphic structure $\bar{\mathscr{F}}$ on \mathscr{F} .

The normal bundle

$$N := \frac{TM}{\mathcal{F}} \tag{2.12}$$

is a complex line bundle. Therefore, for every integer $k \in \mathbb{Z}$, we have a complex line bundle $N^{\otimes k}$ obtained by taking the *k*th tensor power of the complex line bundle *N*. By $N^{\otimes -1}$ we mean the dual line bundle N^* .

Any such line bundle $N^{\otimes k}$ has a natural transversely holomorphic structure. This means that, there is a Dolbeault operator

$$\bar{\partial}_{N^{\otimes k}} : N^{\otimes k} \longrightarrow N^* \otimes N^{\otimes k} = N^{\otimes k-1} \tag{2.13}$$

satisfying the Leibniz identity. The operator $\bar{\partial}_{N^{\otimes k}}$ is simply the Dolbeault operator on the holomorphic tangent bundle $T_{\mathbb{C}}^{\otimes k}$ of the complex line \mathbb{C} transported to M using the projections ϕ_i . It may be noted that, the condition in Definition 2.1(3) that every $f_{i,j}$ is holomorphic ensures that these locally defined operators patch compatibly to define the global differential operator $\bar{\partial}_{N^{\otimes k}}$.

Also, the line bundle N, and hence any $N^{\otimes k}$, has the Bott partial connection (see [8]). Recall that, the Lie bracket operation on the sheaf of sections of the tangent bundle TM defines the Bott partial connection

$$N \longrightarrow \mathcal{F}^* \otimes N \tag{2.14}$$

along the foliation \mathcal{F} . The Jacobi identity for Lie bracket ensures that this partial connection is flat.

It is easy to see that both the complex structure of N and the transversely holomorphic structure of N are compatible with respect to the Bott partial connection. In other words, both the complex vector space structure of the fibers of N and the Dolbeault operator $\bar{\partial}_N$ defined in (2.13) commute with the differential operator in (2.14) defining the Bott connection. Equivalently, parallel translation (for the Bott connection) along the leaves of the foliation $\bar{\mathscr{F}}$ of holomorphic sections of N remain holomorphic. Also, parallel translations for the Bott connection by $\sqrt{-1}$ of the fibers of N.

The Bott partial connection on N induces a flat partial connection on any $N^{\otimes k}$. All the above compatibility properties of the Bott connection on N evidently remain valid for any $N^{\otimes k}$.

Let $\mathcal{V}_{\bar{\mathscr{F}}}(k)$ denote the space of all globally defined smooth sections *s* of the complex line bundle $N^{\otimes k}$ such that *s* is transversely holomorphic for the transversely holomorphic foliation $\bar{\mathscr{F}}$ and it is flat with respect to the Bott partial connection for $\bar{\mathscr{F}}$. So $\mathcal{V}_{\bar{\mathscr{F}}}(k)$ is a complex vector space; it need not be of finite dimension. However, in the situation where *M* is compact, it was proved by Duchamp and Kalka [4, Theorem 1.27, page 323], and also independently by Gómez-Mont [6, Theorem 1, page 169], that the dimension of $\mathcal{V}_{\bar{\mathscr{F}}}(k)$ is finite.

Let $\mathcal{P}(\bar{\mathcal{F}})$ denote the space of all equivalence classes of transversely projective structures on the transversely holomorphic foliation $\bar{\mathcal{F}}$. Transversely projective structures were defined in Definition 2.2 and transversely projective structures on $\bar{\mathcal{F}}$ were defined in the paragraph following Definition 2.2. The space $\mathcal{P}(\bar{\mathcal{F}})$ may be empty.

The following theorem is the main result of this section.

THEOREM 2.4. There is a canonical bijective map from the space of all transversely \mathbb{CP}^n -structures on $\overline{\mathcal{F}}$ and the Cartesian product

$$\mathscr{P}(\bar{\mathscr{F}}) \times \left(\bigoplus_{k=3}^{n+1} \mathscr{V}_{\overline{\mathscr{F}}}(-k)\right). \tag{2.15}$$

In particular, a transversely \mathbb{CP}^n -structure gives a transversely projective structure on $\bar{\mathscr{F}}$ by simply taking the zero section in $\mathscr{V}_{\bar{\mathscr{F}}}(-k)$ for all $k \in [3, n+1]$.

The theorem will be proved after establishing a few lemmas. We start with the definition of jet bundles and differential operators.

Let *E* be a holomorphic vector bundle on a Riemann surface *X*, and let *n* be a positive integer. The *n*th-order *jet bundle* of *E*, denoted by $J^n(E)$, is defined to be the following direct image on *X*:

$$J^{n}(E) := p_{1*} \left(\frac{p_{2}^{*} E}{p_{2}^{*} E \otimes \mathbb{O}_{X \times X} (-(n+1)\Delta)} \right),$$
(2.16)

where $p_i: X \times X \to X$, i = 1, 2, is the projection onto the *i*th factor, and Δ is the diagonal divisor on $X \times X$. Therefore, for any $x \in X$, the fiber $J^n(E)_x$ is the space of all sections of *E* over the *n*th-order infinitesimal neighborhood of *x*.

Let K_X denote the holomorphic cotangent bundle of X. There is a natural exact sequence

$$0 \longrightarrow K_X^{\otimes n} \otimes E \longrightarrow J^n(E) \longrightarrow J^{n-1}(E) \longrightarrow 0$$
(2.17)

constructed using the obvious inclusion of $\mathbb{O}_{X \times X}(-(n+1)\Delta)$ in $\mathbb{O}_{X \times X}(-n\Delta)$. The inclusion map $K_X^{\otimes n} \otimes E \to J^n(E)$ is constructed by using the homomorphism

$$K_X^{\otimes n} \longrightarrow J^n(\mathbb{O}_X), \tag{2.18}$$

which is defined at any $x \in X$ by sending $(df)^{\otimes n}$, where f is any holomorphic function with f(x) = 0, to the jet of the function $f^n/n!$ at x.

The sheaf of *differential operators* $\text{Diff}_X^n(E,F)$ is defined to be $\text{Hom}(J^n(E),F)$. The homomorphism

$$\sigma: \operatorname{Diff}_{X}^{n}(E,F) \longrightarrow \operatorname{Hom}\left(K_{X}^{\otimes n} \otimes E,F\right), \tag{2.19}$$

obtained by restricting a homomorphism from $J^n(E)$ to F to the subsheaf $K_X^{\otimes n} \otimes E$ in (2.17), is known as the *symbol map*.

Let *X* denote a simply connected open subset of \mathbb{CP}^1 . Take a holomorphic map $\gamma : X \to \mathbb{CP}^n$. Let ζ denote the line bundle $\gamma^* \mathbb{O}_{\mathbb{CP}^n}(1)$ over *X*. In the notation of the exact sequence (2.4), the line bundle $\mathbb{O}_{\mathbb{CP}^n}(1)$ is *S*^{*}. Pulling back the universal exact sequence (2.4) to *X* and then taking the dual, we have

$$0 \longrightarrow \gamma^* Q^* \longrightarrow W \xrightarrow{p} \zeta \longrightarrow 0, \tag{2.20}$$

where *W* is the trivial vector bundle of rank n+1 over *X* with fiber $(\mathbb{C}^{n+1})^*$. Of course, $(\mathbb{C}^{n+1})^* = \mathbb{C}^{n+1}$.

The trivialization of W induces a homomorphism

$$\bar{p}: W \longrightarrow J^n(\zeta) \tag{2.21}$$

which can be defined as follows: for any point $x \in X$ and vector $w \in W_x$ in the fiber, let \bar{w} denote the unique flat section of W such that $\bar{w}(x) = w$. Now, $\bar{p}(w)$ is the restriction of the section $p(\bar{w})$ of ζ to the *n*th-order infinitesimal neighborhood of x. Recall that, the fiber $J^n(\zeta)_x$ is the space of sections of ζ over the *n*th-order infinitesimal neighborhood of x.

LEMMA 2.5. The map y is everywhere locally nondegenerate if and only if the homomorphism \bar{p} in (2.21) is an isomorphism.

PROOF. This is a straightforward consequence of the condition of everywhere locally nondegeneracy. For some point $x \in X$, if $\bar{p}_X : W_X \to J^n(\zeta)_X$ is not an isomorphism, then take a nonzero vector w in the kernel of \bar{p}_X , since $W_X = (\mathbb{C}^{n+1})^*$, the vector w defines a hyperplane H in \mathbb{CP}^n . Clearly, H contains y(x). The given condition $\bar{p}_X(w) = 0$ can be seen to be equivalent to the condition that the order of contact of H with y(X) at y(x) is at least n. In other words, y is degenerate at x.

Conversely, if γ is degenerate at a point $x \in X$, take a hyperplane H in \mathbb{CP}^n containing $\gamma(x)$ such that the order of contact between $\gamma(X)$ and H at $\gamma(x)$ is at least n. Let $w \in (\mathbb{C}^{n+1})^*$ be a functional defining the hyperplane H. It is easy to see that $\bar{p}_x(w) = 0$. This completes the proof.

Assume that γ is everywhere locally nondegenerate. So the homomorphism \bar{p} in (2.21) gives a trivialization of the jet bundle $J^n(\zeta)$. Now, from (2.17) it follows that $\bigwedge^{n+1} J^n(\zeta)$ is canonically isomorphic to $K_X^{n(n+1)/2} \otimes \zeta^{n+1}$. The trivialization of $J^n(\zeta)$ induces a trivialization of $K_X^{n(n+1)/2} \otimes \zeta^{n+1}$. Fix a square-root ξ of the holomorphic tangent bundle T_X . In other words, ξ is a holomorphic line bundle and an isomorphism between T_X and $\xi^{\otimes 2}$ is chosen. The above trivialization of $K_X^{n(n+1)/2} \otimes \zeta^{n+1}$ induces an isomorphism

$$J^{i}(\zeta^{j}) = J^{i}(\xi^{nj}) \otimes (\xi^{nj})^{*} \otimes \zeta^{j}$$

$$(2.22)$$

for every *i* and *j*. Indeed, this is an immediate consequence of the fact that ζ and ξ^n differ by tensoring with a finite-order line bundle. By a finite-order line bundle we mean a line bundle some tensor power of which has a canonical trivialization.

Consider the homomorphism

$$\hat{p}: W \longrightarrow J^{n+1}(\zeta) \tag{2.23}$$

which sends any $w \in W_x$ to the restriction of the section $p(\bar{w})$ of ζ to the (n + 1)thorder infinitesimal neighborhood of x. Here p as in (2.20) and \bar{w} as in the definition of the map \bar{p} in (2.21). From its definition it is immediate that the composition $f_n \circ \hat{p} \circ \bar{p}^{-1}$ is the identity map of $J^n(\zeta)$, where f_n is the projection $J^{n+1}(\zeta) \to J^n(\zeta)$ defined in (2.17). In other words, $\hat{p} \circ \bar{p}^{-1}$ is a splitting of the jet sequence

$$0 \longrightarrow K_X^{n+1} \otimes \zeta \longrightarrow J^{n+1}(\zeta) \longrightarrow J^n(\zeta) \longrightarrow 0$$
(2.24)

defined in (2.17).

There is a unique homomorphism $J^{n+1}(\zeta) \to K_X^{n+1} \otimes \zeta$ satisfying the two conditions that its kernel is the image of $\hat{p} \circ \bar{p}^{-1}$ and the composition of the natural inclusion of $K_X^{n+1} \otimes \zeta$ in $J^{n+1}(\zeta)$ (as in (2.17)) with it is the identity map of $K_X^{n+1} \otimes \zeta$. By the earlier definition of differential operators given in terms of jet bundles, this homomorphism defines a differential operator

$$D_{\gamma} \in H^0\left(X, \operatorname{Diff}_X^{n+1}\left(\zeta, K_X^{n+1} \otimes \zeta\right)\right).$$
(2.25)

Since D_{γ} is defined by a splitting of a jet sequence, its symbol is the constant function 1 (the symbol of a differential operator is defined in (2.19)). Now, using (2.22), the differential operator D_{γ} gives a differential operator

$$D(\gamma) \in H^0\left(X, \operatorname{Diff}_X^{n+1}\left(\xi^n, \xi^{-n-2}\right)\right)$$
(2.26)

of symbol 1.

It can be deduced from the definition of jet bundles that, for any holomorphic vector bundle *E*, there is a natural injective homomorphism $J^{i+j}(E) \rightarrow J^i(J^j(E))$ for any $i, j \ge 0$. Therefore, we have a commutative diagram

where the injective homomorphism au is obtained from the above remark. If

$$f: J^n(\xi^{\otimes n}) \longrightarrow J^{n+1}(\xi^{\otimes n}) \tag{2.28}$$

is a splitting of the top exact sequence in (2.27), then the composition $\tau \circ f$ defines a splitting of the bottom exact sequence in (2.27). But a splitting of the exact sequence

$$0 \longrightarrow K_X \otimes E \longrightarrow J^1(E) \longrightarrow E \longrightarrow 0$$
(2.29)

is a holomorphic connection on *E* (see [1]). Furthermore, any holomorphic connection on a Riemann surface is flat. Therefore, $\tau \circ f$ defines a flat connection on $J^n(\xi^{\otimes n})$. Let ∇^f denote this flat connection on $J^n(\xi^{\otimes n})$ obtained from a splitting *f*. Since *X* is simply connected, ∇^f gives a trivialization of $J^n(\xi^{\otimes n})$. In other words, if we choose a point $z \in X$, using parallel translations, $J^n(\xi^{\otimes n})$ gets identified with the trivial vector bundle over *X* with $J^n(\xi^{\otimes n})_z$ as the fiber.

Fix an isomorphism of the fiber $J^n(\xi^{\otimes n})_z$ with \mathbb{C}^{n+1} . As before, let W denote the trivial vector bundle over X with \mathbb{C}^{n+1} as the fiber. So we have $J^n(\xi^{\otimes n}) = W$.

For any point $y \in X$, consider the one-dimensional subspace $(\xi^{\otimes n} \otimes K_X^n)_y$ of the fiber $J^n(\xi^{\otimes n})_y$ given in (2.17). Let

$$y: X \longrightarrow \mathbb{CP}^n \tag{2.30}$$

denote the map that sends any point $\gamma \in X$ to the line in \mathbb{C}^{n+1} that corresponds to the line $(\xi^{\otimes n} \otimes K_X^n)_{\gamma}$ by the isomorphism between the fibers $J^n(\xi^{\otimes n})_{\gamma}$ and W_{γ} .

If we change the isomorphism between $J^n(\xi^{\otimes n})_z$ and \mathbb{C}^{n+1} by an automorphism $A \in GL(n+1,\mathbb{C})$, then the map γ is altered by the automorphism A of \mathbb{CP}^n .

LEMMA 2.6. Let $f: J^n(\xi^{\otimes n}) \to J^{n+1}(\xi^{\otimes n})$ be a splitting of the top exact sequence in (2.27). Then the map γ constructed in (2.30) from f is everywhere locally nondegenerate.

PROOF. The lemma follows from Lemma 2.5 and the fact that the connection ∇^f , from which γ is constructed, is given by a splitting f (as in (2.28)). In [3], a different but equivalent formulation of the lemma can be found.

Two everywhere locally nondegenerate maps f_1 and f_2 of X into \mathbb{CP}^n are called equivalent if there is an automorphism $A \in \operatorname{Aut}(\mathbb{CP}^n) = \operatorname{PGL}(n+1,\mathbb{C})$ such that $A \circ f_1 = f_2$.

Let \mathcal{A} denote the space of all equivalence classes of everywhere locally nondegenerate maps of X into \mathbb{CP}^n .

Take a differential operator $D \in H^0(X, \text{Diff}_X^{n+1}(\xi^n, \xi^{-n-2}))$ of symbol 1. Since the symbol of D is 1, it gives a splitting of the top exact sequence in (2.27). Denoting this splitting $J^n(\xi^{\otimes n}) \to J^{n+1}(\xi^{\otimes n})$ by \overline{D} , consider $\tau \circ \overline{D}$, which, as we already noted, is a flat connection on $J^n(\xi^{\otimes n})$. It may be noted that since $\xi^{\otimes 2} = T_X$, the line bundle $\bigwedge^{n+1} J^n(\xi^{\otimes n})$ is canonically trivialized.

Let \mathfrak{B} denote the space of global differential operators

$$D \in H^0(X, \text{Diff}_X^{n+1}(\xi^n, \xi^{-n-2}))$$
(2.31)

of symbol 1 and satisfying the condition that the connection on $\bigwedge^{n+1} J^n(\xi^{\otimes n})$ induced by the connection $\tau \circ \overline{D}$ on $J^n(\xi^{\otimes n})$ preserves the trivialization of $\bigwedge^{n+1} J^n(\xi^{\otimes n})$.

From the construction of the differential operator $D(\gamma)$ in (2.26) it follows that $D(\gamma) \in \mathcal{B}$.

Let

$$F: \mathcal{A} \longrightarrow \mathfrak{B} \tag{2.32}$$

be the map that sends any everywhere locally nondegenerate map γ to the differential operator $D(\gamma)$ constructed in (2.26).

As above, for a differential operator $D \in \mathcal{B}$, the corresponding splitting is denoted by \overline{D} . Let

$$G: \mathfrak{B} \longrightarrow \mathfrak{A}$$
 (2.33)

INDRANIL BISWAS

be the map that sends any operator D to the map γ constructed in (2.30) using the splitting $f = \overline{D}$ as in (2.28).

LEMMA 2.7. The map F defined in (2.32) is one-to-one and onto.

PROOF. In fact, unraveling the definitions of the maps *F* and *G*, defined in (2.32) and (2.33), respectively, yields that they are inverses of each other. We omit the details; it can be found in [3]. \Box

Let $\mathcal{P}(X)$ denote the space of all projective structures on the Riemann surface *X*. It is known that $\mathcal{P}(X)$ is an affine space for the space of quadratic differentials, namely, $H^0(X, K_X^2)$ (see [7]).

LEMMA 2.8. There is a natural bijective map between \mathfrak{B} and the Cartesian product

$$\mathcal{P}(X) \times \left(\bigoplus_{i=3}^{n+1} H^0(X, K_X^{\otimes i})\right)$$
(2.34)

if $n \ge 2$. *If* n = 1, *then* \mathfrak{B} *is in bijective correspondence with* $\mathfrak{P}(X)$.

PROOF. The key input in the proof is [2, Theorem 6.3, page 19]. Now we recall its statement.

Let *Y* be a Riemann surface equipped with a projective structure. Let $k, l \in \mathbb{Z}$ and let $n \in \mathbb{N}$ be such that $k \notin [-n+1,0]$ and $l-k-j \notin \{0,1\}$ for any integer $j \in [1,n]$. Then,

$$H^{0}(Y, \operatorname{Diff}_{Y}^{n}(\mathscr{L}^{k}, \mathscr{L}^{l})) = \bigoplus_{i=0}^{n} H^{0}(Y, \mathscr{L}^{l-k-2n+2i}), \qquad (2.35)$$

where \mathcal{L} is the square-root of the canonical bundle defined by the projective structure.

A clarification of the above statement is needed. In [2], a projective structure means an $SL(2, \mathbb{C})$ structure. But here projective structure means a $PGL(2, \mathbb{C})$ structure. But we know that a $PGL(2, \mathbb{C})$ structure on a Riemann surface always lifts to an $SL(2, \mathbb{C})$ structure [7]. Furthermore, the space of such lifts is in bijective correspondence with the space of theta-characteristics (square-root of the holomorphic cotangent bundle) of *Y*.

Therefore, given a PGL(2, \mathbb{C}) structure *P* on *X*, the pair (*P*, ξ) determines a unique SL(2, \mathbb{C}) structure.

Now, set k = -n and l = n + 2 in (2.35). This yields an isomorphism

$$F: H^0(X, \operatorname{Diff}_X^{n+1}(\xi^n, \xi^{-n-2})) \longrightarrow \bigoplus_{i=0}^n H^0(X, K_X^{\otimes i}).$$
(2.36)

For any $D \in H^0(X, \text{Diff}_X^{n+1}(\xi^n, \xi^{-n-2}))$, the component of F(D) in

$$H^{0}(X, K_{X}^{\otimes 0}) = H^{0}(X, \mathbb{O}_{X})$$
(2.37)

is the symbol of *D*. Furthermore, the condition in the definition of \mathfrak{B} that, the connection on $\bigwedge^{n+1} J^n(\xi^{\otimes n})$ induced by the connection $\tau \circ \overline{D}$ on $J^n(\xi^{\otimes n})$ preserves the trivialization of $\bigwedge^{n+1} J^n(\xi^{\otimes n})$, is actually equivalent to the condition that the component of F(D) in $H^0(X, K_X)$ vanishes (see [3]). Therefore, using *F*, the space \mathfrak{B} gets

160

identified with the direct sum

$$\bigoplus_{i=2}^{n+1} H^0(X, K_X^{\otimes i}), \tag{2.38}$$

if *X* is equipped with a projective structure.

Using the fact that the space of projective structures on *X*, namely $\mathcal{P}(X)$, is an affine space for $H^0(X, K_X^2)$, it is easy to deduce that given any

$$D \in H^0(X, \text{Diff}_X^{n+1}(\xi^n, \xi^{-n-2})),$$
(2.39)

there is a unique projective structure $P \in \mathcal{P}(X)$ such that, for the map F in (2.36) corresponding to P, the component of F(D) in $H^0(X, K_X^{\otimes 2})$ vanishes identically. Let $\overline{F(D)}$ denote the projection of F(D) in $\bigoplus_{i=3}^{n+1} H^0(X, K_X^{\otimes i})$; F corresponds to this unique projective structure. Now, we have a bijective map

$$\bar{F}: \mathfrak{B} \longrightarrow \mathfrak{P}(X) \times \left(\bigoplus_{i=3}^{n+1} H^0(X, K_X^{\otimes i}) \right), \tag{2.40}$$

that sends any *D* to the pair $(P, \overline{F(D)})$ constructed above. (See [3, Section 4] for the details.)

If n = 1, then using [2, Theorem 6.3] and the fact that $\mathcal{P}(X)$ is an affine space for $H^0(X, K_X^{\otimes 2})$, it follows immediately that $\mathfrak{B} = \mathcal{P}(X)$. This completes the proof of the lemma.

For the first part of the proof of Lemma 2.8, we should have directly used [2, Corollary 6.6] instead of deriving it using [2, Theorem 6.3]. Unfortunately, in the statement of [2, Corollary 6.6], the word "compact" is used which technically makes it useless for our purpose. But, of course, compactness is not used in the proof of [2, Corollary 6.6]. When [2, 3] were written, we had primarily compact Riemann surfaces in mind.

Combining Lemmas 2.7 and 2.8, we have the following corollary.

COROLLARY 2.9. There is a natural bijective map

$$\Gamma: \mathscr{A} \longrightarrow \mathscr{P}(X) \times \left(\bigoplus_{i=3}^{n+1} H^0(X, K_X^{\otimes i}) \right)$$
(2.41)

for $n \ge 2$. If n = 1 then \mathcal{A} is in bijective correspondence with $\mathcal{P}(X)$.

When X is a compact Riemann surface, the above corollary is [3, Theorem 5.5]. Again since "compactness" condition is thrown in [3] indiscriminately, a vast part of it is technically useless for our present purpose. Nevertheless, the ideas of [3] have been borrowed here.

Let $Y \subset X$ be a simply connected open subset. Let \mathcal{A}_Y denote the space of all equivalence classes of everywhere locally nondegenerate maps of Y into \mathbb{CP}^n . In other words, \mathcal{A}_Y is obtained by substituting Y in place of X in the definition of \mathcal{A} . The space of all projective structures on Y is denoted by $\mathcal{P}(Y)$.

INDRANIL BISWAS

The restriction of ξ to Y defines a square-root of the tangent bundle T_Y . There is a natural restriction map $\mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ and also there are homomorphisms

$$H^0(X, K_X^{\otimes i}) \longrightarrow H^0(Y, K_Y^{\otimes i})$$
(2.42)

for every $i \in \mathbb{Z}$ defined by restriction of sections. Similarly, we have a map $\mathcal{A} \to \mathcal{A}_Y$, which sends a map γ of X to \mathbb{CP}^n to the restriction of γ to Y.

Let

$$\Gamma_Y : \mathcal{A}_Y \longrightarrow \mathcal{P}(Y) \times \left(\bigoplus_{i=3}^{n+1} H^0(Y, K_Y^{\otimes i}) \right)$$
(2.43)

be the isomorphism for *Y* obtained in Corollary 2.9. The map Γ in Corollary 2.9 has the property that the following diagram commutes:

The vertical maps are defined by restriction. The commutativity of this diagram is indeed easy to see from the construction of Γ .

Now that we have Corollary 2.9 and (2.44), we are ready to prove Theorem 2.4.

PROOF OF Theorem 2.4. Assume that $n \ge 2$, since the theorem is obvious in the case of n = 1.

Suppose we are given a transversely \mathbb{CP}^n -structure, as defined in Definition 2.3. We assume that all the subsets $D_i := \text{image}(\phi_i)$ of \mathbb{C} in Definition 2.1 are simply connected. Clearly, this is a harmless assumption.

Consider a triplet (U_i, ϕ_i, γ_i) as in Definition 2.3. Now, using the map Γ in Corollary 2.9, from the everywhere locally nondegenerate map γ_i we have a projective structure on $D_i = \text{image}(\phi_i)$ together with a holomorphic section of $T_{D_i}^{\otimes -l}$ for all $l \in [3, n + 1]$. This projective structure on D_i is denoted by \mathcal{P}_i , and the holomorphic section of $T_{D_i}^{\otimes -l}$ obtained above is denoted by ω_i^l . The projective structure \mathcal{P}_i induces a transversely projective structure on the open subset U_i of M. We denote this transversely projective structure on U_i by $\bar{\mathcal{P}}_i$. The pullback, using the map ϕ_i , of the holomorphic section ω_i^l over U_i is denoted by ω_i^l . Since ω_i^l is holomorphic, we have the section $\bar{\omega}_i^l$ over U_i to be transversely holomorphic. Furthermore, $\bar{\omega}_i^l$ is obviously flat with respect to the Bott partial connection. The proof of the theorem is completed by showing that all these locally defined transversely projective structures $\bar{\mathcal{P}}_i$ (resp., transversely projective structure (resp., transversely holomorphic that section of $N^{\otimes -l}$).

If we take another triplet (U_j, ϕ_j, γ_j) , $j \in I$, as in Definition 2.3, then the two projective structures on $D_i \cap D_j$, namely \mathcal{P}_i and \mathcal{P}_j , coincide. This is an immediate consequence of the commutativity of the diagram (2.44). Therefore, we have a projective

162

structure on the union $D_i \cup D_j$, and hence the two transversely projective structures, namely $\bar{\mathcal{P}}_i$ and $\bar{\mathcal{P}}_j$, coincide over $U_i \cap U_j$. Consequently, the transversely projective structures $\{\bar{\mathcal{P}}_i\}_{i \in I}$ patch together compatibly to define a transversely projective structure on $\bar{\mathcal{F}}$. Similarly, from the commutativity of the diagram (2.44), it follows that the two sections $\bar{\omega}_i^l$ and $\bar{\omega}_j^l$ coincide over $U_i \cap U_j$. In other words, these local sections $\bar{\omega}_i^l$ of $N^{\otimes -l}$ patch together to give an element of $\mathcal{V}_{\bar{\mathcal{F}}}(-l)$. This completes the proof of the theorem.

Theorem 2.4 can be considered as a generalization of [10, Theorem 6.1].

References

- M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181-207.
- I. Biswas, Differential operators on complex manifolds with a flat projective structure, J. Math. Pures Appl. (9) 78 (1999), 1-26.
- [3] _____, Invariants for a class of equivariant immersions of the universal cover of a compact Riemann surface into a projective space, J. Math. Pures Appl. (9) **79** (2000), 1–20.
- [4] T. Duchamp and M. Kalka, *Deformation theory for holomorphic foliations*, J. Differential Geom. 14 (1979), 317–337.
- [5] C. Godbillon, Feuilletages. Études Géométriques [Foliations. Geometric Studies], Progress in Mathematics, vol. 98, Birkhäuser Verlag, Basel, 1991 (French).
- [6] X. Gómez-Mont, Transversal holomorphic structures, J. Differential Geom. 15 (1980), 161– 185.
- [7] R. C. Gunning, *Lectures on Riemann Surfaces*, Princeton Mathematical Notes, Princeton University Press, New Jersey, 1966.
- [8] H. B. Lawson Jr., *The Quantitative Theory of Foliations*, vol. 27, American Mathematical Society, Rhode Island, 1977.
- [9] D. Perkinson, *Curves in Grassmannians*, Trans. Amer. Math. Soc. **347** (1995), 3179-3246.
- [10] B. A. Scárdua, Transversely affine and transversely projective holomorphic foliations, Ann. Sci. École Norm. Sup. (4) 30 (1997), 169–204.

INDRANIL BISWAS: SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY 400005, INDIA

E-mail address: indranil@math.tifr.res.in