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A diametrical graph G is said to be symmetric if d(u,v)+d(v,ū) = d(G) for all u,v ∈
V(G), where ū is the buddy of u. If moreover, G is bipartite, then it is called an S-graph.
It would be shown that the Cartesian product K2×C6 is not only the unique S-graph of
order 12 and diameter 4, but also the unique symmetric diametrical graph of order 12 and
diameter 4.
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1. Introduction. Diametrical graphs are an interesting class of graphs. They have

been investigated by quite many authors under different names. Some of them studied

the properties of these graphs, see Mulder [5, 6], Parthasarathy and Nandakumar [7],

and Göbel and Veldman [3]. Certain special classes of diametrical graphs have been

classified and studied by others, see Göbel and Veldman [3] and Berman and Kotzig [2].

In that direction, Al-Addasi [1] has studied some properties of bipartite diametri-

cal graphs of diameter 4 and constructed an S-graph of diameter 4 and order 4k for

any k ≥ 2. (Recall that the Cartesian product G1×G2 of two graphs G1 and G2 is the

graph whose vertex set consists of all ordered pairs (x1,x2) where x1 is a vertex of

G1 and x2 is a vertex of G2 such that two vertices (x1,x2) and (y1,y2) are adjacent

exactly when either x1 = y1 and x2y2 is an edge of G2, or x1y1 is an edge of G1 and

x2 = y2. Also recall that K2, C6 denote the complete graph with two vertices and the

cycle of length 6, respectively.) For k = 3, this S-graph is isomorphic to K2×C6. In

this paper, we show that up to isomorphism the graph K2×C6 is not only the unique

S-graph of order 12 and diameter 4 but also the unique symmetric diametrical graph

of such an order and diameter.

For undefined notions and terminology, the reader is referred to Harary [4]. We con-

sider only finite simple connected graphs with no loops or multiple edges. We would

use V(G), E(G) to denote the vertex set and edge set of the graph G, respectively. The

distance dG(u,v) (or simply d(u,v)) between two vertices u, v in G, is the length

of a shortest (u,v)-path in G, where the length of a path is the number of its edges.

The diameter d(G) of a graph G is the maximal possible distance between two ver-

tices in G. For any two vertices u, v in G, the interval IG(u,v) is the set of vertices

{w ∈ V(G) : w lies on a shortest (u,v)-path in G}, when no confusion can arise, we

write I(u,v), see Mulder [5]. The order of a graph G is the number of vertices of G.

The set of all vertices in a graph G, which are at distance k from a vertex v in G, is

denoted by Nk(v); the set of all neighbors N1(v) of v is also denoted by N(v). The

degree of a vertex v in a graph G, denoted by degGv , is the number of vertices in
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N(v). If A is a subset of the vertex set of a graph G, then 〈A〉 denotes the subgraph

of G induced by A. A subgraph of G containing all vertices of G is called a spanning

subgraph of G. If S is a subset of the vertex set of the graph G, then G−S is the sub-

graph of G induced by V(G)−S. If G is connected while G−S is not, then S is called

a vertex cut of G. If B is a set of edges joining vertices from G where B∩E(G) = ∅,

then the graph G+B is obtained from G by adding all edges in B.

Two vertices u and v of a nontrivial connected graph G are said to be diametrical if

d(u,v)= d(G). A nontrivial connected graph G is called diametrical if each vertex v
of G has a unique diametrical vertex v̄ , the vertex v̄ is called the buddy of v , see

Mulder [5, 6]. A diametrical graphG is called symmetric if d(u,v)+d(v,ū)= d(G) for

all u,v ∈ V(G), that is, V(G)= I(u,ū) for any u∈ V(G), see Göbel and Veldman [3]. A

bipartite symmetric diametrical graph is called an S-graph, see Berman and Kotzig [2].

2. Symmetric diametrical graphs. In this section, we introduce some properties of

symmetric diametrical graphs that we will use in the sequel. The following two results

are proved in Göbel and Veldman [3].

Theorem 2.1. If S is a vertex cut of a diametrical graph G, then no vertex of S has

degree |S|−1 in the induced subgraph 〈S〉 of G.

The previous theorem implies that no vertex cut of a diametrical graph induces a

complete subgraph. In particular, a diametrical graph has no cut vertex.

Corollary 2.2. Every diametrical graphG other thanK2 has no vertex of degree 1.

Proposition 2.3. Let G be a diametrical graph of diameter d. Then G is symmetric

if and only if for each pair u,v ∈ V(G) with v ∈Ni(u), we have v̄ ∈Nd−i(u).
Proof. Let G be symmetric and let u,v ∈ V(G). Then d(v,u)+d(u,v̄) = d. If

v ∈N1(u), then d(u,v̄)= d−i, that is, v̄ ∈Nd−i(u).
Conversely, assume that v̄ ∈ Nd−i(u) whenever u,v ∈ V(G) with v ∈ N1(u). Let

x,y ∈ V(G). Then x ∈ Ni(u) for some i ∈ {0,1, . . . ,d} and, by assumption, x̄ ∈
Nd−i(y). Hence d(x,y)+d(y,x̄)= i+d−i= d. Thus G is symmetric.

Corollary 2.4. IfG is a symmetric diametrical graph of diameter d andu∈ V(G),
then for each 0≤ i≤ d, Nd−i(u)= {v̄ : v ∈Ni(u)}. And hence |Nd−i(u)| = |Ni(u)|.

Proof. SinceG is symmetric,v∈Ni(u) if and only if v̄ ∈Nd−i(u). HenceNd−i(u)=
{v̄ : v ∈Ni(u)}. Also, since the buddy is unique, |Nd−i(u)| = |Ni(u)|.

A diametrical graph is called harmonic if ūv̄ ∈ E(G) whenever uv ∈ E(G). The

result of Theorem 2.5 is shown in Göbel and Veldman [3].

Theorem 2.5. Every symmetric diametrical graph is harmonic.

3. Symmetric diametrical graphs of order 12 and diameter 4

Theorem 3.1. In a symmetric diametrical graph G of order 12 and diameter 4,

there is no vertex of degree 2.
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x

y

z

z̄

ȳ
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Proof. Assume to the contrary that G has a vertex v of degree 2. Let N(v) =
{u1,u2}. By Corollary 2.4,N3(v)= {ū1, ū2}. HenceN2(v) contains exactly six vertices.

Since N(v) is a vertex cut of G, by Theorem 2.1, the vertices u1 and u2 are nonadja-

cent. The same holds for ū1 and ū2. Clearly, x̄ ∈N2(v)whenever x ∈N2(v). SoN2(v)
consists of three pairs of diametrical vertices. Since d(G)= 4, each of the two vertices

u1 and u2 cannot be adjacent to more than three vertices of N2(v). But every vertex

of N2(v) is adjacent to at least one of the two vertices u1 and u2, so u1 is adjacent

to exactly three vertices of N2(v) and u2 is adjacent to the other three. If x, y , and z
are the vertices from N2(v) adjacent to u1, then x̄, ȳ , and z̄ are those adjacent to u2.

By Theorem 2.5, the vertex ū1 is adjacent to x̄, ȳ , and z̄; while ū2 is adjacent to x,

y , and z. So we get the spanning subgraph G1 of G depicted in Figure 3.1. For all

u ∈ {x,y,z} and all w ∈ {x̄, ȳ, z̄}, the vertices u and w are not adjacent; for other-

wise, d(u1, ū1) ≤ 3. Hence G1 ⊆ G ⊆ G1+{xy,xz,yz,x̄ȳ, x̄z̄, ȳz̄}. This implies that

d(x,z̄)= d(x,ȳ)= d(x,x̄)= 4, a contradiction.

Theorem 3.2. A symmetric diametrical graph G of order 12 and diameter 4 con-

tains no vertex of degree 4.

Proof. Assume to the contrary that G has a vertex v of degree 4, and let N(v)=
{u1,u2,u3,u4}. By Corollary 2.4, |N3(v)| = 4 and hence |N2(v)| = 2. Clearly, N2(v)
consists of a vertex and its buddy, say N2(v) = {x,x̄}. Then any vertex of N(v) is

adjacent to at most one of the two verticesx, x̄. But, by Corollary 2.2 and Theorem 3.1,

each vertex of N(v) has degree at least 3. Then deg〈N(v)〉z ≥ 1 for any z ∈N(v). Now,

sincex2 ∈N2(v), there is a vertex, sayu1, ofN(v) adjacent tox. Butu1 has a neighbor

inN(v), sayu2. By Theorem 2.5, the vertex ū1 is adjacent to both x̄ and ū2. Thusu2 is

not adjacent to x̄, because d(G)= 4. So, since G is symmetric, that is, V(G)= I(v,v̄),
the vertex u2 is adjacent to x, and hence ū2 is adjacent to x̄. Since x̄ ∈N2(v), then at

least one of u3, u4, say u4, is adjacent to x̄. Then ū4 is adjacent to x. The vertex u3

is adjacent to exactly one of the two vertices x and x̄, so we distinguish two cases.

Case 1. If u3 is adjacent to x̄. Then ū3 is adjacent to x. Since d(x,x̄) = 4, the

vertex u3 is not adjacent to any of u1, u2. So, by Theorem 3.1, the vertex u3 must

be adjacent to u4, and hence ū3 is adjacent to ū4. It is obvious that any additional
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edge in N(v) or N3(v) would decrease the distance between x and x̄ to 3. Then

d(u1, ū1)= d(u1, ū2)= 4, contradicting G is diametrical.

Case 2. If u3 is adjacent to x. Then ū3 is adjacent to x̄. By Theorem 3.1, the vertex

u4 has at least one neighbor in N(v). But then d(x,x̄)= 3, a contradiction.

Therefore, G cannot contain a vertex of degree 4.

Theorem 3.3. A symmetric diametrical graph G of order 12 and diameter 4 is

isomorphic to K2×C6.

Proof. If G has a vertex v of degree greater than 4, then, by Corollary 2.4,

|N3(v)| > 4 and hence |V(G)| = 1+ |N(v)| + |N2(v)| + |N3(v)| + 1 > 12, a contra-

diction. So G has no vertex of degree greater than 4. Then, by the previous theorem,

every vertex of G has degree at most 3. But from Corollary 2.2 and Theorem 3.1, every

vertex of G has degree at least 3. Hence G is 3-regular. Pick a vertex v from V(G) and

let N(v) = {u1,u2,u3}. Then |N2(v)| = 4. Since N(v) is a vertex cut of G, then by

Theorem 2.1, each vertex of N(v) has at most one neighbor in N(v). Hence 〈N(v)〉
has at most one edge. We proceed by contradiction to show that E(〈N(v)〉) =∅. So,

assume that there is an edge, say u1u2, in 〈N(v)〉 and hence ū1ū2 ∈ E(G). Then u1

has exactly one neighbor, say x, in N2(v). Then, by Theorem 2.5, the vertex ū1 is

adjacent to x̄. Similarly, u2 has exactly one neighbor y in N2(v). The vertex y is dif-

ferent from x̄ because otherwise d(x,x̄)≤ 3, which is impossible. Also y is different

from x because G is 3-regular and each of the four vertices in N2(v) has at least

one neighbor in N(v). Thus N2(v)= {x,x̄,y,ȳ}. By Theorem 2.5, ū2ȳ ∈ E(G). Since

G is 3-regular and each of u1, u2 has already three neighbors, the neighbor of each

of x̄, ȳ from N(v) is u3. Then, again by Theorem 2.5, the edges xū3, yū3 belong to

E(G). Then, the 3-regularity of G and Theorem 2.5 imply that either xy,x̄ȳ ∈ E(G) or

xȳ,x̄y ∈ E(G). But now we have either d(x,ȳ)= d(x,x̄) or d(x,x̄)= 3, respectively,

a contradiction in any case. Therefore, we deduce that 〈N(v)〉 has no edges. Then

each of u1, u2, u3 has two neighbors from N2(v). If we let N(ui,v) denote the set

of neighbors of ui from N2(v), (for i = 1,2,3), then {N(u1,v),N(u2,v),N(u3,v)} ⊆
{{x,y},{x,ȳ},{x̄,y},{x̄, ȳ}}. Then there exist i,j ∈ {1,2,3} with i ≠ j such that

N(ui,v)∩N(uj,v) = ∅, and hence |N(uk,v)∩N(ui,v)| = |N(uk,v)∩N(uj,v)| =
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1, where {k} = {1,2,3} − {i,j}. Then G is the graph depicted in Figure 3.2 where

{z,z̄,w,w̄} = {x,x̄,y,ȳ}. Now it is obvious that G is isomorphic to the Cartesian

product K2×C6.
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