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Data reduction is a process of feature extraction that transforms the data space into a
feature space of much lower dimension compared to the original data space, yet it retains
most of the intrinsic information content of the data. This can be done by using a num-
ber of methods, such as principal component analysis (PCA), factor analysis, and feature
clustering. Principal components are extracted from a collection of multivariate cases as a
way of accounting for as much of the variation in that collection as possible by means of
as few variables as possible. On the other hand, backpropagation network has been used
extensively in classification problems such as XOR problems, share prices prediction, and
pattern recognition. This paper proposes an improved error signal of backpropagation
network for classification of the reduction invariants using principal component analysis,
for extracting the bulk of the useful information present in moment invariants of hand-
written digits, leaving the redundant information behind. Higher order centralised scale-
invariants are used to extract features of handwritten digits before PCA, and the reduction
invariants are sent to the improved backpropagation model for classification purposes.

2000 Mathematics Subject Classification: 68T10.

1. Introduction. The curse of many or most neural network applications is that the

number of potentially important variables can be overwhelming. There are problems

whenever we deal with a very large number of variables. These include the sheer size

of the computational burden can slow even the fastest computers to the point of use-

lessness and there can be substantial correlation between variables. The method of

principal components is primarily a data-analytic technique that obtains linear trans-

formations of a group of correlated variables such that certain optimal conditions are

achieved. The most important of these conditions is that the transformed variables

are uncorrelated [7].

Moment invariants have been proposed as pattern sensitive features in classifica-

tion and recognition applications. Hu (1962) was the first to introduce the geometric

moment invariants which are invariant under change of size, translation, and ori-

entation [2]. Moments and functions of moments can provide characteristics of an

object that uniquely represent its shape and have extensively employed as the in-

variant global features of an image in pattern recognition and image classification

since 1960s.

This paper discusses the use of principal component analysis to reduce the com-

plexity of invariants dimension for unconstrained handwritten digits and an improved

error function of backpropagation model for classification purposes. The rest of the

paper’s presentation is as follows: Section 2 gives a review on moment invariants and
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higher order centralised scale invariants, while Section 3 gives a summary of principal

component analysis and its methodology. Section 4 gives an overview of backpropaga-

tion model and the proposed error function. Finally, Section 5 shows the experimental

results, and Section 6 is the conclusion.

2. Geometric moment invariants. The geometric moments (see [2]) of order p+q
of a digital image are defined as

mpq =
∑
x

∑
y
f(x,y)xpyq, (2.1)

where

p,q = 0,1,2, . . . . (2.2)

The translation invariant central moments are obtained by placing the origin at the

centroid of the image,

µpq =
∑
x

∑
y
f(x,y)

(
x−x0

)p(y−y0
)q, (2.3)

where

x0 = m10

m00
, y0 = m01

m00
. (2.4)

Under the scale transformation (the change of size),

[
x′

y ′

]
=
[
α 0

0 α

][
x
y

]
, α is a constant, (2.5)

each coefficient of any algebraic form f(x,y) will be an algebraic invariant, by the

definitions of invariants (see [6]),

a′pq =αp+qapq. (2.6)

Then, for moment invariants,

µ′pq =αp+q+2µpq. (2.7)

By eliminating α between the zeroth-order relation,

µ′ =α2µ, (2.8)

and the remaining ones, the absolute scale moment invariants is generated as

ηpq =
µ′pq(

µ′00

)((p+q)/2)+1 =
µpq

µ00
((p+q)/2)+1

, p+q = 2,3, . . . , (2.9)

µ′10 = µ′01 ≡ 0, (2.10)

in which the image is assumed to have equal scaling in the x and y directions.
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Consider the following linear transformation which performs different scalings in

the x and y directions (see [1]),
[
x
y

]
=
[
α 0

0 β

][
x′

y ′

]
. (2.11)

Improved scale invariants can be derived from (2.9) using higher order centralised

moments and algebraic invariants for unequal scaling as (see [5])

ηpq =

µp+1/2

20 µq+1/2
02

µp+1/2
40 µq+1/2

04


µpq. (2.12)

3. Principal component analysis. Principal component analysis (PCA) is a multi-

variate technique in which a number of related variables are transformed to a set of

uncorrelated variables. The starting point for PCA is the sample covariance matrix S.

For a p-variable problem (see [3])

S=




s2
1 s12 ··· s1p

s12 s2
2 ··· s2p

...
...

. . .
...

s1p s2p ··· s2
p


 , (3.1)

where s2
i is the variance of the ith variable, xi and sij is the covariance between the

ith and jth variables.

The principal axis transformation will transformp correlated variablesx1,x2, . . . ,xp
into p new uncorrelated variables z1,z2, . . . ,zp . The coordinate axes of these new vari-

ables are described by the characteristic vectors ui which make up the matrix U of

direction cosines used in the transformation

z=U′[x− x̄], (3.2)

where x and x̄ are p×1 vectors of observations on the original variables and their

means.

The transformed variables are called the principal components of x. The ith prin-

cipal component is

zi = u′[x− x̄]i, (3.3)

and has mean zero, variance li, and the ith eigenvalue. In other words, the vectors

that define the principal components are the eigenvectors of the covariance matrix,

and that the eigenvalues are the variances of the principal components. Figure 3.1 is

an example of a screen plot for PCA and its eigenvalues. In this paper, we choose PCA

of eigenvalue greater than 1.0 as a mean for the extracted components accordingly.

3.1. Methodology of PCA on unconstrained handwritten digits. The complexity

of data is because of its highly correlation among variables. As such, PCA is meant

to choose the variables that really represent it. Thus, in our experiment, we pick vari-

ables of correlation greater than 0.7 on unconstrained handwritten digits. We group
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Figure 3.1. Principal component and its eigenvalues.

Table 3.1. The total variance explaination of PCA.

Extraction

Initial sums of

eigenvalues squared

loadings

Component Total % of variance Cumulative % Total % of variance Cumulative %

1 2.604 32.549 32.549 2.604 32.549 32.549

2 1.775 22.192 54.741 1.775 22.192 54.741

3 1.172 14.654 69.396 1.172 14.654 69.396

4 0.944 11.801 81.197

5 0.840 10.500 91.697

6 0.356 4.452 96.150

7 0.264 3.298 99.447

8 4.422e-02 0.553 100.000

these digits based on individual handwritings. Thus we have 200 samples of hand-

written digits from five persons. Each individual has 40 samples of handwritten digits

with different styles of writing. Table 3.1 shows the total variance explained on un-

constrained handwritten digits of group I. The column that represents component is

the number of variables, whereby in this study is higher order centralised scale in-

variants. The percentage of variance informs us that only 3 extracted components are

sufficient to represent the whole informations about the invariants of group I.

4. Backpropagation model. The backpropagation network is introduced by

Rumelhart and McClelland [4]. This network has served as a useful methodology

to train multilayered neural networks for a wide variety of applications. The back-

propagation model is a supervised learning algorithm using feedforward networks

which make use of target values. Backpropagation network is basically a gradient de-

scent method and its objective is to minimize the mean squared error (see Figure 4.1)
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Figure 4.1. Mean square error of backpropagation model.

between the target values and the network outputs. Thus the mean square error func-

tion (MSE) is defined as

E = 1
2

∑
k

(
tkj−okj

)2, (4.1)

where tkj is the target output and okj is the network output.

The proposed error function for standard backpropagation (mm) is defined im-

plicitly as

mm=
∑
K
ρK (4.2)

with

ρk = E2
k

2ak
(
1−a2

k
) , (4.3)

where Ek = tk−ak, Ek is the error at the output unit k, tk is the target value of the

output unit k, and ak is an activation of the unit k.

The updating weight of standard backpropagation model is

(
∆wkα− ∂E

∂wk

)
. (4.4)

Thus, in this case, (4.4) can be rewritten as

∂ρk
∂wk

= ∂ρ
∂Netk

· ∂Netk
∂wk

. (4.5)

Knowing that Netk =
∑
kwkjoj+θk, thus by taking the partial derivative, we have

∂Netk
∂wk

= oj. (4.6)
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Substituting (4.6) into (4.5) gives

∂ρ
∂wk

= ∂ρ
∂Netk

·oj. (4.7)

Assume that ∂ρ/∂Netk = δk. By the chain rule gives

∂ρk
∂Netk

= ∂ρk
∂ak

· ∂ak
∂Netk

. (4.8)

Knowing that ak = f(Netk), so for the proposed method, sigmoid function of 1/1+
e−2x is used.

By taking partial derivatives of the ak, and simplify it by substituting in terms of ak,

∂ak
∂Netk

= 2ak
(
ak−1

)
. (4.9)

Substituting (4.10) into ak gives

∂ρk
∂Netk

= ∂ρk
∂ak

·2ak
(
ak−1

)
. (4.10)

It is known that

ρk = E2
k

2ak
(
1−a2

k
) . (4.11)

Thus by taking partial derivatives with respect to the activation function ak gives

∂ρk
∂ak

= −
[(

4ak
(
tk−ak

)(
1−a2

k
)+2

(
tk−ak

)2(
1−3a2

k
))]

4a2
k
(
1−a2

k
)k . (4.12)

Simplifying (4.12), it becomes

∂ρk
∂ak

=−
(
E+ρ(1−3a2

k
)

ak
(
1−a2

k
)

)
. (4.13)

Substituting (4.13) into (4.10) gives the proposed error signal of backpropagation for

the output layer as

∂ρk
∂Netk

= 2
(
E+ρ(1−3a2

k
))

1+ak = δk, (4.14)
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Figure 4.2. Proposed error function of backpropagation model.

and an error signal for modified backpropagation of the hidden layer is the same as

standard backpropagation,

δj =
∑
δkwjf ′

(
aj
)
. (4.15)

A proposed backpropagation error function can be illustrated geometrically as in

Figure 4.2, with its errors reducing rapidly compared to MSE, thus giving less iter-

ations for convergence.

5. Experimental results on unconstrained handwritten digits. We tested 200 sam-

ples of unconstrained handwritten digits from 0 through 9 with various shapes for

classifications. Due to computer space and memory limitations, we categorise these

samples into five groups, that is, group I–group V. Each group has 40 samples of un-

constrained handwritten digits with various shapes and styles of writing. The learning

rate and momentum parameter were set to 0.9 and 0.2 for proposed backpropaga-

tion with sigmoid as an activation function. Each group has different PCA, therefore,

for this paper, we choose group I (see the appendix) as a sample for training using

proposed backpropagation. After PCA process of group I, we choose 3 extracted com-

ponents with eigenvalues greater than 1 which are invariants of the third order with

almost 70% of variations.

Figure 5.1 shows the convergence rate for scale invariants using proposed back-

propagation for unconstrained handwritten digits before and after the reduction pro-

cess of group I. Classification rates for proposed backpropagation using scale invari-

ants are successfully recognised after using PCA. Table 5.1 shows the convergence rate

and iteration for proposed backpropagation for unconstrained handwritten digits of

group I. Table 5.2 shows the variations for each group and number of components

extracted from invariants of those handwritten digits accordingly.
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Figure 5.1. Convergence rate for handwritten digits before and after PCA
of group I.

Table 5.1. Convergence rate for handwritten digits before and after PCA of
group I.

Unconstrained handwritten digits Before PCA After PCA

Proposed BP Time = 1495 seconds Time = 1158 seconds

Iterations 15840 9880

Table 5.2. Total variations for each group.

Group Total variations # Component extracted

Group I 70% 3

Group II 82% 4

Group III 70% 3

Group IV 72% 3

Group V 82% 3

6. Conclusion. We presented the use of PCA as a mean to reduce invariants com-

plexity of unconstrained handwritten digits, and classifications of those digits using

proposed backpropagation. Higher order centralised scale invariants are used to ex-

tract digit images before PCA technique is applied for dimensionality reduction. From

the experiments, we find that PCA is able to reduce the number of invariants for

these digits without losing their useful informations. In other words, after PCA, we

use extracted components of third order moments before we proceed for classifica-

tions using proposed backpropagation model. Dimensionality reduction using PCA

indirectly saves the computation time and space by using less number of invariants

variables for unconstrained handwritten digits. From Figure 5.1 and Table 5.1, we see
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that the convergence rate is faster using the extracted components of invariants for

these handwritten digits accordingly.

Appendix

Figure A.1 shows samples of handwritten digits of group I.

Figure A.1. Samples of handwritten digits.
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