ON β -DUAL OF VECTOR-VALUED SEQUENCE SPACES OF MADDOX

SUTHEP SUANTAI and WINATE SANHAN

Received 13 April 2001 and in revised form 10 October 2001

The β -dual of a vector-valued sequence space is defined and studied. We show that if an *X*-valued sequence space *E* is a BK-space having AK property, then the dual space of *E* and its β -dual are isometrically isomorphic. We also give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell(X, p)$, $\ell_{\infty}(X, p)$, $c_0(X, p)$, and c(X, p).

2000 Mathematics Subject Classification: 46A45.

1. Introduction. Let $(X, \|\cdot\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let \mathbb{N} be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in \mathbb{N}$. The X-valued sequence spaces of Maddox are defined as

$$c_{0}(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k}||^{p_{k}} = 0 \right\};$$

$$c(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k} - a||^{p_{k}} = 0 \text{ for some } a \in X \right\};$$

$$\ell_{\infty}(X,p) = \left\{ x = (x_{k}) : \sup_{k} ||x_{k}||^{p_{k}} < \infty \right\};$$

$$\ell(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} < \infty \right\}.$$
(1.1)

When $X = \mathbb{K}$, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, and $\ell(p)$, respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3, 4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $c_0(p)$, c(p), $\ell(p)$, and $\ell_{\infty}(p)$ and has given characterizations of β -dual of scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_p[X]$, where $\ell_p[X]$, 1 , is defined by

$$\ell_p[X] = \left\{ x = (x_k) : \sum_{k=1}^{\infty} |f(x_k)|^p < \infty \text{ for each } f \in X' \right\}.$$

$$(1.2)$$

In this paper, the β -dual of a vector-valued sequence space is defined and studied and we give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell(X,p), \ell_{\infty}(X,p), c_0(X,p)$, and c(X,p). Some results, obtained in this paper, are generalizations of some in [1, 3].

2. Notation and definitions. Let $(X, \|\cdot\|)$ be a Banach space. Let W(X) and $\Phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X, respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $k \in \mathbb{N}$ we write that x_k stand for the kth term of x. For $x \in X$ and $k \in \mathbb{N}$, we let $e^{(k)}(x)$ be the sequence $(0, 0, 0, \dots, 0, x, 0, \dots)$ with x in the kth position and let e(x) be the sequence (x, x, x, \dots) . For a fixed scalar sequence $u = (u_k)$, the sequence space E_u is defined as

$$E_u = \{ x = (x_k) \in W(X) : (u_k x_k) \in E \}.$$
(2.1)

An *X*-valued sequence space *E* is said to be *normal* if $(y_k) \in E$ whenever $||y_k|| \le ||x_k||$ for all $k \in \mathbb{N}$ and $(x_k) \in E$. Suppose that the *X*-valued sequence space *E* is endowed with some linear topology τ . Then *E* is called a *K*-space if, for each $k \in \mathbb{N}$, the *k*th coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on *E*. In addition, if (E, τ) is a *Fréchet (Banach) space*, then *E* is called an FK-(BK)-space. Now, suppose that *E* contains $\Phi(X)$, then *E* is said to have *property AK* if $\sum_{k=1}^{n} e^{(k)}(x_k) \to x$ in *E* as $n \to \infty$ for every $x = (x_k) \in E$.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X,p)$, we consider the function $g(x) = \sup_k ||x_k||^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X,p)$, and it is known that $c_0(X,p)$ is an FK-space having property AK under the paranorm g defined as above. In $\ell(X,p)$, we consider it as a paranormed sequence space with the paranorm given by $||(x_k)|| = (\sum_{k=1}^{\infty} ||x_k||^{p_k})^{1/M}$. It is known that $\ell(X,p)$ is an FK-space under the paranorm defined as above.

For an *X*-valued sequence space *E*, define its Köthe dual with respect to the dual pair (X, X') (see [2]) as follows:

$$E^{\times}|_{(X,X')} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} |f_k(x_k)| < \infty \ \forall x = (x_k) \in E \right\}.$$
 (2.2)

In this paper, we denote $E^{\times}|_{(X,X')}$ by E^{α} and it is called the α -dual of *E*.

For a sequence space *E*, the β -dual of *E* is defined by

$$E^{\beta} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x_k) \text{ converges } \forall \ (x_k) \in E \right\}.$$
 (2.3)

It is easy to see that $E^{\alpha} \subseteq E^{\beta}$.

For the sake of completeness we introduce some further sequence spaces that will be considered as β -dual of the vector-valued sequence spaces of Maddox:

$$M_{0}(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}|| M^{-1/p_{k}} < \infty \text{ for some } M \in \mathbb{N} \right\};$$
$$M_{\infty}(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}|| n^{1/p_{k}} < \infty \forall n \in \mathbb{N} \right\};$$

$$\ell_0(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} M^{-p_k} < \infty \text{ for some } M \in \mathbb{N} \right\}, \quad p_k > 1 \ \forall k \in N;$$
$$cs[X'] = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x) \text{ converges } \forall x \in X \right\}.$$
(2.4)

When $X = \mathbb{K}$, the scalar field of X, the corresponding first two sequence spaces are written as $M_0(p)$ and $M_{\infty}(p)$, respectively. These two spaces were first introduced by Grosse-Erdmann [1].

3. Main results. We begin by giving some general properties of β -dual of vector-valued sequence spaces.

PROPOSITION 3.1. Let X be a Banach space and let E, E_1 , and E_2 be X-valued sequence spaces. Then

(i) $E^{\alpha} \subseteq E^{\beta}$.

- (ii) If $E_1 \subseteq E_2$, then $E_2^\beta \subseteq E_1^\beta$.
- (iii) If $E = E_1 + E_2$, then $E^{\beta} = E_1^{\beta} \cap E_2^{\beta}$.
- (iv) If *E* is normal, then $E^{\alpha} = E^{\beta}$.

PROOF. Assertions (i), (ii), and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that $E^{\beta} \subseteq E^{\alpha}$. Let $(f_k) \in E^{\beta}$ and $x = (x_k) \in E$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges. Choose a scalar sequence (t_k) with $|t_k| = 1$ and $f_k(t_kx_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since *E* is normal, $(t_kx_k) \in E$. It follows that $\sum_{k=1}^{\infty} |f_k(x_k)|$ converges, hence $(f_k) \in E^{\alpha}$.

If *E* is a BK-space, we define a norm on E^{β} by the formula

$$||(f_k)||_{E^{\beta}} = \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f_k(x_k) \right|.$$
(3.1)

It is easy to show that $\|\cdot\|_{E^{\beta}}$ is a norm on E^{β} .

Next, we give a relationship between β -dual of a sequence space and its continuous dual. Indeed, we need a lemma.

LEMMA 3.2. Let *E* be an *X*-valued sequence space which is an FK-space containing $\Phi(X)$. Then for each $k \in \mathbb{N}$, the mapping $T_k : X \to E$, defined by $T_k x = e^k(x)$, is continuous.

PROOF. Let $V = \{e^k(x) : x \in X\}$. Then *V* is a closed subspace of *E*, so it is an FK-space because *E* is an FK-space. Since *E* is a *K*-space, the coordinate mapping $p_k : V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, which implies that $p_k^{-1} : X \to V$ is continuous. But since $T_k = p_k^{-1}$, we thus obtain that T_k is continuous.

THEOREM 3.3. If *E* is a BK-space having property AK, then E^{β} and *E'* are isometrically isomorphic.

PROOF. We first show that for $x = (x_k) \in E$ and $f \in E'$,

$$f(x) = \sum_{k=1}^{\infty} f(e^k(x_k)).$$
 (3.2)

To show this, let $x = (x_k) \in E$ and $f \in E'$. Since *E* has property AK,

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} e^{(k)}(x_k).$$
(3.3)

By the continuity of f, it follows that

$$f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} f(e^{(k)}(x_k)) = \sum_{k=1}^{\infty} f(e^{(k)}(x_k)),$$
(3.4)

so (3.2) is obtained. For each $k \in \mathbb{N}$, let $T_k : X \to E$ be defined as in Lemma 3.2. Since E is a BK-space, by Lemma 3.2, T_k is continuous. Hence $f \circ T_k \in X'$ for all $k \in \mathbb{N}$. It follows from (3.2) that

$$f(x) = \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \quad \forall x = (x_k) \in E.$$
(3.5)

It implies, by (3.5), that $(f \circ T_k)_{k=1}^{\infty} \in E^{\beta}$. Define $\varphi : E' \to E^{\beta}$ by

$$\varphi(f) = (f \circ T_k)_{k=1}^{\infty} \quad \forall f \in E'.$$
(3.6)

It is easy to see that φ is linear. Now, we show that φ is onto. Let $(f_k) \in E^{\beta}$. Define $f : E \to K$, where *K* is the scalar field of *X*, by

$$f(x) = \sum_{k=1}^{\infty} f_k(x_k) \quad \forall x = (x_k) \in E.$$
(3.7)

For each $k \in \mathbb{N}$, let p_k be the *k*th coordinate mapping on *E*. Then we have

$$f(x) = \sum_{k=1}^{\infty} (f_k \circ p_k)(x) = \lim_{n \to \infty} \sum_{k=1}^n (f \circ p_k)(x).$$
(3.8)

Since f_k and p_k are continuous linear, so is also continuous $f \circ p_k$. It follows by Banach-Steinhaus theorem that $f \in E'$ and we have by (3.7) that; for each $k \in \mathbb{N}$ and each $z \in X$, $(f \circ T_k)(z) = f(e^{(k)}(z)) = f_k(z)$. Thus $f \circ T_k = f_k$ for all $k \in \mathbb{N}$, which implies that $\varphi(f) = (f_k)$, hence φ is onto.

Finally, we show that φ is linear isometry. For $f \in E'$, we have

$$\|f\| = \sup_{\|(x_k)\| \le 1} |f((x_k))|$$

= $\sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f(e^{(k)}(x_k)) \right|$ (by (3.2))
= $\sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \right|$
= $\|(f \circ T_k)_{k=1}^{\infty}\|_{E^{\beta}}$
= $\||\varphi(f)\|_{E^{\beta}}.$ (3.9)

Hence φ is isometry. Therefore, $\varphi : E' \to E^{\beta}$ is an isometrically isomorphism from E' onto E^{β} . This completes the proof.

We next give characterizations of β -dual of the sequence space $\ell(X, p)$ when $p_k > 1$ for all $k \in \mathbb{N}$.

THEOREM 3.4. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^\beta = \ell_0(X', q)$, where $q = (q_k)$ is a sequence of positive real numbers such that $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$.

PROOF. Suppose that $(f_k) \in \ell_0(X', q)$. Then $\sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. Then for each $x = (x_k) \in \ell(X, p)$, we have

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{\infty} ||f_{k}|| M^{-1/p_{k}} M^{1/p_{k}} ||x_{k}|| \leq \sum_{k=1}^{\infty} (||f_{k}||^{q_{k}} M^{-q_{k}/p_{k}} + M||x_{k}||^{p_{k}}) = \sum_{k=1}^{\infty} ||f_{k}||^{q_{k}} M^{-(q_{k}-1)} + M \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} = M \sum_{k=1}^{\infty} ||f_{k}||^{q_{k}} M^{-q_{k}} + M \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} \leq \infty,$$

$$(3.10)$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X, p)$. For each $x = (x_k) \in \ell(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since $(t_k x_k) \in \ell(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x \in \ell(X, p).$$
(3.11)

We want to show that $(f_k) \in \ell_0(X', q)$, that is, $\sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. If it is not true, then

$$\sum_{k=1}^{\infty} ||f_k||^{q_k} m^{-q_k} = \infty \quad \forall m \in \mathbb{N}.$$
(3.12)

It implies by (3.12) that for each $k \in \mathbb{N}$,

$$\sum_{i>k} ||f_i||^{q_i} m^{-q_i} = \infty \quad \forall m \in \mathbb{N}.$$
(3.13)

By (3.12), let $m_1 = 1$, then there is a $k_1 \in \mathbb{N}$ such that

$$\sum_{k \le k_1} ||f_k||^{q_k} m_1^{-q_k} > 1.$$
(3.14)

By (3.13), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{q_k} m_2^{-q_k} > 1.$$
(3.15)

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $1 = k_0 < k_1 < k_2 < \cdots$ and $m_1 < m_2 < \cdots$, such that $m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{q_k} m_i^{-q_k} > 1.$$
(3.16)

For each $i \in \mathbb{N}$, choose x_k in X with $||x_k|| = 1$ for all $k \in \mathbb{N}$, $k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-q_k} > 1 \quad \forall i \in \mathbb{N}.$$
(3.17)

Let $a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-q_k}$. Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k-1} x_k$ for all $k \in \mathbb{N}$ with $k_{i-1} < k \le k_i$. By using the fact that $p_k q_k = p_k + q_k$ and $p_k (q_k - 1) = q_k$ for all $k \in \mathbb{N}$, we have that for each $i \in \mathbb{N}$,

$$\sum_{k_{i-1} < k \le k_{i}} ||y_{k}||^{p_{k}} = \sum_{k_{i-1} < k \le k_{i}} ||a_{i}^{-1}m_{i}^{-q_{k}}|f_{k}(x_{k})|^{q_{k}-1}x_{k}||^{p_{k}}$$

$$= \sum_{k_{i-1} < k \le k_{i}} a_{i}^{-p_{k}}m_{i}^{-p_{k}q_{k}}|f_{k}(x_{k})|^{q_{k}}$$

$$= \sum_{k_{i-1} < k \le k_{i}} a_{i}^{-p_{k}}m_{i}^{-q_{k}}|f_{k}(x_{k})|^{q_{k}}$$

$$\leq a_{i}^{-1}m_{i}^{-1}\sum_{k_{i-1} < k \le k_{i}} m_{i}^{-q_{k}}|f_{k}(x_{k})|^{q_{k}}$$

$$\leq a_{i}^{-1}m_{i}^{-1}a_{i}$$

$$= m_{i}^{-1}$$

$$< \frac{1}{2^{i}},$$
(3.18)

so we have that $\sum_{k=1}^{\infty} \|y_k\|^{p_k} \le \sum_{i=1}^{\infty} 1/2^i < \infty$. Hence, $y = (y_k) \in \ell(X, p)$. For each $i \in \mathbb{N}$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k \left(a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k - 1} x_k \right) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-q_k} |f_k(x_k)|^{q_k}$$

$$= 1,$$

(3.19)

so that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.11). Hence $(f_k) \in \ell_0(X', q)$. The proof is now complete.

The following theorem gives a characterization of β -dual of $\ell(X, p)$ when $p_k \leq 1$ for all $k \in \mathbb{N}$. To do this, the following lemma is needed.

LEMMA 3.5. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$.

PROOF. Let $x \in \ell_{\infty}(X, p)$, then there is some $n \in \mathbb{N}$ with $||x_k||^{p_k} \le n$ for all $k \in \mathbb{N}$. Hence $||x_k|| n^{-1/p_k} \le 1$ for all $k \in \mathbb{N}$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in \mathbb{N}$ and M > 1 such that $||x_k|| n^{-1/p_k} \le M$ for every $k \in \mathbb{N}$. Then we have $||x_k||^{p_k} \le nM^{p_k} \le nM^{\alpha}$ for all $k \in \mathbb{N}$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$.

THEOREM 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \le 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^\beta = \ell_\infty(X', p)$.

PROOF. If $(f_k) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$, using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell(X, p).$$
(3.20)

If $(f_k) \notin \ell_{\infty}(X', p)$, it follows by Lemma 3.5 that $\sup_k ||f_k|| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. For each $i \in \mathbb{N}$, choose sequences (m_i) and (k_i) of positive integers with $m_1 < m_2 < \cdots$ and $k_1 < k_2 < \cdots$ such that $m_i > 2^i$ and $||f_{k_i}|| m_i^{-1/p_{k_i}} > 1$. Choose $x_{k_i} \in X$ with $||x_{k_i}|| = 1$ such that

$$|f_{k_i}(x_{k_i})|m_i^{-1/p_{k_i}} > 1.$$
 (3.21)

Let $y = (y_k)$, $y_k = m_i^{-1/p_k} x_{k_i}$ if $k = k_i$ for some i, and 0 otherwise. Then $\sum_{k=1}^{\infty} \|y_k\|^{p_k} = \sum_{i=1}^{\infty} 1/m_i < \sum_{i=1}^{\infty} 1/2^i = 1$, so that $(y_k) \in \ell(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} |f_{k_i}(m_i^{-1/p_{k_i}} x_{k_i})|$$

= $\sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})|$
= ∞ (by (3.21)), (3.22)

and this is contradictory to (3.20), hence $(f_k) \in \ell_{\infty}(X', p)$.

Conversely, assume that $(f_k) \in \ell_{\infty}(X', p)$. By Lemma 3.5, there exists $M \in \mathbb{N}$ such that $\sup_k ||f_k|| M^{-1/p_k} < \infty$, so there is a K > 0 such that

$$||f_k|| \le K M^{1/p_k} \quad \forall k \in \mathbb{N}.$$
(3.23)

Let $x = (x_k) \in \ell(X, p)$. Then there is a $k_0 \in \mathbb{N}$ such that $M^{1/p_k} ||x_k|| \le 1$ for all $k \ge k_0$. By $p_k \le 1$ for all $k \in \mathbb{N}$, we have that, for all $k \ge k_0$,

$$M^{1/p_k}||x_k|| \le \left(M^{1/p_k}||x_k||\right)^{p_k} = M||x_k||^{p_k}.$$
(3.24)

Then

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} ||f_{k}|| ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + K \sum_{k=k_{0}+1}^{\infty} M^{1/p_{k}} ||x_{k}|| \quad (by \ (3.23))$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + KM \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}} \quad (by \ (3.24))$$

$$< \infty.$$

$$(3.25)$$

This implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, hence $(f_k) \in \ell(X, p)^{\beta}$.

THEOREM 3.7. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X,p)^{\beta} = M_{\infty}(X',p)$.

PROOF. If $(f_k) \in M_{\infty}(X', p)$, then $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty$ for all $m \in \mathbb{N}$, we have that for each $x = (x_k) \in \ell_{\infty}(X, p)$, there is $m_0 \in \mathbb{N}$ such that $||x_k|| \le m_0^{1/p_k}$ for all $k \in \mathbb{N}$, hence $\sum_{k=1}^{\infty} ||f_k(x_k)| \le \sum_{k=1}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=1}^{\infty} ||f_k|| m_0^{1/p_k} < \infty$, which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in \ell_{\infty}(X, p)^{\beta}$.

Conversely, assume that $(f_k) \in \ell_{\infty}(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X, p)$, by using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell_{\infty}(X, p).$$
(3.26)

If $(f_k) \notin M_{\infty}(X', p)$, then $\sum_{k=1}^{\infty} ||f_k|| M^{1/p_k} = \infty$ for some $M \in \mathbb{N}$. Then we can choose a sequence (k_i) of positive integers with $0 = k_0 < k_1 < k_2 < \cdots$ such that

$$\sum_{\substack{k_{i-1} < k \le k_i}} ||f_k|| M^{1/p_k} > i \quad \forall i \in \mathbb{N}.$$
(3.27)

And we choose x_k in X with $||x_k|| = 1$ such that for all $i \in \mathbb{N}$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| M^{1/p_k} > i.$$
(3.28)

Put $y = (y_k)$, $y_k = M^{1/p_k} x_k$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(\mathcal{Y}_k)| \ge \sum_{k_{i-1} < k \le k_i}^{\infty} |f_k(x_k)| M^{1/p_k} > i \quad \forall i \in \mathbb{N}.$$

$$(3.29)$$

Hence $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.26). Hence $(f_k) \in M_{\infty}(X', p)$. The proof is now complete.

THEOREM 3.8. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c_0(X,p)^{\beta} = M_0(X',p)$.

PROOF. Suppose $(f_k) \in M_0(X', p)$, then $\sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} < \infty$ for some $M \in \mathbb{N}$. Let $x = (x_k) \in c_0(X, p)$. Then there is a positive integer K_0 such that $||x_k||^{p_k} < 1/M$ for all $k \ge K_0$, hence $||x_k|| < M^{-1/p_k}$ for all $k \ge K_0$. Then we have

$$\sum_{k=K_0}^{\infty} |f_k(x_k)| \le \sum_{k=K_0}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=K_0}^{\infty} ||f_k|| M^{-1/p_k} < \infty.$$
(3.30)

It follows that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in c_0(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in c_0(X, p)^\beta$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$. For each $x = (x_k) \in c_0(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since $(t_k x_k) \in c_0(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} \left| f_k(x_k) \right| < \infty \quad \forall x \in c_0(X, p).$$
(3.31)

Now, suppose that $(f_k) \notin M_0(X', p)$. Then $\sum_{k=1}^{\infty} ||f_k|| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. Choose $m_1, k_1 \in \mathbb{N}$ such that

$$\sum_{k \le k_1} ||f_k|| m_1^{-1/p_k} > 1 \tag{3.32}$$

and choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} ||f_k|| m_2^{-1/p_k} > 2.$$
(3.33)

Proceeding in this way, we can choose $m_1 < m_2 < \cdots$, and $0 = k_1 < k_2 < \cdots$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| m_i^{-1/p_k} > i.$$
(3.34)

Take x_k in X with $||x_k|| = 1$ for all $k, k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| \, m_i^{-1/p_k} > i \quad \forall i \in \mathbb{N}.$$
(3.35)

Put $y = (y_k)$, $y_k = m_i^{-1/p_k} x_k$ for $k_{i-1} < k \le k_i$, then $y \in c_0(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \forall i \in \mathbb{N}.$$
(3.36)

Hence we have $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.31), therefore $(f_k) \in M_0(X', p)$. This completes the proof.

THEOREM 3.9. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c(X,p)^{\beta} = M_0(X',p) \cap cs[X']$.

PROOF. Since $c(X,p) = c_0(X,p) + E$, where $E = \{e(x) : x \in X\}$, it follows by **Proposition 3.1**(iii) and **Theorem 3.8** that $c(X,p)^{\beta} = M_0(X',p) \cap E^{\beta}$. It is obvious by definition that $E^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x) \text{ converges for all } x \in X\} = cs[X']$. Hence we have the theorem.

ACKNOWLEDGMENT. The author would like to thank the Thailand Research Fund for the financial support.

REFERENCES

- [1] K.-G. Grosse-Erdmann, *The structure of the sequence spaces of Maddox*, Canad. J. Math. 44 (1992), no. 2, 298–302.
- [2] M. Gupta, P. K. Kamthan, and J. Patterson, *Duals of generalized sequence spaces*, J. Math. Anal. Appl. 82 (1981), no. 1, 152–168.
- [3] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [4] _____, Paranormed sequence spaces generated by infinite matrices, Math. Proc. Cambridge Philos. Soc. 64 (1968), 335-340.
- [5] _____, Elements of Functional Analysis, Cambridge University Press, London, 1970.
- [6] H. Nakano, *Modulared sequence spaces*, Proc. Japan Acad. 27 (1951), 508–512.
- [7] S. Simons, *The sequence spaces* $l(p_{\nu})$ *and* $m(p_{\nu})$, Proc. London Math. Soc. (3) **15** (1965), 422-436.
- [8] C. X. Wu and Q. Y. Bu, *Köthe dual of Banach sequence spaces* $l_p[X]$ $(1 \le p < \infty)$ *and Grothendieck space*, Comment. Math. Univ. Carolin. **34** (1993), no. 2, 265–273.

SUTHEP SUANTAI: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIANG MAI UNI-VERSITY, CHIANG MAI 50200, THAILAND

E-mail address: malsuthe@science.cmu.ac.th

WINATE SANHAN: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIANG MAI UNI-VERSITY, CHIANG MAI 50200, THAILAND