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1. Introduction. Let (X,‖·‖) be a Banach space and p = (pk) a bounded sequence

of positive real numbers. Let N be the set of all natural numbers, we write x = (xk)
with xk in X for all k∈N. The X-valued sequence spaces of Maddox are defined as

c0(X,p)=
{
x = (xk) : lim

k→∞
∥∥xk∥∥pk = 0

}
;

c(X,p)=
{
x = (xk) : lim

k→∞
∥∥xk−a∥∥pk = 0 for some a∈X

}
;

�∞(X,p)=
{
x = (xk) : sup

k

∥∥xk∥∥pk <∞
}

;

�(X,p)=
{
x = (xk) :

∞∑
k=1

∥∥xk∥∥pk <∞
}
.

(1.1)

When X = K, the scalar field of X, the corresponding spaces are written as c0(p),
c(p), �∞(p), and �(p), respectively. All of these spaces are known as the sequence

spaces of Maddox. These spaces were introduced and studied by Simons [7] and

Maddox [3, 4, 5]. The space �(p) was first defined by Nakano [6] and is known as

the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the

spaces c0(p), c(p), �(p), and �∞(p) and has given characterizations of β-dual of

scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence

space �p[X], where �p[X], 1<p <∞, is defined by

�p[X]=
{
x = (xk) :

∞∑
k=1

∣∣f (xk)∣∣p <∞ for each f ∈X′
}
. (1.2)

In this paper, the β-dual of a vector-valued sequence space is defined and studied

and we give characterizations of β-dual of vector-valued sequence spaces of Maddox
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�(X,p), �∞(X,p), c0(X,p), and c(X,p). Some results, obtained in this paper, are gen-

eralizations of some in [1, 3].

2. Notation and definitions. Let (X,‖ ·‖) be a Banach space. Let W(X) and Φ(X)
denote the space of all sequences in X and the space of all finite sequences in X,

respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-

valued sequence space. For x ∈ E and k ∈ N we write that xk stand for the kth term

ofx. Forx ∈X and k∈N, we let e(k)(x) be the sequence (0,0,0, . . . ,0,x,0, . . .)withx in

the kth position and let e(x) be the sequence (x,x,x, . . .). For a fixed scalar sequence

u= (uk), the sequence space Eu is defined as

Eu =
{
x = (xk)∈W(X) :

(
ukxk

)∈ E}. (2.1)

An X-valued sequence space E is said to be normal if (yk) ∈ E whenever ‖yk‖ ≤
‖xk‖ for all k ∈ N and (xk) ∈ E. Suppose that the X-valued sequence space E is

endowed with some linear topology τ . Then E is called a K-space if, for each k ∈ N,

the kth coordinate mapping pk : E→X, defined by pk(x)= xk, is continuous on E. In

addition, if (E,τ) is a Fréchet (Banach) space, then E is called an FK-(BK)-space. Now,

suppose that E contains Φ(X), then E is said to have property AK if
∑n
k=1 e(k)(xk)→ x

in E as n→∞ for every x = (xk)∈ E.

The spaces c0(p) and c(p) are FK-spaces. In c0(X,p), we consider the function

g(x) = supk‖xk‖pk/M , where M = max{1,supkpk}, as a paranorm on c0(X,p), and

it is known that c0(X,p) is an FK-space having property AK under the paranorm g
defined as above. In �(X,p), we consider it as a paranormed sequence space with the

paranorm given by ‖(xk)‖ = (
∑∞
k=1‖xk‖pk)1/M . It is known that �(X,p) is an FK-space

under the paranorm defined as above.

For an X-valued sequence space E, define its Köthe dual with respect to the dual

pair (X,X′) (see [2]) as follows:

E×|(X,X′) =
{(
fk
)⊂X′ :

∞∑
k=1

∣∣fk(xk)∣∣<∞ ∀x = (xk)∈ E
}
. (2.2)

In this paper, we denote E×|(X,X′) by Eα and it is called the α-dual of E.

For a sequence space E, the β-dual of E is defined by

Eβ =
{(
fk
)⊂X′ :

∞∑
k=1

fk
(
xk
)

converges ∀ (xk)∈ E
}
. (2.3)

It is easy to see that Eα ⊆ Eβ.

For the sake of completeness we introduce some further sequence spaces that will

be considered as β-dual of the vector-valued sequence spaces of Maddox:

M0(X,p)=
{
x = (xk) :

∞∑
k=1

∥∥xk∥∥M−1/pk <∞ for some M ∈N
}

;

M∞(X,p)=
{
x = (xk) :

∞∑
k=1

∥∥xk∥∥n1/pk <∞ ∀n∈N
}

;
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�0(X,p)=
{
x=(xk) :

∞∑
k=1

∥∥xk∥∥pkM−pk <∞ for some M ∈N
}
, pk > 1 ∀k∈N;

cs
[
X′
]=

{(
fk
)⊂X′ :

∞∑
k=1

fk(x) converges ∀ x ∈X
}
.

(2.4)

When X =K, the scalar field of X, the corresponding first two sequence spaces are

written as M0(p) and M∞(p), respectively. These two spaces were first introduced by

Grosse-Erdmann [1].

3. Main results. We begin by giving some general properties of β-dual of vector-

valued sequence spaces.

Proposition 3.1. Let X be a Banach space and let E, E1, and E2 be X-valued se-

quence spaces. Then

(i) Eα ⊆ Eβ.

(ii) If E1 ⊆ E2, then Eβ2 ⊆ Eβ1 .

(iii) If E = E1+E2, then Eβ = Eβ1 ∩Eβ2 .

(iv) If E is normal, then Eα = Eβ.

Proof. Assertions (i), (ii), and (iii) are immediately obtained by the definitions.

To prove (iv), by (i), it suffices to show only that Eβ ⊆ Eα. Let (fk) ∈ Eβ and x =
(xk) ∈ E. Then

∑∞
k=1fk(xk) converges. Choose a scalar sequence (tk) with |tk| = 1

and fk(tkxk) = |fk(xk)| for all k ∈ N. Since E is normal, (tkxk) ∈ E. It follows that∑∞
k=1 |fk(xk)| converges, hence (fk)∈ Eα.

If E is a BK-space, we define a norm on Eβ by the formula

∥∥(fk)∥∥Eβ = sup
‖(xk)‖≤1

∣∣∣∣∣
∞∑
k=1

fk
(
xk
)∣∣∣∣∣. (3.1)

It is easy to show that ‖·‖Eβ is a norm on Eβ.

Next, we give a relationship between β-dual of a sequence space and its continuous

dual. Indeed, we need a lemma.

Lemma 3.2. Let E be an X-valued sequence space which is an FK-space containing

Φ(X). Then for each k∈N, the mapping Tk :X → E, defined by Tkx = ek(x), is contin-

uous.

Proof. Let V = {ek(x) : x ∈ X}. Then V is a closed subspace of E, so it is an

FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping

pk : V → X is continuous and bijective. It follows from the open mapping theorem

that pk is open, which implies that p−1
k : X → V is continuous. But since Tk = p−1

k , we

thus obtain that Tk is continuous.

Theorem 3.3. If E is a BK-space having property AK, then Eβ and E′ are isometri-

cally isomorphic.
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Proof. We first show that for x = (xk)∈ E and f ∈ E′,

f(x)=
∞∑
k=1

f
(
ek
(
xk
))
. (3.2)

To show this, let x = (xk)∈ E and f ∈ E′. Since E has property AK,

x = lim
n→∞

n∑
k=1

e(k)(xk). (3.3)

By the continuity of f , it follows that

f(x)= lim
n→∞

n∑
k=1

f
(
e(k)

(
xk
))= ∞∑

k=1

f
(
e(k)

(
xk
))
, (3.4)

so (3.2) is obtained. For each k ∈ N, let Tk : X → E be defined as in Lemma 3.2. Since

E is a BK-space, by Lemma 3.2, Tk is continuous. Hence f ◦Tk ∈ X′ for all k ∈ N. It

follows from (3.2) that

f(x)=
∞∑
k=1

(
f ◦Tk

)(
xk
) ∀x = (xk)∈ E. (3.5)

It implies, by (3.5), that (f ◦Tk)∞k=1 ∈ Eβ. Define ϕ : E′ → Eβ by

ϕ(f)= (f ◦Tk)∞k=1 ∀f ∈ E′. (3.6)

It is easy to see that ϕ is linear. Now, we show that ϕ is onto. Let (fk) ∈ Eβ. Define

f : E→K, where K is the scalar field of X, by

f(x)=
∞∑
k=1

fk
(
xk
) ∀x = (xk)∈ E. (3.7)

For each k∈N, let pk be the kth coordinate mapping on E. Then we have

f(x)=
∞∑
k=1

(
fk ◦pk

)
(x)= lim

n→∞

n∑
k=1

(
f ◦pk

)
(x). (3.8)

Since fk andpk are continuous linear, so is also continuous f ◦pk. It follows by Banach-

Steinhaus theorem that f ∈ E′ and we have by (3.7) that; for each k ∈ N and each

z ∈ X, (f ◦Tk)(z) = f(e(k)(z)) = fk(z). Thus f ◦Tk = fk for all k ∈ N, which implies

that ϕ(f)= (fk), hence ϕ is onto.

Finally, we show that ϕ is linear isometry. For f ∈ E′, we have

‖f‖ = sup
‖(xk)‖≤1

∣∣f ((xk))∣∣

= sup
‖(xk)‖≤1

∣∣∣∣∣
∞∑
k=1

f
(
e(k)

(
xk
))∣∣∣∣∣ (by (3.2))

= sup
‖(xk)‖≤1

∣∣∣∣∣
∞∑
k=1

(
f ◦Tk

)(
xk
)∣∣∣∣∣

= ∥∥(f ◦Tk)∞k=1

∥∥
Eβ

= ∥∥ϕ(f)∥∥Eβ .

(3.9)
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Hence ϕ is isometry. Therefore, ϕ : E′ → Eβ is an isometrically isomorphism from E′

onto Eβ. This completes the proof.

We next give characterizations of β-dual of the sequence space �(X,p) when pk > 1

for all k∈N.

Theorem 3.4. Let p = (pk) be a bounded sequence of positive real numbers with

pk > 1 for all k∈N. Then �(X,p)β = �0(X′,q), where q = (qk) is a sequence of positive

real numbers such that 1/pk+1/qk = 1 for all k∈N.

Proof. Suppose that (fk)∈ �0(X′,q). Then
∑∞
k=1‖fk‖qkM−qk <∞ for someM ∈N.

Then for each x = (xk)∈ �(X,p), we have

∞∑
k=1

∣∣fk(xk)∣∣≤
∞∑
k=1

∥∥fk∥∥M−1/pkM1/pk
∥∥xk∥∥

≤
∞∑
k=1

(∥∥fk∥∥qkM−qk/pk+M∥∥xk∥∥pk)

=
∞∑
k=1

∥∥fk∥∥qkM−(qk−1)+M
∞∑
k=1

∥∥xk∥∥pk

=M
∞∑
k=1

∥∥fk∥∥qkM−qk+M
∞∑
k=1

∥∥xk∥∥pk
<∞,

(3.10)

which implies that
∑∞
k=1fk(xk) converges, so (fk)∈ �(X,p)β.

On the other hand, assume that (fk) ∈ �(X,p)β, then
∑∞
k=1fk(xk) converges for

all x = (xk) ∈ �(X,p). For each x = (xk) ∈ �(X,p), choose scalar sequence (tk) with

|tk| = 1 such that fk(tkxk) = |fk(xk)| for all k ∈ N. Since (tkxk) ∈ �(X,p), by our

assumption, we have
∑∞
k=1fk(tkxk) converges, so that

∞∑
k=1

∣∣fk(xk)∣∣<∞ ∀x ∈ �(X,p). (3.11)

We want to show that (fk)∈ �0(X′,q), that is,
∑∞
k=1‖fk‖qkM−qk <∞ for some M ∈N.

If it is not true, then

∞∑
k=1

∥∥fk∥∥qkm−qk =∞ ∀m∈N. (3.12)

It implies by (3.12) that for each k∈N,

∑
i>k

∥∥fi∥∥qim−qi =∞ ∀m∈N. (3.13)

By (3.12), let m1 = 1, then there is a k1 ∈N such that

∑
k≤k1

∥∥fk∥∥qkm−qk
1 > 1. (3.14)
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By (3.13), we can choose m2 >m1 and k2 > k1 with m2 > 22 such that

∑
k1<k≤k2

∥∥fk∥∥qkm−qk
2 > 1. (3.15)

Proceeding in this way, we can choose sequences of positive integers (ki) and (mi)
with 1= k0 < k1 < k2 < ··· and m1 <m2 < ··· , such that mi > 2i and

∑
ki−1<k≤ki

∥∥fk∥∥qkm−qk
i > 1. (3.16)

For each i∈N, choose xk in X with ‖xk‖ = 1 for all k∈N, ki−1 < k≤ ki such that

∑
ki−1<k≤ki

∣∣fk(xk)∣∣qkm−qk
i > 1 ∀i∈N. (3.17)

Let ai =
∑
ki−1<k≤ki |fk(xk)|qkm

−qk
i . Put y = (yk), yk = a−1

i m
−qk
i |fk(xk)|qk−1xk for all

k∈N with ki−1 < k≤ ki. By using the fact that pkqk = pk+qk and pk(qk−1)= qk for

all k∈N, we have that for each i∈N,

∑
ki−1<k≤ki

∥∥yk∥∥pk = ∑
ki−1<k≤ki

∥∥∥a−1
i m

−qk
i
∣∣fk(xk)∣∣qk−1xk

∥∥∥pk

=
∑

ki−1<k≤ki
a−pki m−pkqk

i
∣∣fk(xk)∣∣qk

=
∑

ki−1<k≤ki
a−pki m−pk

i m−qk
i
∣∣fk(xk)∣∣qk

≤ a−1
i m

−1
i

∑
ki−1<k≤ki

m−qk
i
∣∣fk(xk)∣∣qk

≤ a−1
i m

−1
i ai

=m−1
i

<
1
2i
,

(3.18)

so we have that
∑∞
k=1‖yk‖pk ≤

∑∞
i=1 1/2i < ∞. Hence, y = (yk) ∈ �(X,p). For each

i∈N, we have

∑
ki−1<k≤ki

∣∣fk(yk)∣∣= ∑
ki−1<k≤ki

∣∣∣fk(a−1
i m

−qk
i
∣∣fk(xk)∣∣qk−1xk

)∣∣∣
=

∑
ki−1<k≤ki

a−1
i m

−qk
i
∣∣fk(xk)∣∣qk

= a−1
i

∑
ki−1<k≤ki

m−qk
i
∣∣fk(xk)∣∣qk

= 1,

(3.19)

so that
∑∞
k=1 |fk(yk)| =∞, which contradicts (3.11). Hence (fk)∈ �0(X′,q). The proof

is now complete.
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The following theorem gives a characterization of β-dual of �(X,p) when pk ≤ 1

for all k∈N. To do this, the following lemma is needed.

Lemma 3.5. Let p = (pk) be a bounded sequence of positive real numbers. Then

�∞(X,p)=
⋃∞
n=1�∞(X)(n−1/pk ).

Proof. Let x ∈ �∞(X,p), then there is some n ∈N with ‖xk‖pk ≤ n for all k ∈N.

Hence ‖xk‖n−1/pk ≤ 1 for all k∈N, so thatx ∈ �∞(X)(n−1/pk ). On the other hand, ifx ∈⋃∞
n=1�∞(X)(n−1/pk ), then there are some n ∈ N and M > 1 such that ‖xk‖n−1/pk ≤M

for every k∈N. Then we have ‖xk‖pk ≤nMpk ≤nMα for all k∈N, where α= supkpk.
Hence x ∈ �∞(X,p).

Theorem 3.6. Let p = (pk) be a bounded sequence of positive real numbers with

pk ≤ 1 for all k∈N. Then �(X,p)β = �∞(X′,p).

Proof. If (fk)∈ �(X,p)β, then
∑∞
k=1fk(xk) converges for every x = (xk)∈�(X,p),

using the same proof as in Theorem 3.4, we have

∞∑
k=1

∣∣fk(xk)∣∣<∞ ∀x = (xk)∈ �(X,p). (3.20)

If (fk) ∉ �∞(X′,p), it follows by Lemma 3.5 that supk‖fk‖m−1/pk =∞ for all m ∈ N.

For each i∈N, choose sequences (mi) and (ki) of positive integers with m1<m2<···
and k1 < k2 < ··· such that mi > 2i and ‖fki‖m

−1/pki
i > 1. Choose xki ∈ X with

‖xki‖ = 1 such that

∣∣fki(xki)∣∣m−1/pki
i > 1. (3.21)

Lety = (yk),yk=m
−1/pki
i xki if k= ki for some i, and 0 otherwise. Then

∑∞
k=1‖yk‖pk =∑∞

i=1 1/mi <
∑∞
i=1 1/2i = 1, so that (yk)∈ �(X,p) and

∞∑
k=1

∣∣fk(yk)∣∣=
∞∑
i=1

∣∣∣fki
(
m
−1/pki
i xki

)∣∣∣

=
∞∑
i=1

m
−1/pki
i

∣∣fki(xki)∣∣
=∞ (by (3.21)),

(3.22)

and this is contradictory to (3.20), hence (fk)∈ �∞(X′,p).
Conversely, assume that (fk) ∈ �∞(X′,p). By Lemma 3.5, there exists M ∈ N such

that supk‖fk‖M−1/pk <∞, so there is a K > 0 such that

∥∥fk∥∥≤KM1/pk ∀k∈N. (3.23)

Let x = (xk)∈ �(X,p). Then there is a k0 ∈N such that M1/pk‖xk‖ ≤ 1 for all k≥ k0.

By pk ≤ 1 for all k∈N, we have that, for all k≥ k0,

M1/pk
∥∥xk∥∥≤ (M1/pk

∥∥xk∥∥)pk =M∥∥xk∥∥pk . (3.24)
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Then

∞∑
k=1

∣∣fk(xk)∣∣≤
k0∑
k=1

∥∥fk∥∥∥∥xk∥∥+
∞∑

k=k0+1

∥∥fk∥∥∥∥xk∥∥

≤
k0∑
k=1

∥∥fk∥∥∥∥xk∥∥+K
∞∑

k=k0+1

M1/pk
∥∥xk∥∥ (by (3.23))

≤
k0∑
k=1

∥∥fk∥∥∥∥xk∥∥+KM
∞∑

k=k0+1

∥∥xk∥∥pk (by (3.24))

<∞.

(3.25)

This implies that
∑∞
k=1fk(xk) converges, hence (fk)∈ �(X,p)β.

Theorem 3.7. Let p = (pk) be a bounded sequence of positive real numbers. Then

�∞(X,p)β =M∞(X′,p).

Proof. If (fk)∈M∞(X′,p), then
∑∞
k=1‖fk‖m1/pk <∞ for all m ∈N, we have that

for each x = (xk) ∈ �∞(X,p), there is m0 ∈ N such that ‖xk‖ ≤ m1/pk
0 for all k ∈

N, hence
∑∞
k=1 |fk(xk)| ≤

∑∞
k=1‖fk‖‖xk‖ ≤

∑∞
k=1‖fk‖m1/pk

0 < ∞, which implies that∑∞
k=1fk(xk) converges, so that (fk)∈ �∞(X,p)β.

Conversely, assume that (fk) ∈ �∞(X,p)β, then
∑∞
k=1fk(xk) converges for all x =

(xk)∈ �∞(X,p), by using the same proof as in Theorem 3.4, we have

∞∑
k=1

∣∣fk(xk)∣∣<∞ ∀x = (xk)∈ �∞(X,p). (3.26)

If (fk) ∉M∞(X′,p), then
∑∞
k=1‖fk‖M1/pk =∞ for some M ∈N. Then we can choose a

sequence (ki) of positive integers with 0= k0 < k1 < k2 < ··· such that

∑
ki−1<k≤ki

∥∥fk∥∥M1/pk > i ∀i∈N. (3.27)

And we choose xk in X with ‖xk‖ = 1 such that for all i∈N,

∑
ki−1<k≤ki

∣∣fk(xk)∣∣M1/pk > i. (3.28)

Put y = (yk), yk =M1/pkxk. Clearly, y ∈ �∞(X,p) and

∞∑
k=1

∣∣fk(yk)∣∣≥
∞∑

ki−1<k≤ki

∣∣fk(xk)∣∣M1/pk > i ∀i∈N. (3.29)

Hence
∑∞
k=1 |fk(yk)| =∞, which contradicts (3.26). Hence (fk)∈M∞(X′,p). The proof

is now complete.

Theorem 3.8. Let p = (pk) be a bounded sequence of positive real numbers. Then

c0(X,p)β =M0(X′,p).
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Proof. Suppose (fk)∈M0(X′,p), then
∑∞
k=1‖fk‖M−1/pk <∞ for some M ∈N. Let

x = (xk)∈ c0(X,p). Then there is a positive integer K0 such that ‖xk‖pk < 1/M for all

k≥K0, hence ‖xk‖<M−1/pk for all k≥K0. Then we have

∞∑
k=K0

∣∣fk(xk)∣∣≤
∞∑

k=K0

∥∥fk∥∥∥∥xk∥∥≤
∞∑

k=K0

∥∥fk∥∥M−1/pk <∞. (3.30)

It follows that
∑∞
k=1fk(xk) converges, so that (fk)∈ c0(X,p)β.

On the other hand, assume that (fk) ∈ c0(X,p)β, then
∑∞
k=1fk(xk) converges for

all x = (xk)∈ c0(X,p). For each x = (xk)∈ c0(X,p), choose scalar sequence (tk) with

|tk| = 1 such that fk(tkxk) = |fk(xk)| for all k ∈ N. Since (tkxk) ∈ c0(X,p), by our

assumption, we have
∑∞
k=1fk(tkxk) converges, so that

∞∑
k=1

∣∣fk(xk)∣∣<∞ ∀x ∈ c0(X,p). (3.31)

Now, suppose that (fk) ∉ M0(X′,p). Then
∑∞
k=1‖fk‖m−1/pk = ∞ for all m ∈ N.

Choose m1,k1 ∈N such that
∑
k≤k1

∥∥fk∥∥m−1/pk
1 > 1 (3.32)

and choose m2 >m1 and k2 > k1 such that
∑

k1<k≤k2

∥∥fk∥∥m−1/pk
2 > 2. (3.33)

Proceeding in this way, we can choosem1 <m2 < ··· , and 0= k1 < k2 < ··· such that
∑

ki−1<k≤ki

∥∥fk∥∥m−1/pk
i > i. (3.34)

Take xk in X with ‖xk‖ = 1 for all k,ki−1 < k≤ ki such that
∑

ki−1<k≤ki

∣∣fk(xk)∣∣m−1/pk
i > i ∀i∈N. (3.35)

Put y = (yk), yk =m−1/pk
i xk for ki−1 < k≤ ki, then y ∈ c0(X,p) and

∞∑
k=1

∣∣fk(yk)∣∣≥ ∑
ki−1<k≤ki

∣∣fk(xk)∣∣m−1/pk
i > i ∀i∈N. (3.36)

Hence we have
∑∞
k=1 |fk(yk)| =∞, which contradicts (3.31), therefore (fk)∈M0(X′,p).

This completes the proof.

Theorem 3.9. Let p = (pk) be a bounded sequence of positive real numbers. Then

c(X,p)β =M0(X′,p)∩cs[X′].
Proof. Since c(X,p) = c0(X,p) + E, where E = {e(x) : x ∈ X}, it follows by

Proposition 3.1(iii) and Theorem 3.8 that c(X,p)β = M0(X′,p)∩Eβ. It is obvious by

definition that Eβ = {(fk) ⊂ X′ :
∑∞
k=1fk(x) converges for all x ∈ X} = cs[X′]. Hence

we have the theorem.
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