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The B-dual of a vector-valued sequence space is defined and studied. We show that if an
X-valued sequence space E is a BK-space having AK property, then the dual space of E
and its B-dual are isometrically isomorphic. We also give characterizations of S-dual of
vector-valued sequence spaces of Maddox £(X,p), Y« (X,p), co(X,p), and c(X,p).
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1. Introduction. Let (X, ] -||) be a Banach space and p = (px) a bounded sequence
of positive real numbers. Let N be the set of all natural numbers, we write x = (xy)
with xy in X for all k € N. The X-valued sequence spaces of Maddox are defined as

colX,p) = {x = (xu): Jim ] = o

c(X,p) = {x = (xx) :’lim||xk—a|\p" =0 for some a eX};

(1.1)
Lo (X,p) = {x = (xx) :sgp||xk||”" < oo};

{(X,p) = {x = (xk): > ||k P* < oo}.
k=1

When X = K, the scalar field of X, the corresponding spaces are written as cy(p),
c(p), Lx(p), and L(p), respectively. All of these spaces are known as the sequence
spaces of Maddox. These spaces were introduced and studied by Simons [7] and
Maddox [3, 4, 5]. The space £(p) was first defined by Nakano [6] and is known as
the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the
spaces co(p), c(p), £(p), and {-(p) and has given characterizations of B-dual of
scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Kothe dual of the vector-valued sequence
space ¥, [ X1, where £,[X], 1 < p < o, is defined by

p[X] = {x = (xk): > |f(xk)|" < oo for each f eX’}. (1.2)
k=1

In this paper, the S-dual of a vector-valued sequence space is defined and studied
and we give characterizations of B-dual of vector-valued sequence spaces of Maddox
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L(X,p), Ls(X,p), co(X,p), and ¢ (X, p). Some results, obtained in this paper, are gen-
eralizations of some in [1, 3].

2. Notation and definitions. Let (X, | - [|) be a Banach space. Let W(X) and ®(X)
denote the space of all sequences in X and the space of all finite sequences in X,
respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-
valued sequence space. For x € E and k € N we write that x stand for the kth term
of x.For x € X and k € N, we let e® (x) be the sequence (0,0,0,...,0,x,0,...) with x in
the kth position and let e(x) be the sequence (x,x,x,...). For a fixed scalar sequence
u = (ug), the sequence space E,, is defined as

Ey ={x = (xx) € W(X) : (urxy) € E}. (2.1)

An X-valued sequence space E is said to be normal if (yy) € E whenever || yill <
Ixkll for all k € N and (xy) € E. Suppose that the X-valued sequence space E is
endowed with some linear topology 7. Then E is called a K-space if, for each k € N,
the kth coordinate mapping px : E — X, defined by py(x) = xy, is continuous on E. In
addition, if (E,T) is a Fréchet (Banach) space, then E is called an FK-(BK)-space. Now,
suppose that E contains ®(X), then E is said to have property AK if >7_; e®® (xy) — x
in E as n — o for every x = (xy) € E.

The spaces co(p) and c(p) are FK-spaces. In ¢y (X,p), we consider the function
g(x) = supy llxxIPk/M, where M = max{1,supy px}, as a paranorm on ¢o(X,p), and
it is known that ¢¢(X,p) is an FK-space having property AK under the paranorm g
defined as above. In £(X, p), we consider it as a paranormed sequence space with the
paranorm given by || (xx) |l = (X llxk|IPk) VM, It is known that £(X, p) is an FK-space
under the paranorm defined as above.

For an X-valued sequence space E, define its Kothe dual with respect to the dual
pair (X, X’) (see [2]) as follows:

E*lxx) = {(fk) CX': D | fulxk)| <00 Vx = (xi) EE}. (2.2)
k=1

In this paper, we denote E*|x x) by E® and it is called the «-dual of E.
For a sequence space E, the f-dual of E is defined by

EF = {(fk) cX': ifk(xk) converges V (xi) € E}. (2.3)
k=1

It is easy to see that EX < EA.
For the sake of completeness we introduce some further sequence spaces that will
be considered as B-dual of the vector-valued sequence spaces of Maddox:

My(X,p) = {x = (xk): D ||xk||M~1/Pk < o for some M € N};
k=1

M (X,p) = {x = (k) : D) |lxa|n'/Pe < 0 Y € N}:
k=1



ON B-DUAL OF VECTOR-VALUED SEQUENCE SPACES OF MADDOX 385

Oo(X,p) = {X— (xk): > ||xk]|"*M Pk < oo for some M € N}, pr>1VkEN;
k=1

cs[X'] = {(fk) CX': > fi(x) converges V x GX}.
k=1

(2.4)

When X = K, the scalar field of X, the corresponding first two sequence spaces are
written as My (p) and M« (p), respectively. These two spaces were first introduced by
Grosse-Erdmann [1].

3. Main results. We begin by giving some general properties of S-dual of vector-
valued sequence spaces.

PROPOSITION 3.1. Let X be a Banach space and let E, E1, and E» be X-valued se-
quence spaces. Then
(i) Exc EP.
(i) IfE, < E,, then Ef < EF.
(iii) IfE = Ey +E,, then Ef = EP nE5.
(iv) IfE is normal, then EX = EB.

PROOF. Assertions (i), (ii), and (iii) are immediately obtained by the definitions.
To prove (iv), by (i), it suffices to show only that Ef < E%. Let (fi) € Ef and x =
(xx) € E. Then >, fx(xy) converges. Choose a scalar sequence (f) with |tx| = 1
and fi (tgxk) = | fx(xx)| for all k € N. Since E is normal, (txxy) € E. It follows that
See1 | fx(xk)| converges, hence (fy) € EX. O

If E is a BK-space, we define a norm on E? by the formula

00

Se(xi) |- (3.1)
-1

I[(fi)llgs = sup
[I(xp) <1

k
It is easy to show that || - || is a norm on E5.

Next, we give a relationship between S-dual of a sequence space and its continuous
dual. Indeed, we need a lemma.

LEMMA 3.2. Let E be an X-valued sequence space which is an FK-space containing
®(X). Then for each k € N, the mapping Ty : X — E, defined by Ty x = eX(x), is contin-
uous.

PROOF. Let V = {eX(x) : x € X}. Then V is a closed subspace of E, so it is an
FK-space because E is an FK-space. Since E is a K-space, the coordinate mapping
pk 1V — X is continuous and bijective. It follows from the open mapping theorem
that py is open, which implies that p; 1. X — V is continuous. But since Ty = Pr 1 we
thus obtain that Ty is continuous. O

THEOREM 3.3. IfE is a BK-space having property AK, then EP and E' are isometri-
cally isomorphic.
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PROOF. We first show that for x = (xx) € E and f € E’,

Fx) =2 fle*(xx)). (3.2)
k=1
To show this, let x = (x}) € E and f € E’. Since E has property AK,
n
x=1im > e® (xp). (3.3)
k=1

By the continuity of f, it follows that
n [
fOo)=1im > f(e® (xi)) = 3 f(e™ (x1)), 3.4)
k=1 k=1

so (3.2) is obtained. For each k € N, let Ty : X — E be defined as in Lemma 3.2. Since
E is a BK-space, by Lemma 3.2, Ty is continuous. Hence f o Ty € X’ for all k € N. It
follows from (3.2) that

[

Fx)=> (foTi)(xk) Vx=(xx)€E. (3.5)
k=1
It implies, by (3.5), that (f o Tx)¢, € EP. Define @ : E' — E# by
@)= (foTi)r, VSfEE. (3.6)

It is easy to see that @ is linear. Now, we show that @ is onto. Let (fi) € EP. Define
f :E — K, where K is the scalar field of X, by

Fx)=> filxx) Vx=(xk)€E. (3.7)
k=1
For each k € N, let py be the kth coordinate mapping on E. Then we have

n

Z (fropi)( Z o pr) (x). (3.8)

Since fy and py are continuous linear, so is also continuous f o pi. It follows by Banach-
Steinhaus theorem that f € E’ and we have by (3.7) that; for each k € N and each
zeX, (foTy)(2) = f(e®(2)) = fx(z). Thus fo Ty = fi for all k € N, which implies
that @ (f) = (fx), hence @ is onto.

Finally, we show that @ is linear isometry. For f € E’, we have

£l = sup |f((xx))]

[[(xp) <1
= sup Zf(e"”(xk))‘ (by (3.2))
X I=1 | =1

> 3.9
= sup Z fFoTi)( (3.9)
Hx)I=1 | =1

=1(f o T) ey Il s

=l ()lgs-
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Hence @ is isometry. Therefore, @ : E’ — EP is an isometrically isomorphism from E’
onto EF. This completes the proof. a

We next give characterizations of B-dual of the sequence space £(X,p) when py > 1
for all k € N.

THEOREM 3.4. Let p = (px) be a bounded sequence of positive real numbers with
px> 1 forallk e N. Then £(X,p) = £o(X’',q), where q = (qx) is a sequence of positive
real numbers such that 1/px+1/qx =1 for all k € N.

PROOF. Suppose that (fi) € €o(X',q). Then >, Il fx %M~k < oo for some M € N.
Then for each x = (xx) € £(X,p), we have

S fel) | = i M PM o |
k=1 k=1

IA

Z (1fil "M~ 0TPi + M|

3

(3.10)

= 2 Al ™ m(a ”+MZ [l ¢
k_

k=1

= Z [ fil |0~ ‘”‘+MZHX1<H‘°"
k=1 k=1

< 0o,

which implies that >;_; fk(xk) converges, so (fx) € L(X,p)k.

On the other hand, assume that (fx) € £(X,p)#, then See1 Sk (xk) converges for
all x = (xg) € £(X,p). For each x = (xy) € £(X,p), choose scalar sequence (ty) with
[tx| = 1 such that fi(txxk) = | fx(xx)| for all k € N. Since (txxy) € £(X,p), by our
assumption, we have > ¢, fx (txXxx) converges, so that

S frlxk)| <o Vx e l(X,p). (3.11)
k=1

We want to show that (fx) € £o(X’,q), thatis, > 7, |l fx %M~ < o for some M € N.
If it is not true, then

DIl m % =00 Vm e N. (3.12)

It implies by (3.12) that for each k € N,

Sl %m % =0 ¥meN. (3.13)

i>k

By (3.12), let m; = 1, then there is a k; € N such that

DAl ®my ™ > 1. (3.14)

k<ky
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By (3.13), we can choose m» > m; and k, > k; with m, > 22 such that

> fil[Tmy ™ > 1. (3.15)
k1 <k<kp

Proceeding in this way, we can choose sequences of positive integers (k;) and (m;)

with1=ky <k; <k» <--- and m; <m, < - - -, such that m; > 2 and
> Al m > 1 (3.16)
ki_1<k=<k;

For each i € N, choose xj in X with ||xk|| =1 for all k € N, k;_; < k < k; such that

S felxw) [*fm; % >1 vieN. (3.17)
kl',]<kSkl'

Let a; = S, | <kek, |fi () [%m; ™. Put y = (yi), yi = a;'m; ™| fi(x) | %1 x for all
k € N with k;_, < k < k;. By using the fact that pyqx = px + qx and pi(qr—1) = qx for
all k € N, we have that for each i € N,

¢ - - - P
oo™ = X lartme ™ A |5 |
ki_1<kSki ki_1<k5kl’
_ Z a;Pkm;ﬁka |fk (xk) |Qk
ki1 <k=<k;
_ Z a;pkm;pkm;q" |fk (Xk) |‘Zk
ki1 <k=<k;
1 - - (3.18)
<a;'mit > m| filxa) [
ki1 <k=<k;

<a;'m;'a;
:mlfl

1

<50

so we have that >, lykllPk < 377, 1/2 < o0, Hence, v = () € £(X,p). For each
i € N, we have

X Medl= 3 [ilartm ™ fba) |5 ) |
kl',| <kSk1' ki*] <kSkl’
= > a'm ™ filx) |
ki_1<k<k; (319)
=a;' > m{ filx) |
ki y <k<k;
=1,

so that X7, | fx(»k)| = oo, which contradicts (3.11). Hence (fx) € £o(X’,q). The proof
is now complete. ]
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The following theorem gives a characterization of B-dual of £(X,p) when py < 1
for all k € N. To do this, the following lemma is needed.

LEMMA 3.5. Let p = (px) be a bounded sequence of positive real numbers. Then
&O(X,p) = Uzzlgw(x)(n’—]/pk),

PROOF. Let x € £ (X,p), then there is some n € N with || xx||”x < n for all k € N.
Hence ||x¢lln~1Pk < 1forall k € N, so that x € ls(X) (,-1/71,- On the other hand, if x €
U1l (X) (,-1/py ), then there are some n € N and M > 1 such that Ixklln=YPe < M
for every k € N. Then we have || xi|[Px < nMPk < nM* for all k € N, where & = supy, pk-
Hence x € o (X,p). O

THEOREM 3.6. Let p = (px) be a bounded sequence of positive real numbers with
pr<1forallk e N. Then(X,p)f =L (X',p).

PROOE. If (fi) € £(X,p)#, then >, fr(xk) converges for every x = (xy) €4(X,p),
using the same proof as in Theorem 3.4, we have

D filxr) | <o Vx = (xi) € L(X,p). (3.20)
k=1

If (f%) ¢ € (X', p), it follows by Lemma 3.5 that supy || fxllm~1/7k = « for all m € N.

Foreachi € N, choose sequences (m;) and (k;) of positive integers with m; <m, < - - -
. ~1/px,

and k; < k2 < --- such that m; > 2" and || fx, Im; Pi

llxk; Il = 1 such that

> 1. Choose xi, € X with

| fi, ) [y 740> (3.21)

—-1/pk.
Lety = (yx), yk=m; /p“xki if k = k; for some i, and 0 otherwise. Then > ;_; |k |IPk =
S l/mi <X, 1/2t =1, s0 that () € £(X,p) and

[Me

| =3 [ fia (™) |
i=1

k

1

“1/p, (3.22)

m; | fi, (xx;) |

Il
Me

1
o (by (3.21)),

~.
Il

and this is contradictory to (3.20), hence (fx) € £« (X', p).
Conversely, assume that (fx) € £« (X’,p). By Lemma 3.5, there exists M € N such
that supy || fx|IM~1/Pk < o0, so there is a K > 0 such that

I fill < KMYPx Wk e N. (3.23)

Let x = (xx) € £(X,p). Then there is a kg € N such that M7k ||x, || < 1 for all k > k.
By pr < 1 for all k € N, we have that, for all k > k),

MUPK || < (MUP] i )P = M| P (3.24)
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Then
© kO )
> fea) | = DA llllxl [+ X Ifl x|
k=1 k=1 k=ko+1
kO )
< SAdIxel[+K > MYPK||x]| by (3.23)
k=1 k=ko+1 (3.25)
ko =)
< D Al [+KM > [lxl[* by (3.24))
k=1 k=ko+1
< 00,
This implies that 3}, fi (xx) converges, hence (fi) € £(X,p)F. m)

THEOREM 3.7. Let p = (pk) be a bounded sequence of positive real numbers. Then
’gm(Xyp)B = Moo(X,;p)-

PROOF. If (fi) € M« (X',p), then X7 | fkllm!/Pk < oo for all m € N, we have that
for each x = (x¢) € Y~ (X,p), there is my € N such that ||xx| < mé/”" for all k e
N, hence S, |fi ()| < Sy Iflllixell < Sz I fellmg P < oo, which implies that
Sro1 fx(xy) converges, so that (fi) € £ (X, p)5.

Conversely, assume that (fx) € €« (X,p)?, then X7, fr(xk) converges for all x =
(xx) € Y~ (X,p), by using the same proof as in Theorem 3.4, we have

D frlxk)| <o Vx = (x¢) € 0w (X, p). (3.26)
k=1
If (fx) € Ms(X',p), then > 7, | fiIM'/Pk = oo for some M € N. Then we can choose a
sequence (k;) of positive integers with 0 = kg < k; < k> < - - - such that
S|l fil MYPE > i VieN, (3.27)
ki_1<k<k;

And we choose x in X with || x| = 1 such that for all i € N,

S| felxx) [ MVPE > (3.28)
ki_1<k<k;

Put y = (yx), Yk = M'/Pkxy. Clearly, v € £ (X,p) and

00

SIfc) =z > | felxw) |[MYPe > VieN. (3.29)
k=1 ki1 <k<k;

Hence Y5, | fx (k)| = oo, which contradicts (3.26). Hence (fx) € M« (X', p). The proof
is now complete. a

THEOREM 3.8. Let p = (px) be a bounded sequence of positive real numbers. Then
co(X,p)P = Mo(X',p).
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PROOF. Suppose (fi) € Mo(X',p), then X7 || frIM 1Pk < oo for some M € N. Let
x = (xx) € co(X,p). Then there is a positive integer Ky such that || xy||Px < 1/M for all
k = Ko, hence || x| < M~1/Pk for all k > K. Then we have

DS = D0 I fdlxell = D0 ILfellM~HPe < oo (3.30)

k=Ko k=Ko k=Ko

It follows that >;_; fx(xx) converges, so that (fi) € co(X,p)?.

On the other hand, assume that (fx) € co(X,p)?, then 3¢, fx(xx) converges for
all x = (xx) € co(X,p). For each x = (xx) € co(X,p), choose scalar sequence (ty) with
[tr| = 1 such that fi(txxk) = | fx(xk)| for all k € N. Since (trxy) € co(X,p), by our
assumption, we have > fi (txxy) converges, so that

D Sfilxr)| <0 Vx €co(X,p). (3.31)
k=1

Now, suppose that (fx) ¢ Mo(X',p). Then >p_; | fxllm=1/Pk = oo for all m € N.
Choose m1,k; € N such that

> fellmy P> 1 (3.32)
k<ky

and choose m;, > m and k; > k; such that

> fillmy > 2. (3.33)

ky <k=k>
Proceeding in this way, we can choose m; < my < ---,and 0 = k; < k» < - - - such that
S fllm P> (3.34)

ki_q1<k<k;

Take xy in X with || x|l =1 for all k,k;_1 < k < k; such that

S felxa) |m; > i vieN. (3.35)
ki_y <k=<k;

Put vy = (W), Yk = m[l/p"xk for ki1 <k <k;, then y € ¢o(X,p) and

Sl = > [ fla) [ m s VieN. (3.36)
k=1 ki1 <k<k;

Hence we have X2 | fk (k)| = oo, which contradicts (3.31), therefore (fi) € Mo (X', p).
This completes the proof. a

THEOREM 3.9. Let p = (py) be a bounded sequence of positive real numbers. Then
c(X,p)P =My(X',p) nes[X'].

PROOF. Since c(X,p) = co(X,p) + E, where E = {e(x) : x € X}, it follows by
Proposition 3.1(iii) and Theorem 3.8 that c(X,p)? = My(X’,p) n EP. It is obvious by
definition that E# = {(fy) c X" : > ko1 fk(x) converges for all x € X} = cs[X']. Hence
we have the theorem. O
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