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The problem of countably quasi-barrelledness of weighted spaces of continuous functions,
of which there are no results in the general setting of weighted spaces, is tackled in this
paper. This leads to the study of quasi-barrelledness of weighted spaces in which, unlike
that of Ernst and Schnettler (1986), though with a similar approach, we drop the assump-
tion that the weighted space has a fundamental sequence of bounded sets. The study of
countably quasi-barrelledness of weighted spaces naturally leads to definite results on the
weighted (DF)-spaces for those weighted spaces with a fundamental sequence of bounded
sets.
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1. Introduction and notations. The countably barrelledness, countably quasi-bar-

relledness, barrelledness, and quasi-barrelleness of the space C(X) of continuous

functions on a completely regular Hausdorff space X equipped with the compact open

topology (c-op), including when it is a (DF)-space and (gDF)-space, is well known (cf.

[7, 13]). In the more general setting of weighted spaces, Ernst and Schnettler [3] studied

the (gDF) and the quasi-barrelledness of weighted spaces by constructing a Nachbin

family on X which is based on the assumption that the weighted space has a fun-

damental sequence of bounded sets. A weighted space need not have a fundamental

system of bounded sets. There are classical examples of such spaces, for example,

let X be a noncompact locally compact and σ -compact space, and let C(X) be the

space of all continuous real-valued functions on X equipped with the compact-open

topology. C(X) is a weighted space [14], metrizable and not normable [11, Observa-

tion 10.1.25] and hence it does not have a fundamental sequence of bounded sets [6].

See also [10, page 9] for another example. Following the same approach, the count-

ably barrelledness and barrelledness of weighted spaces was studied in [10] without

assuming that the weighted space has a fundamental sequence of bounded sets. This

paper is a follow up of [10] although we have made it independent of it. We characterise

countably quasi-barrelled (Section 3) and quasi-barrelled (Section 4) weighted spaces

by a constructed Nachbin family on X without assuming that the spaces have a fun-

damental sequence of bounded sets. This approach makes the study of (DF)-weighted

spaces easy as it can be seen in Section 5. In Section 6, we show that every countably

quasi-barrelled weighted space satisfies the countable neighborhood property (cnp).

As an application, we recover the known results for the countably quasi-barrelled-

ness and quasi-barrelledness ofC(X) equipped with compact open topology (Corollary

3.10) and at the same time get new results for the space of bounded continuous
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functions on X equipped with the strict topology (cf. Corollaries 3.13 and 4.3). Also

[1, Theorem 1.8] on the (DF)-weighted inductive limits was recovered as a corollary to

Proposition 4.5.

We adopt the notation and definitions of weighted spaces (cf. [1, 3, 12]).

Let X denote, unless otherwise indicated, a completely regular Hausdorff space

and E, a normed linear space. F(X,E) is the vector space of all mappings from X to E,

C(X,E) is the vector subspace of all continuous mappings from X to E. B(X,E) is the

vector subspace of all mappings fromX into E such that f(X) is a bounded subset of E,

and B0(X,E) is the vector subspace of B(X,E) consisting of those bounded mappings

f from X into E that vanish at infinity, that is, those f ∈ B(X,E) such that, for any

ε > 0, there is a compact subset K ⊂X such that ‖f(x)‖ ≤ ε for every x ∈X outside of

K. The vector subspace C(X,E)∩B(X,E) is denoted by Cb(X,E), and C(X,E)∩B0(X,E)
is denoted by C0(X,E). The set Cc(X,E) denotes the subset of C(X,E) consisting of

those functions that are identically zero in E outside of some compact subset of X. If

each function is complex valued, we write the corresponding spaces omitting E.

A nonnegative real-valued upper semicontinuous function (usc) on X is called a

weight. If U and V are two sets of weights on X, we write U ≤ V whenever, given

u∈U , there is u, v ∈ V such that u≤ v (pointwise on X). We write U ∼ V if and only

if U ≤ V and V ≤ U . A set of weights V on X is said to be directed upwards if for v1,

v2 in V and every λ > 0, there is v ∈ V such that λvi ≤ v , i = 1,2. If a set of weights

V on X is directed upwards and V > 0, that is, if, given any x ∈X, there is v ∈ V with

v(x) > 0, then V will be referred to as a Nachbin family on X.

Let V be a Nachbin family on X such that, for every x ∈X, there is an f ∈ FV(X,E)
such that ‖f(x)‖≠ 0, then we define the following weighted spaces:

FV(X,E)= {f ∈ F(X,E) : (vf)(X) is bounded in E ∀v ∈ V},
FV0(X,E)=

{
f ∈ F(X,E) : vf vanishes at infinity ∀v ∈ V}. (1.1)

We consider FV(X,E) endowed with the locally convex topology wv defined by the

family of seminorms

pv(f)= sup
x∈X

v(x)
∥
∥f(x)

∥
∥, v ∈ V, (1.2)

with a basis of neighborhoods of the origin of the form

Vv =
{
f ∈ FV(X,E) : pv(f)≤ 1, v ∈ V}. (1.3)

Clearly FV0(X,E) is a closed subspace of FV(X,E).
Examples of those spaces are found in [13]. Furthermore, we will denote CV(X,E)

and CV0(X,E), respectively, as FV(X,E) ∩ C(X,E) and FV0(X,E) ∩ C(X,E) each

equipped with the topology induced by wv .

We recall that a subset M ⊂ FV(X,E) is full if

M = {f ∈ FV(X,E) : ‖f‖ ≤ µ}, µ(x)= sup
f∈M

∥
∥f(x)

∥
∥ ∀x ∈X. (1.4)



ON WEIGHTED SPACES WITHOUT A FUNDAMENTAL SEQUENCE . . . 451

In the sequel, we put a+∞=∞ for n∈R+∪∞, 1/∞= 0, 1/0=∞.

2. Preliminary lemmas. The following definitions are recalled for reference. For

the definitions of other terminologies mentioned below, see [4].

Definition 2.1. A subset of a locally convex space is called a barrel if it is abso-

lutely convex, absorbent, and closed.

Definition 2.2. A locally convex space E is called bornivorous if B absorbs all

bounded subsets of E.

Definition 2.3. A locally convex space is called barrelled (quasi-barrelled) if every

barrel (bornivorous barrel) is a neighborhood of zero.

The following lemma, which was proved by Bonet [1, Lemma 1.2] for CV(X,E), is

also true for FV(X,E).

Lemma 2.4. Let V be a Nachbin family on X for the weighted space FV(X,E) such

that v,w ∈ V , then, Vv ≤ Vw if and only if w(x)≤ v(x) for every x ∈X.

Following the argument of the proof of [14, Theorem 3.1], if X is a locally com-

pact space or V ≤ B0(X), then Lemma 2.4 holds for FV0(X,E) and thus we have the

following result.

Lemma 2.5. Let V be a Nachbin family on X for the weighted space FV0(X,E) such

that V ≤ B0(X) or X is locally compact. If v,w ∈ V , then Vv ≤ Vw if and only if w(x)≤
v(x) for every x ∈X.

The following lemma, which was proved for CV(X) in [3, Lemma 1.3], is also true for

FV(X,E), and of course true for any of the weighted spaces FV0(X,E) and CV0(X,E).

Lemma 2.6. Let {Mi, i∈N} be a sequence of full subsets of the space FV(X,E) and

µi(x) = supf∈Mi ‖f(x)‖. Then M = ⋂Mi is a full subset of FV(X,E) and M = {f ∈
FV(X,E) : ‖f(x)‖ ≤ infi µi(x)}.

The following lemmas are very important for our work.

Lemma 2.7. Let V be a Nachbin family on X and s an arbitrary function from X to

[0,∞] such that 1/s ∈ B0(X) and the set M = {f ∈ FV(X,E) : ‖f‖ ≤ s} is absorbent in

FV(X,E). Then M is bornivorous. Suppose that inff∈M ‖f(x)‖ is usc on X, then there

is a smallest weight vs > 1/s and M = Vvs .
Proof. In view of [3, Lemma 1.5], it is sufficient to show that M is bornivorous.

This is immediate since f ·1/s is bounded on X.

Similarly, in view of Lemma 2.5, we have the following lemma.

Lemma 2.8. Let V be a Nachbin family on X such that X is locally compact or V ≤
B0(X). If s is an arbitrary function from X to [0,∞] such that 1/s ∈ B0(X) and the

set M = {f ∈ FV0(X,E) : ‖f‖ ≤ s} is absorbent in FV0(X,E), then M is bornivorous.

Suppose that inff∈M ‖f(x)‖ is usc on X, then there is a smallest weight vs > 1/s and

M = Vvs .
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3. Countably quasi-barrelledness of weighted spaces

Definition 3.1. Let V be a Nachbin family on X, we define a new Nachbin family

V∗ on X by adjoining the smallest weights (including all their multiples) greater than

the suprema of all countable weights in V (with the condition that the suprema of all

such weights vanish at infinity) to V .

Lemma 3.2. Let V be a Nachbin family on X and let (vn)n be the set of all sequences

(vn) in V such that supnvn ∈ B0(X) for each (vn)∈ V . Let vs(n) be the smallest weight

greater than supnvn for each (vn)∈ V . Then V∗ is the system of all positive multiples

of vs(n) as (vn) runs through all sequences in V .

Remark 3.3. Suppose that U is a bornivorous barrel in FV(X,E) such that U =
⋂{Un, n∈N}, where each Un is a closed and absolutely convex neighborhood of zero

in FV(X,E). Then for each Un, there is a vn in V such that Vvn ∈Un and thus
⋂
Vvn ⊆⋂

Un. Vvn = {f ∈ FV(X,E) : ‖f(x)‖ ≤ 1/vn(x) for all x ∈ X}. Clearly,
⋂{Vvn, vn ∈

V} is absorbent. By Lemma 2.6,
⋂
Vvn = {f ∈ FV(X,E) : ‖f(x)‖ ≤ infn(1/vn(x))}.

If we set infn(1/vn) = s(n) and assume that the conditions in Lemma 2.7 are all

satisfied, then there is a smallest weight vs(n) greater than 1/s(n) and
⋂
Vvn = Vvs(n) .

Furthermore, if V ∼ V∗, vs(n) ∈ V∗ thus Vvs and hence U is a neighborhood of zero

in FV(X,E) = FV∗(X,E) and thus FV(X,E) is countably quasi-barrelled. Conversely,

assume that FV(X,E) is countably quasi-barrelled.

We show that V ∼ V∗ under the same conditions in the remark above. First, it is

clear that V ≤ V∗ from the construction of V∗. Also, since FV(X) is assumed to be

countably barrelled, then U = ⋂Un is a Wv neighborhood of zero. Hence there is a

v ∈ V such that Vv ⊆
⋂{Un, n ∈ N}. But since Vvs(n) =

⋂
Vvn ⊆

⋂
Un and vs(n) is the

smallest weight greater than 1/s(n) and in view of the fact that U is arbitrary, we

can choose v such that Vv ⊆ Vvs(n) and thus, by Lemma 2.7, vs(n) ≤ v . Hence, V∗ ≤ V .

Therefore V ∼ V∗, thus we have the following theorem.

Theorem 3.4. Let V be a Nachbin family on X such that supnvn ∈ B0(X) for each

(vn)∈ V and for every subsetM in FV(X,E), inff∈M ‖f(x)‖ is usc on X, then FV(X,E)
is countably quasi-barrelled if and only if V ∼ V∗.

Similarly, in view of Lemma 2.8, we have the following result.

Theorem 3.5. Let V be a Nachbin family on X such that supnvn ∈ B0(X) for each

(vn)∈ V . Assume that E is a normed linear space and either V ≤ B0(X) or X is locally

compact. If for every subset M in FV0(X,E), inff∈M ‖f(x)‖ is usc on X, then FV0(X,E)
is countably quasi-barrelled if and only if V ∼ V∗.

Consequently, the following results follow from Theorems 3.4 and 3.5 , respectively.

Proposition 3.6. Let V be a Nachbin family on X such that supnvn ∈ B0(X) for

each (vn)∈ V , then CV(X,E) is countably quasi-barrelled if and only if V ∼ V∗.

Proposition 3.7. Let V be a Nachbin family on X such that supnvn ∈ B0(X) for

each (vn) ∈ V . Assume that either V ≤ B0(X) or X is locally compact, then CV0(X,E)
is countably quasi-barrelled if and only if V ∼ V∗.
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The following definition is needed at this point.

Definition 3.8. A subset B of a topological space X is said to be F(X)-quasi-

compact if every function f in F(X,E) bounded on B is in B0(X,E).
Clearly, every F(X)-quasicompact set is F(X)-pseudocompact and the converse

need not be true.

Remark 3.9. It should be observed from the construction of V∗ that V ≤ V∗ is

always valid. Suppose that

V = χc(X)=
{
λχK : λ≥ 0 and K ⊂X, K is compact

}
, (3.1)

where χK is the characteristic function ofK. It is well known that CV0(X,E)= (C(X,E),
c-op). We show when V∗ ≤ V . This is true when every supvn∈V vn which vanishes

at infinity on X is in V , that is, supvn∈V vn is usc and also has a compact support.

Let vn ∈ V and assume that the compact support of vn is Kn for each n. Then

supvn∈V vn is bounded, and by assumption vanishes at infinity, on
⋃
Kn. Thus, in

view of Proposition 3.7, we have the following result.

Corollary 3.10. Let X be a completely regular Hausdorff space. Then (C(X,E),
c-op) is countably quasi-barrelled if and only if every F(X)-quasicompact subset of X,

which is a countable union of compact subsets of X, is compact.

The following example shows that an F(X)-pseudocompact set need not be F(X)-
quasicompact. LetW be the space of ordinals less than the first uncountable ordinals,

and let T be the Thychonov plank. Then T = (⋃∞n=1(W×n)). T is F(X)-pseudocompact

but not compact and hence C(T) is not countably barrelled [4, Example 4, page 142].

Also χT is bounded on T but is clearly not in B0(T). Hence T is not F(X)-quasicompact.

However, we are yet to construct an example of a countably quasi-barrelled space,

which is not countably barrelled, using the above result.

Remark 3.11. If X is a locally compact space and if E is a Banach space and

χc(X)≤ V , it is well known that CV0(X,E) is complete and since a complete countably

quasi-barrelled space is countably barrelled, then in view of Proposition 3.7, we have

conditions under which V∗ can also characterize countably barrelled weighted spaces

as shown in the next result.

Proposition 3.12. Let V be a Nachbin family on a locally compact space X such

that supnvn ∈ B0(X) for each (vn) ∈ V where E is a Banach space and χc(X) ≤ V ,

then the following are equivalent:

(i) CV0(X,E) is countably quasi-barrelled;

(ii) CV0(X,E) is countably barrelled;

(iii) V ∼ V∗.

(C(X,E), c-op) is countably barrelled if and only if every F(X)-pseudocompact sub-

set of X, which is a countable union of compact subsets of X, is compact [10, Corol-

lary 2.6]. Since (C(X,E), c-op) is complete, and a complete countably quasi-barrelled

space is countably barrelled, then as a consequence of Proposition 3.12, we have the

following result.
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Corollary 3.13. Let X be a locally compact space and E a Banach space. Then the

following are equivalent:

(i) (C(X,E), c-op) is countably quasi-barrelled;

(ii) (C(X,E), c-op) is countably barrelled;

(iii) every F(X)-pseudocompact subset of X, which is a countable union of compact

subsets of X, is compact;

(iv) every F(X)-quasicompact subset of X, which is a countable union of compact

subsets of X, is compact;

(v) V ∼ V∗.

Consequently, Corollary 3.13 gives a condition as to when an F(X)-pseudocompact

set in X is F(X)-quasicompact.

Corollary 3.14. Let X be a locally compact space and E a Banach space. If

(C(X,E), c-op) is countably quasi-barrelled, then every F(X)-pseudocompact is F(X)-
quasi-compact.

Remark 3.15. We now consider the countably quasi-barrelledness of Cb(X,E)
equipped with the strict topology (β). Since V ∼ B0(X) is the defining Nachbin family

on X for β, in view of Proposition 3.7, we show when V∗ ≤ V . It is sufficient to show

when supvn∈V vn is usc. This is the case when the countable union of closed sets in X
is closed. Thus we have the following result.

Corollary 3.16. Let X be a completely regular Hausdorff space. Then (Cb(X,E),β)
is countably quasi-barrelled if and only if every countable union of closed sets in X
is closed.

If E is complete and X is a locally compact space, it is well known that (Cb(X,E),β)
is complete. The fact that (Cb(X,E),β) is countably barrelled if and only if every

countable union of compact sets in X is relatively compact [10, Corollary 2.8] coupled

with the fact that a complete countably quasi-barrelled space is countably barrelled,

gives the following result as a consequence of Corollary 3.16.

Corollary 3.17. Let X be a locally compact space and E a Banach space. Then the

following are equivalent:

(i) (Cb(X,E),β) is countably quasi-barrelled;

(ii) (Cb(X,E),β) is countably barrelled;

(iii) every countable union of closed sets in X is closed;

(iv) every countable union of compact sets in X is relatively compact.

Remark 3.18. Thus if X is a metrizable locally compact space and E is a Banach

space, then (Cb(X,E),β) is countably quasi-barrelled and also countably barrelled.

The following example, taken from [2], which we use to show that a countably

quasi-barrelled space need not be countably barrelled, was communicated to us by Ian

Tweddle. The ordinary l∞(S) (S = positive integers) is just the bounded (continuous)

functions on the discrete space N of natural numbers. According to Collins, its dual

under the strict topology is l1. The closed unit ball of l1 is separable and bounded

for the pairing of l∞ and l1, and if l∞ is countably barrelled under the strict topology,

the closed unit ball of l1 is equicontinuous and so, being closed, it is weakly compact
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for the weak topology defined by l∞, which is false, since l1 is not reflexive under the

weak topology. So l∞ is not countably barrelled but it is countably quasi-barrelled by

Corollary 3.16.

4. Quasi-barrelledness of weighted spaces. In view of the fact that a separable or

metrizable countably quasi-barrelled space is quasi-barrelled, the quasi-barrelledness

of CV(X,E) and CV0(X,E) follow from Propositions 3.6 and 3.7, respectively. Thus

we have the following results.

Proposition 4.1. Let V be a Nachbin family on X such that supnvn ∈ B0(X) for

each (vn)∈ V . If CV(X,E) is metrizable or separable, then CV(X,E) is quasi-barrelled

if and only if V ∼ V∗.

Proposition 4.2. Let V be a Nachbin family on X such that supnvn ∈ B0(X) for

each (vn) ∈ V . Assume that either V ≤ B0(X) or X is locally compact. If CV0(X,E) is

separable or metrizable, then CV0(X,E) is quasi-barrelled if and only if V ∼ V∗.

Conditions under which weighted spaces are metrizable or separable are well

known. For example, see [8, 9].

Specifically, we have the following result.

Corollary 4.3. Let X be separably submetrizable, then the following are equiva-

lent:

(i) (Cb(X,E),β) is countably quasi-barrelled;

(ii) every countable union of closed sets in X is closed;

(iii) (Cb(X,E),β) is quasi-barrelled.

Proof. The proof is easy in view of Corollary 3.16 and the fact that ifX is separably

submetrizable, then (Cb(X,E),β) is separable, see [9].

For the definition of separably submetrizable, see [9] or [10].

Remark 4.4. There are other conditions for which a weighted countably quasi-

barrelled space is quasi-barrelled. For example if the separability or metrizability con-

dition on CV(X,E) and CV0(X,E) in Propositions 4.1 and 4.2 is replaced with the

condition that the weighted spaces have a bounded absorbing sequence of metriz-

able subsets (see [4, Corollary 9, page 137]). Of particular importance of this result is

its application to the study of countably quasi-barrelled inductive limits of weighted

spaces, which leads to results of special interest.

Let � = (vn,n = 1,2, . . .) be a decreasing sequence of strictly positive continu-

ous weights on X. Vn is a system of weights (avn, a > 0) for each n and we write

C(vn)(X,E) and C(vn)0(X,E) instead of C(Vn)(X,E) and C(Vn)0(X,E), respectively.

Denote the weighted inductive limit as

�C(X,E)= ind
(
C
(
vn
)
(X,E), n= 1,2, . . .

)
,

�0C(X,E)= ind
(
C
(
vn
)

0(X,E), n= 1,2, . . .
)
.

(4.1)

Define the following system of weights associated to � as V̄ = {v̄ : X → R : v̄ is a

weight on X such that v̄/vn is bounded from above on X for each n}.
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The weights of the form v(t) = inf(a(n)vn(t) : n = 1,2, . . .) constitute a directed

fundamental family of members of V̄ . If X is locally compact then �0C(X,E) is a

dense topological subspace of CV̄0(X,E), and if E is complete then CV̄0(X,E) is the

completion of �0C(X,E). Similarly CV̄(X,E)=�C(X,E) algebraically. Those are well

known, for example see [11].

We show the conditions under which V̄∗ ∼ V̄ . It is sufficient to show when V̄∗ ≤ V̄ .

Let v̄p = infn∈Nα
p
nvn ∈ V̄ and assume supp∈N v̄p ∈ B0(X)

sup
p∈N

v̄p = sup
p∈N

inf
n∈N

αpnvn = inf
n∈N

sup
p∈N

αpnvn. (4.2)

Set supp∈Nα
p
n = λn. Since supp∈N v̄p ∈ B0(X), λn is finite and hence

sup
p∈N

v̄p = inf
n∈N

λnvn ∈ V̄ . (4.3)

If for every v̄ ∈ V̄ there is a continuous weight ṽ ∈ V̄ such that v̄ ≤ ṽ , then it is clear

that V̄∗ ≤ V̄ . SinceCV̄(X,E) andCV̄0(X,E) each have a bounded absorbing sequence of

metrizable subsets C(vn)(X,E) and C(vn)0(X,E), respectively. In view of Remark 4.4,

Propositions 4.1 and 4.2, respectively, give the following.

Proposition 4.5. Let X be a completely regular Hausdorff space and �=(vn) a

sequence of continuous weights on X such that (vn)∈ B0(X). If for every v̄ ∈ V̄ , there

is a continuous weight ṽ ∈ V̄ such that v̄ ≤ ṽ , then CV̄(X,E) is quasi-barrelled.

Proposition 4.6. Let X be a locally compact space and � = (vn) a sequence of

continuous weights onX such that (vn)∈ B0(X). If for every v̄ ∈ V̄ , there is a continuous

weight ṽ ∈ V̄ such that v̄ ≤ ṽ , then CV̄0(X,E) is quasi-barrelled.

5. (DF)-weighted spaces. A countably quasi-barrelled space with a fundamental

sequence of bounded sets is a (DF)-space. Thus all our results on countably quasi-

barrelled weighted spaces and quasi-barrelled weighted spaces are also true for (DF)-

weighted spaces provided that those spaces have a fundamental sequence of bounded

sets. Thus for example, according to Corollary 3.16, if X is a completely regular Haus-

dorff space, then (Cb(X,E),β) is a (DF)-space if and only if every countable union of

closed sets in X is closed. If X = R, (Cb(X,E),β) is then not a (DF)-space and thus a

(gDF)-(Cb(X,E),β) need not be a (DF)-space [5, pages 266, 269]. Of special interest is

Proposition 4.5. Since CV̄(X,E) has a fundamental sequence of bounded sets, then,

under the assumptions in the proposition, CV̄(X,E) is also a (DF)-space. This, in the

light of application, is exactly [1, Theorem 1.8] and of course the main result in that

paper with a more technical proof. Thus the results, which are true for quasi-barrelled

CV̄(X,E), are also true for countably quasi-barrelled or (DF)-CV̄(X,E).

6. Countable neighborhood property (cnp). A space E is said to satisfy the cnp if,

given any sequence (Un, n = 1,2, . . .) of zero neighborhoods in E, there is a(n) > 0

such that U = ⋂a(n)Un : n = 1,2, . . . is a neighborhood of zero (see [11, Definition

8.3.4]). In view of Propositions 3.6 and 3.7, a close observation of the construction of

V∗ in Remark 3.3 gives, respectively, the following results which are generalizations

of [11, Proposition 8.3.5].
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Proposition 6.1. Let V be a Nachbin family on a completely regular Hausdorff

space X such that supnvn ∈ B0(X) for each (vn)∈ V , then a countably quasi-barrelled

CV(X,E) satisfies cnp.

Proposition 6.2. Let V be a Nachbin family on X such that supnvn ∈ B0(X) for

each (vn) ∈ V . If either V ≤ B0(X) or X is locally compact, then a countably quasi-

barrelled CV0(X,E) satisfies cnp.
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