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1. Introduction. In [8, 9, 10], Ying introduced the concept of fuzzifying topology

with the semantic method of continuous valued logic. All the conventions in [8, 9, 10]

are good in this paper. Andrijevíc [3] introduced the concepts of b-open sets in general

topology. We note that the concepts of γ-open sets and γ-continuity are considered

by Hanafy [4] to fuzzy topology. In [7], the concepts of fuzzy γ-open sets and fuzzy

γ-continuity are introduced and studied in fuzzifying topology. In the present paper,

we define and study the concepts of cγ-open sets and cγ-continuity in fuzzifying

topology. The main purpose of the present paper is to obtain decompositions of fuzzy

continuity in fuzzifying topology by making use of fuzzy γ-continuity and fuzzy cγ-

continuity.

2. Preliminaries. We present the fuzzy logical and corresponding set theoretical

notations due to Ying [8, 9].

For any formulae ϕ, the symbol [ϕ] means the truth value of ϕ, where the set of

truth values is the unit interval [0,1]. We write �ϕ if [ϕ]= 1 for any interpretation.

The original formulae of fuzzy logical and corresponding set theoretical notations are

(1) (a) [α]=α(α∈ [0,1]);
(b) [ϕ∧ψ] :=min([ϕ],[ψ]);
(c) [ϕ→ψ] :=min(1,1−[ϕ]+[ψ]).

(2) If A∈�(X), [x ∈ Ã] := Ã(x).
(3) If X is the universe of discourse, [∀xϕ(x)] := infx∈X[ϕ(x)].
In addition the following derived formulae are given:

(1) [¬ϕ] := [ϕ→ 0]= 1−[ϕ];
(2) [ϕ∨ψ] := [¬(¬ϕ∧¬ψ)] :=max([ϕ],[ψ]);
(3) [ϕ↔ψ] := [(ϕ→ψ)∧(ψ→ϕ)];
(4) [ϕ∧· ψ] := [¬(ϕ→¬ψ)] :=max(0,[ϕ]+[ψ]−1);
(5) [ϕ∨̇ψ] := [¬ϕ→ψ]= [¬(¬ϕ∧· ¬ψ)]=min(1,[ϕ]+[ψ]);
(6) [∃xϕ(x)] := [¬∀x¬ϕ(x)]= supx∈X[ϕ(x)];
(7) if Ã, B̃ ∈�(X), then
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(a) [Ã⊆ B̃] := [∀x(x ∈ Ã→ x ∈ B̃)]= infx∈Xmin(1,1−Ã(x)+ B̃(x));
(b) [Ã≡ B̃] := [(Ã⊆ B̃)∧(B̃ ⊆ Ã)];
(c) [Ã ≡̇ B̃] := [(Ã⊆ B̃)∧· (B̃ ⊆ Ã)],

where �(X) is the family of all fuzzy sets in X.

We do not often distinguish the connectives and their truth value functions and

state strictly our results on formalization as Ying does. We now give the following

definitions and results in fuzzifying topology which are used in the sequel.

Definition 2.1 (see [8]). Let X be a universe of discourse, P(X) the family of

subsets of X, and τ ∈�(P(X)) satisfy the following conditions:

(1) τ(X)= 1, τ(∅)= 1;

(2) for any A, B, τ(A∩B)≥ τ(A)∧τ(B);
(3) for any {Aλ : λ∈Λ}, τ(∪λ∈∧Aλ)≥

∧
λ∈∧τ(Aλ).

Then τ is called a fuzzifying topology and (X,τ) is a fuzzifying topological space.

Definition 2.2 (see [8]). The family of fuzzifying closed sets, denoted by F ∈
�(P(X)), is defined as A∈ F :=X ∼A∈ τ , where X ∼A is the complement of A.

Definition 2.3 (see [8]). Let x ∈ X. The neighborhood system of x, denoted by

Nx ∈�(P(X)), is defined as Nx(A)= supx∈B⊆Aτ(B).

Definition 2.4 (see [8, Lemma 5.2]). The closure Ā of A is defined as Ā(x) =
1−Nx(X ∼A).

In [8, Theorem 5.3], Ying proved that the closure ¯: P(X) → �(X) is a fuzzify-

ing closure operator (see [8, Definiton 5.3]) since its extension¯: �(X) → �(X), ¯̃A =
∪α∈[0,1]α ¯̃Aα, Ã∈�(X) satisfies the following Kuratowski closure axioms:

(1) � ∅̄ ≡∅;

(2) for any Ã∈�(X), � Ã⊆ ¯̃A;

(3) for any Ã, B̃ ∈�(X), � Ã∪ B̃ ≡ ¯̃A∪ ¯̃B;

(4) for any Ã∈�(X), � ( ¯̃A)⊆ ¯̃A,

where Ãα = {x : Ã(x)≥α} is the α-cut of A and αÃ(x)=α∧Ã(x).
Definition 2.5 (see [9]). For any A ∈ P(X), the interior of A, denoted by A◦ ∈

�(P(X)), is defined as follows: A◦(x)=Nx(A).
From [8, Lemma 3.1] and the definitions of Nx(A) and A◦ for A ∈ P(X) we have

τ(A)= infx∈AA◦(x).

Definition 2.6 (see [5]). For any Ã∈�(X), � (Ã)◦ ≡X ∼ (X ∼ Ã).
Lemma 2.7 (see [5]). If [Ã⊆ B̃]= 1, then

(1) � ¯̃A⊆ ¯̃B;

(2) � (Ã)◦ ⊆ (B̃)◦.
Lemma 2.8 (see [5]). Let (X,τ) be a fuzzifying topological space. For any Ã, B̃;

(1) �X◦ =X;

(2) � (Ã)◦ ⊆ Ã;

(3) � (Ã∩ B̃)◦ ≡ (Ã)◦∩(B̃)◦;
(4) � (Ã)◦◦ ⊇ (Ã)◦.
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Lemma 2.9 (see [5]). Let (X,τ) be a fuzzifying topological space. For any Ã∈�(X),
(1) �X ∼ (Ã)◦− ≡ (X ∼ Ã)−◦;
(2) �X ∼ (Ã)−◦ ≡ (X ∼ Ã)◦−.

Lemma 2.10 (see [2, 5]). If [Ã⊆ B̃]= 1, then

(1) � (Ã)◦− ⊆ (B̃)◦−;

(2) � (Ã)−◦ ⊆ (B̃)−◦.

Definition 2.11. Let (X,τ) be a fuzzifying topological space.

(1) The family of fuzzifying cα-open [6] (resp., csemi-open [5], cpre-open [2], cβ-

open [1]) sets, denoted by cατ (resp., cSτ , cPτ , cβτ)∈�(P(X)), is defined as follows:

A∈ cατ (resp., cSτ , cPτ , cβτ):=∀x(x ∈A∩A◦−◦(resp., A∩A◦−,A∩A−◦,A∩A−◦−)→
x ∈A◦).

(2) The family of fuzzifying cα-closed [6] (resp., csemi-closed [5], cpre-closed [2],

cβ-closed [1]) sets, denoted by cαF (resp., cSF , cPF , cβF ) ∈ �(P(X)), is defined as

follows: A∈ cαF (resp., cSF , cPF , cβF ) :=X ∼A∈ cατ (resp., cSτ , cPτ , cβτ).

Definition 2.12 (see [10]). Let (X,τ) be a fuzzifying topological space.

(1) The family of fuzzifying γ-open sets, denoted by γτ ∈ �(P(X)), is defined as

follows: A∈ γτ :=∀x(x ∈A→ x ∈A◦−∪A−◦),
(2) The family of fuzzifying γ-closed sets, denoted by γF ∈�(P(X)), is defined as

follows: A∈ γF :=X ∼A∈ γτ ,

(3) Let (X,τ), (Y ,U) be two fuzzifying topological spaces. A unary fuzzy predicate

γC ∈ �(YX) called fuzzy γ-continuity, is given as γC(f) := ∀u (u ∈ U → f−1(u) ∈
γτ).

Lemma 2.13 (see [7]). (1) � τ ⊆ γτ ; (2) � F ⊆ γF .

Definition 2.14 (see [10]). Let (X,τ) and (Y ,U) be two fuzzifying topological

spaces. A unary fuzzy predicate C ∈�(YX) called fuzzy continuity, is given as C(f) :=
∀u (u∈U → f−1(u)∈ τ).

3. Fuzzifying cγ-open sets

Definition 3.1. Let (X,τ) be a fuzzifying topological space.

(1) The family of fuzzifying cγ-open sets, denoted by cγτ ∈�(P(X)), is defined as

A∈ cγτ :=∀x (x ∈A∩(A◦−∪A−◦)→A◦).
(2) The family of fuzzifying cγ-closed sets, denoted by cγF ∈ �(P(X)), is defined

as A∈ cγF :=X ∼A∈ cγτ .

Lemma 3.2. For any α,β,γ,δ∈ I, (1−α+β)∧(1−γ+δ)≤ 1−(α∧γ)+(β∧δ).

Theorem 3.3. Let (X,τ) be a fuzzifying topological space, then

(1) cγτ(X)= 1, cγτ(∅)= 1;

(2) cγτ(A∩B)≥ cγτ(A)∧cγτ(B).

Proof. The proof of (1) is straightforward.
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(2) From Lemma 3.2, we have

cγτ(A)∧cγτ(B)
= inf
x∈A

(
1−(A◦−∪A−◦)(x)+A◦(x))∧ inf

x∈B
(
1−(B◦−∪B−◦)(x)+B◦(x))

= inf
x∈A∩B

((
1−(A◦−∪A−◦)(x)+A◦(x))∧(1−(B◦−∪B−◦)(x)+B◦(x)))

≤ inf
x∈A∩B

(
1−((A◦−∪A−◦)∩(B◦−∪B−◦))(x)+(A◦∩B◦)(x))

≤ inf
x∈A∩B

(
1−((A∩B)◦−∪(A∩B)−◦)(x)+(A∩B)◦(x))= cγτ(A∩B).

(3.1)

Theorem 3.4. Let (X,τ) be a fuzzifying topological space, then

(1) cγF(X)= 1, cγF(∅)= 1;

(2) cγF(A∪B)≥ cγF(A)∧cγF(B).
Proof. From Theorem 3.3 the proof is obtained.

Theorem 3.5. Let (X,τ) be a fuzzifying topological space, then

(1) (a) � τ ⊆ cατ ; (b) � cPτ ⊆ cατ ; (c) � cSτ ⊆ cατ ; (d) � cγτ ⊆ cSτ ; (e) � cγτ ⊆
cPτ ; (f) � cβτ ⊆ cγτ ; (g) � τ ⊆ cγτ .

(2) (a) � F ⊆ cαF ; (b) � cPF ⊆ cαF ; (c) � cSF ⊆ cαF ; (d) � cγF ⊆ cSF ; (e) � cγF ⊆
cPF ; (f) � cβF ⊆ cγF ; (g) � F ⊆ cγF .

Proof. From the properties of the interior and closure operations and [9, Theo-

rem 2.2(3)],

(1) (a) [A∈ τ]= [A⊆A◦]≤ [A∩A◦−◦ ⊆A◦]= [A∈ cατ];
(b) [A∈ cPτ]= [A∩A−◦ ⊆A◦]≤ [A∩A◦−◦ ⊆A◦]= [A∈ cατ];
(c) [A∈ cSτ]= [A∩A◦− ⊆A◦]≤ [A∩A◦−◦ ⊆A◦]= [A∈ cατ];
(d) cγτ(A) = infx∈A(1−max(A◦−(x),A−◦(x))+A◦(x)) ≤ infx∈A(1−A◦−(x)+

A◦(x))= cSτ(A);
(e) cγτ(A) = infx∈A(1−max(A◦−(x),A−◦(x))+A◦(x)) ≤ infx∈A(1−A−◦(x)+
A◦(x))= cPτ(A);

(f) cβτ(A) = infx∈A(1−A−◦−(x)+A◦(x)) ≤ infx∈A(1−max(A◦−(x),A−◦(x))+
A◦(x))= cγτ(A);

(g) [A∈ τ]= [A⊆A◦]≤ [A∩(A−◦∪A◦−)⊆A◦]= [A∈ cγτ].
(2) The proof is obtained from (1).

Remark 3.6. In crisp setting, that is, in case that the underlying fuzzifying topol-

ogy is the ordinary topology, we have

�A∈ γτ∧A∈ cγτ �→A∈ τ. (3.2)

Of course the implication “→” in (3.2) is either the Lukaciewicz’s implication or the

Boolean’s implication since these implications are identical in crisp setting. But in

fuzzifying setting the statement (3.2) may not be true as illustrated by the following

counterexample.

Counterexample 3.7. Let X = {a,b,c} and let τ be a fuzzifying topology on X
defined as follows: τ(X) = τ(∅) = τ({a}) = τ({a,c}) = 1; τ({b}) = τ({a,b}) = 0;

and τ({c})= τ({b,c})= 1/8. From the definitions of the interior and the closure of a
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subset of X and the interior and the closure of a fuzzy set of X we have the following:

γτ({a,b})= 7/8, cγτ({a,b})= 1/8.

Theorem 3.8. Let (X,τ) be a fuzzifying topological space.

(1) �A∈ τ → (A∈ γτ∧A∈ cγτ);
(2) if [A∈ γτ]= 1 or [A∈ cγτ]= 1, then �A∈ τ ↔ (A∈ γτ∧A∈ cγτ).

Proof. (1) This follows from Theorem 3.5(g) and Lemma 2.13(1).

(2) Assume that [A∈ γτ]= 1, then for each x ∈A, we have max(A◦−(x),A−◦(x))=
1 and so for each x ∈A, 1−max(A◦−(x),A−◦(x))+A◦(x)=A◦(x). Thus, [A∈ γτ]∧
[A ∈ cγτ] = [A ∈ cγτ] = infx∈A(1−max(A◦−(x),A−◦(x))+A◦(x)) = infx∈AA◦(x) =
[A∈τ]. Now, assume that [A∈cγτ]=1, then for eachx∈A, 1−max(A◦−(x),A−◦(x))+
A◦(x)= 1 and so for each x ∈A, max(A◦−(x),A−◦(x))=A◦(x).

Thus,

[A∈ γτ]∧[A∈ cγτ]
= [A∈ γτ]= inf

x∈A
max

(
A◦−(x),A−◦(x)

)= inf
x∈A
A◦(x)= [A∈ τ]. (3.3)

Theorem 3.9. Let (X,τ) be a fuzzifying topological space. Then � (A ∈ γτ∧· A ∈
cγτ)→A∈ τ .

Proof.

[A∈ γτ∧· A∈ cγτ]
= inf
x∈A

max
(
A◦−(x),A−◦(x)

)∧· inf
x∈A

(
1−max

(
A◦−(x),A−◦(x)

)+A◦(x))

=max
(
0, inf
x∈A

max
(
A◦−(x),A−◦(x)

)+ inf
x∈A

(
1−max

(
A◦−(x),A−◦(x)

)+A◦(x))−1
)

≤ inf
x∈A
A◦(x)= [A∈ τ].

(3.4)

4. Fuzzifying cγ-neighborhood structure

Definition 4.1. Let x∈X. The cγ-neighborhood system of x, denoted by cγNx ∈
�(P(X)), is defined as cγNx(A)= supx∈B⊆A cγτ(B).

Theorem 4.2. A mapping cγN :X →�N(P(X)), x→ cγNx , where �N(P(X)) is the

set of all normal fuzzy subsets of P(X), has the following properties:

(1) �A∈ cγNx → x ∈A;

(2) �A⊆ B→ (A∈ cγNx → B ∈ cγNx);
(3) �A∈ cγNx∧B ∈ cγNx →A∩B ∈ cγNx .

Conversely, if a mapping cγN satisfies (2) and (3), then cγN assigns a fuzzifying topol-

ogy on X which is denoted by τcγN ∈�(P(X)) and defined as

A∈ τcγN :=∀x (x ∈A→A∈ cγNx). (4.1)

Proof. (1) If [A ∈ cγNx] = supx∈H⊆A cγτ(H) > 0, then there exists H◦ such that

x ∈H◦ ⊆A. Now, we have [x ∈A]= 1. Therefore, [A∈ cγNx]≤ [x ∈A] always holds.
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(2) The proof is immediate.

(3) From Theorem 3.3(2), we have

[
A∩B ∈ cγNx

]= sup
x∈H⊆A∩B

cγτ(H)= sup
x∈H1⊆A,
x∈H2⊆B

cγτ
(
H1∩H2

)

≥ sup
x∈H1⊆A,
x∈H2⊆B

cγτ
(
H1
)∧cγτ(H2

)

= sup
x∈H1⊆A

cγτ
(
H1
)∧ sup

x∈H2⊆B
cγτ

(
H2
)

= [A∈ cγNx∧B ∈ cγNx].

(4.2)

Conversely, we need to prove that τcγN(A)= infx∈A cγNx(A) is a fuzzifying topol-

ogy. From [8, Theorem 3.2] and since τcγN satisfies properties (2) and (3), τcγN is a

fuzzifying topology.

Theorem 4.3. Let (X,τ) be a fuzzifying topological space. Then � cγτ ⊆ τcγN .

Proof. Let B∈P(X); τcγN(B)= infx∈B cγNx(B)= infx∈B supx∈A⊆B cγτ(A)≥cγτ(B).

5. Fuzzifying cγ-derived sets, fuzzifying cγ-closure, and fuzzifying

cγ-interior

Definition 5.1. Let (X,τ) be a fuzzifying topological space. The fuzzifying cγ-

derived set of A, denoted by cγ-d∈�(P(X)), is defined as

cγ-d(A)= inf
B∩(A−{x})=∅

(
1−cγNx(B)

)
. (5.1)

Lemma 5.2. cγ-d(A)(x)= 1−cγNx((X ∼A)∪{x}).
Proof. From Theorem 4.2(2), we have

cγ-d(A)= 1− sup
B∩(A−{x})=∅

cγNx(B)

= 1− sup
B⊆((X∼A)∪{x})

cγNx(B)

= 1−cγNx
(
(X ∼A)∪{x}).

(5.2)

Theorem 5.3. For any A,�A∈ FτcγN ↔ cγ-d(A)⊆A.

Proof. From Lemma 5.2, we have

[
cγ-d(A)⊆A]= inf

x∈X∼A
(
1−cγ-d(A)(x)

)= inf
x∈X∼A

cγNx
(
(X ∼A)∪{x})

= inf
x∈X∼A

cγNx
(
(X ∼A))= [X ∼A∈ τcγN]= [A∈ FτcγN]. (5.3)

Definition 5.4. Let (X,τ) be a fuzzifying topological space. The cγ-closure of A
is denoted and defined as follows: cγ-cl(A)(x)= infx �∈B⊇A(1−cγF(B)).
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Theorem 5.5. (1) cγ-cl(A)(x)= 1−cγNx(X ∼A);
(2) � cγ-cl(∅)≡∅;

(3) �A⊆ cγ-cl(A).

Proof. (1) cγ-cl(A)(x)= infx �∈B⊇A(1−cγF(B))= infx∈X∼B⊆X∼A(1−cγτ(X ∼ B))=
1−supx∈X∼B⊆X∼A cγτ(X ∼ B)= 1−cγNx(X ∼A).

(2) cγ-cl(∅)(x)= 1−cγNx(X ∼∅)= 0.

(3) It is clear that for any A ∈ P(X) and any x ∈ X, if x �∈ A, then cγNx(A) = 0. If

x ∈A, then cγ-cl(A)(x)=1−cγNx(X ∼A)=1−0=1. Then [A⊆ cγ-cl(A)]=1.

Theorem 5.6. For any x and A;

(1) � cγ-cl(A)≡ cγ-d(A)∪A;

(2) � x ∈ cγ-cl(A)↔∀B (B ∈ cγNx →A∩B ≠ϕ);
(3) �A≡ cγ-cl(A)↔A∈ FτcγN .

Proof. (1) Applying Lemma 5.2 and Theorem 5.5(3), we have

x ∈ cγ-d(A)∪A=max
(
1−cγNx

(
(X ∼A)∪{x}),A(x))= cγ-cl(A)(x). (5.4)

(2) [∀B (B ∈ cγNx → A∩B ≠∅)] = infB⊆X∼A(1−cγNx(B)) = 1−cγNx(X ∼ A) =
[x ∈ cγ-cl(A)].

(3) From Theorem 5.5(1), we have

[
A≡ cγ-cl(A)

]= inf
x∈X∼A

(
1−cγ-cl(A)(x)

)

= inf
x∈X∼A

cγNx(X ∼A)=
[
(X ∼A)∈ FτcγN

]= [A∈ τcγN]. (5.5)

Theorem 5.7. For any A and B, � B≡̇cγ-cl(A)→ B ∈ FτcγN .

Proof. If [A ⊆ B] = 0, then [B≡̇cγ-cl(A)] = 0. Now, we suppose [A ⊆ B] = 1,

then we have [B ⊆ cγ-cl(A)] = 1− supx∈B∼A cγNx(X ∼ A) and [cγ-cl(A) ⊆ B] =
infx∈X∼B cγNx(X ∼A). So,

[
B≡̇cγ-cl(A)

]=max
(

0, inf
x∈X∼B

cγNx(X ∼A)− sup
x∈B∼A

cγNx(X ∼A)
)
. (5.6)

If [B≡̇cγ-cl(A)] > t, then infx∈X∼B cγNx(X ∼A) > t+supx∈B∼A cγNx(X ∼A). For any

x ∈ X ∼ B, supx∈C⊆X∼A cγτ(C) > t+supx∈B∼A cγNx(X ∼ A), that is, there exists Cx
such that x ∈ Cx ⊆ X ∼ A and cγτ(Cx) > t+ supx∈B∼A cγNx(X ∼ A). Now, we want

to prove that Cx ⊆ X ∼ B. If not, then there exists x′ ∈ B ∼ A such that x′ ∈ Cx .

Hence, we can obtain that supx∈B∼A cγNx(X ∼ A) ≥ cγNx′(X ∼ A) ≥ cγτ(Cx) > t+
supx∈B∼A cγNx(X ∼A). This is a contradiction. Therefore, FτcγN(B)= τcγN(X ∼ B)=
infx∈X∼B cγNx(X ∼ B)≥ infx∈X∼B cγτ(Cx) > t+supx∈B∼A cγNx(X ∼A) > t. Since t is

arbitrary, it holds that [B≡̇γ-cl(A)]≤ [B ∈ FτcγN].
Definition 5.8. Let (X,τ) be a fuzzifying topological space. For any A ⊆ X, the

cγ-interior of A is given as follows: cγ- int(A)(x)= cγNx(A).
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Theorem 5.9. For any x, A, and B,

(1) � B ∈ τcγN∧B ⊆A→ B ⊆ cγ- int(A);
(2) �A≡ cγ- int(A)↔A∈ τcγN ;

(3) � x ∈ cγ- int(A)↔ x ∈A∧x ∈ (X ∼ cγ-d(X ∼A));
(4) � cγ- int(A)≡X ∼ cγ-cl(X ∼A);
(5) � B≡̇cγ- int(A)→ B ∈ τcγN ;

(6) (a) � cγ- int(X)≡X, (b) � cγ- int(A)⊆A.

Proof. (1) If B �A, then [B ∈ τcγN∧B ⊆A]= 0. If B ⊆A, then

[
B ⊆ cγ- int(A)

]= inf
x∈B
cγ- int(A)(x)

= inf
x∈B
cγNx(A)≥ inf

x∈B
cγNx(B)

= [B ∈ τcγN]= [B ∈ τcγN∧B ⊆A].
(5.7)

(2)

[
A≡ cγ- int(A)

]=min
(

inf
x∈A
cγ- int(A)(x), inf

x∈X∼A
(
1−cγ- int(A)(x)

))

= inf
x∈A
cγ- int(A)(x)= inf

x∈A
cγNx(A)=

[
A∈ τcγN

]
.

(5.8)

(3) If x ∉ A, then [x ∈ cγ- int(A)] = 0 = [x ∈ A∧x ∈ (X ∼ cγ-d(X ∼ A))]. If x ∈ A,

then [x ∈ cγ-d(X ∼ A)] = 1− cγNx(A∪{x}) = 1− cγNx(A) = 1− cγ- int(A)(x), so

that [x ∈A∧x ∈ (X ∼ cγ-d(X ∼A))]= [x ∈ cγ- int(A)].
(4) It follows from Theorem 5.5(1).

(5) From (4) and Theorem 5.7, we have

[
B≡̇cγ- int(A)

]= [X ∼ B≡̇cγ-cl(X ∼A)]≤ [X ∼ B ∈ FτcγN]= [B ∈ τcγN]. (5.9)

(6) (a) It is obtained from (4) above and from Theorem 5.5(2).

(b) It is obtained from (3) above.

6. Fuzzifying cγ-continuous functions

Definition 6.1. Let (X,τ) and (Y ,U) be two fuzzifying topological spaces. For

any f ∈ YX , a unary fuzzy predicates cγC ∈�(YX), called cγ-continuity, is given as

cγC(f) :=∀u (
u∈U → f−1(u)∈ cγτ). (6.1)

Definition 6.2. Let (X,τ) and (Y ,U) be two fuzzifying topological spaces. For

any f ∈ YX , we define the unary fuzzy predicates γj ∈ �(YX) where j = 1,2, . . . ,5 as

follows:

(1) γ1(f ) :=∀B (B ∈ FY → f−1(B)∈ cγFX), where FY is the family of closed subsets

of Y and cγFX is the family of cγ-closed subsets of X;

(2) γ2(f ) := ∀x∀u (u ∈ Nf(x) → f−1(u) ∈ cγNx), where N is the neighborhood

system of Y and cγN is the cγ-neighborhood system of X;

(3) γ3(f ) :=∀x∀u (u∈Nf(x)→∃v(f(v)⊆u→ v ∈ cγNx));
(4) γ4(f ) :=∀A(f(cγ-clX(A))⊆ clY (f (A)));
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(5) γ5(f ) :=∀B(cγ-clX(f−1(B))⊆ f−1(clY (B))).

Theorem 6.3. (1) � f ∈ cγC ↔ f ∈ γ1;

(2) � f ∈ cγC → f ∈ γ2;

(3) � f ∈ γ2↔ f ∈ γj for j = 3,4,5.

Proof. (1) We prove that [f ∈ cγC]= [f ∈ γ1]

[
f ∈ γ1

]= inf
F∈P(Y)

min
(
1,1−FY (F)+cγFX

(
f−1(F)

))

= inf
F∈P(Y)

min
(
1,1−U(Y −F)+cγτ(X ∼ f−1(F)

))

= inf
F∈P(Y)

min
(
1,1−U(Y −F)+cγτ(f−1(Y −F)))

= inf
u∈P(Y)

min
(
1,1−U(u)+cγτ(f−1(u)

))

= [f ∈ cγC].

(6.2)

(2) We prove that γ2(f ) ≥ cγC(f). If Nf(x)(u) ≤ cγNx(f−1(u)), the result holds.

Suppose Nf(x)(u) > cγNx(f−1(u)). It is clear that if f(x)∈A⊆u then x ∈ f−1(A)⊆
f−1(u). Then,

Nf(x)(u)−cγNx
(
f−1(u)

)= sup
f(x)∈A⊆u

U(A)− sup
x∈B⊆f−1(u)

cγτ(B)

≤ sup
f(x)∈A⊆u

U(A)− sup
f(x)∈A⊆u

cγτ
(
f−1(A)

)

≤ sup
f(x)∈A⊆u

(
U(A)−cγτ(f−1(A)

))
.

(6.3)

So, 1−Nf(x)(u)+cγNx(f−1(u))≥ inff(x)∈A⊆u(1−U(A)+cγτ(f−1(A))) and thus

min
(
1,1−Nf(x)(u)+cγNx

(
f−1(u)

))≥ inf
f(x)∈A⊆u

min
(
1,1−U(A)+cγτ(f−1(A)

))

≥ inf
v∈P(Y)

min
(
1,1−U(v)+cγτ(f−1(v)

))

= cγC(f).

(6.4)

Hence, infx∈X infu∈P(Y)min(1,1−Nf(x)(u)+cγNx(f−1(u)))≥ [f ∈ cγC].
(3) (a) We prove that� f ∈ γ2↔ f ∈ γ3. Since cγNx is monotonous (Theorem 4.2(2)),

it is clear that supv∈P(X),f (v)⊆u cγNx(v)=supv∈P(x),v⊆f−1(u) cγNx(v)=cγNx(f−1(u)).
Then,

γ3(f )= inf
x∈X

inf
u∈P(Y)

min
(
1,1−Nf(x)(u)+ sup

v∈P(X),f (v)⊆u
cγNx(v)

)

= inf
x∈X

inf
u∈P(Y)

min
(
1,1−Nf(x)(u)+cγNx

(
f−1(u)

))= γ2(f ).
(6.5)

(b) We prove that � f ∈ γ4↔ f ∈ γ5.
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First, for each B ∈ P(Y), there exists A∈ P(X) such that f−1(B)=A and f(A)⊆ B.

So, [cγ-clX(f−1(B))⊆ f−1(clY (B))]≥ [cγ-clX(A)⊆ f−1(clY (f (A)))]. Hence,

γ5(f )= inf
B∈P(Y)

[
cγ-clX

(
f−1(B)

)⊆ f−1(clY (B)
)
]

≥ inf
A∈P(X)

[
cγ-clX(A)⊆ f−1(clY

(
f(A)

))]= γ4(f ).
(6.6)

Second, for each A∈ P(X), there exists B ∈ P(Y) such that f(A)= B and f−1(B)⊇
A. Hence, [cγ-clX(f−1(B))⊆ f−1(clY (B))]≤ [cγ-clX(A)⊆ f−1(clY (f (A)))]. Thus,

γ4(f )= inf
A∈P(X)

[
cγ-clX(A)⊆ f−1(clY

(
f(A)

))]

≥ inf
B∈P(Y),B=f(A)

[
cγ-clX

(
f−1(B)

)⊆ f−1(clY (B)
)]

≥ inf
B∈P(Y)

[
cγ-clX

(
f−1(B)

)⊆ f−1(clY (B)
)]= γ5(f ).

(6.7)

(c) We prove that � f ∈ γ5↔ f ∈ γ2; from Theorem 5.5(1),

γ5(f )=∀B
(
cγ-clX

(
f−1(B)

)⊆ f−1(clY (B)
))

= inf
B∈P(Y)

inf
x∈X

min
(
1,1−(1−cγNx(X ∼ f−1(B)

))+1−Nf(x)(Y ∼ B)
)

= inf
B∈P(Y)

inf
x∈X

min
(
1,1−Nf(x)(Y ∼ B)+cγNx

(
X ∼ f−1(B)

))

= inf
u∈P(Y)

inf
x∈X

min
(
1,1−Nf(x)(u)+cγNx

(
f−1(u)

))= γ2(f ).

(6.8)

Remark 6.4. In the following theorem, we indicate the fuzzifying topologies with

respect to which we evaluate the degree to which f is continuous or cγC-continuous.

Thus, the symbols (τ,U)-C(f), (τcγN,U)-C(f), (τ,UcγN)-cγC(f), and so forth, will

be understood.

Applying Theorems 3.5(g) and 4.3, one can deduce the following theorem.

Theorem 6.5. (1) � f ∈ (τ,UcγN)-C → f ∈ (τ,U)-C ;

(2) � f ∈ (τ,U)-cγC → f ∈ (τcγN,U)-C ;

(3) � f ∈ (τ,U)-C → f ∈ (τ,U)-cγC .

7. Decompositions of fuzzy continuity in fuzzifying topology

Theorem 7.1. Let (X,τ) and (Y ,U) be two fuzzifying topological spaces. For any

f ∈ YX ,

� C(f) �→ (γC(f)∧cγC(f)). (7.1)

Proof. The proof is obtained from Lemma 2.13(1) and Theorem 3.5(g).

Remark 7.2. In crisp setting, that is, in the case that the underlying fuzzifying

topology is the ordinary topology, one can have � (γC(f)∧cγC(f))→ C(f).
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But this statement may not be true in general in fuzzifying topology as illustrated

by the following counterexample.

Counterexample 7.3. Let (X,τ) be the fuzzifying topological space defined in

Counterexample 3.7. Consider the identity function f from (X,τ) onto (X,σ), whereσ
is a fuzzifying topology on X defined as follows:

σ(A)=



1, A∈ {X,∅,{a,b}},
0, otherwise.

(7.2)

Then, 7/8∧1/8= γC(f)∧cγC(f)� C(f)= 0.

Theorem 7.4. Let (X,τ) and (Y ,U) be two fuzzifying topological spaces. For any

f ∈ YX ,

� C(f) �→ (γC(f)←→ cγC(f)). (7.3)

Proof. [γC(f)→ cγC(f)]=min(1,1−γC(f)+cγC(f))≥ γC(f)∧cγC(f). Also,

[cγC(f) → γC(f)] = min(1,1 − cγC(f) + γC(f)) ≥ γC(f) ∧ cγC(f). Then from

Theorem 7.1 we have [γC(f)∧cγC(f)]≥ C(f) and so the result holds.

Theorem 7.5. Let (X,τ) and (Y ,U) be two fuzzifying topological spaces and let

f ∈ YX . If [γτ(f−1(u))]= 1 or [cγτ(f−1(u))]= 1 for each u∈ P(Y), then � C(f)↔
(γC(f)∧cγC(f)).

Proof. We need to prove that C(f) = γC(f)∧cγC(f). Applying Theorem 3.8(2),

we have

γC(f)∧cγC(f)
= inf
u∈P(Y)

min
(
1,1−U(u)+γτ(f−1(u)

))∧ inf
u∈P(Y)

min
(
1,1−U(u)+cγτ(f−1(u)

))

= inf
u∈P(Y)

min
(
1,
(
1−U(u)+γτ(f−1(u)

))∧(1−U(u)+cγτ(f−1(u)
)))

= inf
u∈P(Y)

min
(
1,1−U(u)+(γτ(f−1(u)

)∧cγτ(f−1(u)
)))

= inf
u∈P(Y)

min
(
1,1−U(u)+τ(f−1(u)

))= C(f).

(7.4)

Theorem 7.6. Let (X,τ) and (Y ,U) be two fuzzifying topological spaces and let

f ∈ YX ,

(1) if [γτ(f−1(u))]= 1 for each u∈ P(Y), then � γC(f)→ (cγC(f)↔ C(f)),
(2) if [cγτ(f−1(u))]= 1 for each u∈ P(Y), then � cγC(f)→ (γC(f)↔ C(f)).

Proof. (1) Since [γτ(f−1(u))]= 1 and so [f−1(u)⊆ ((f−1(u))◦−∪(f−1(u))−◦)]=
1, then [(f−1(u)∩((f−1(u))◦−∪(f−1(u))−◦)) ⊆ (f−1(u))◦] = [f−1(u) ⊆ (f−1(u))◦].



62 T. NOIRI AND O. R. SAYED

Thus,

cγC(f)= inf
u∈P(Y)

min
(
1,1−U(u)+cγτ(f−1(u)

))

= inf
u∈P(Y)

min
(
1,1−U(u)+[(f−1(u)∩((f−1(u)

)◦−∪(f−1(u)
)−◦))⊆(f−1(u)

)◦])

= inf
u∈P(Y)

min
(
1,1−U(u)+[f−1(u)⊆ (f−1(u)

)◦])

= inf
u∈P(Y)

min
(
1,1−U(u)+τ(f−1(u)

))= C(f).
(7.5)

(2) Since [cγτ(f−1(u))] = 1, one can deduce that ((f−1(u))◦− ∪ (f−1(u))−◦) =
(f−1(u))◦. So,

γC(f)= inf
u∈P(Y)

min
(
1,1−U(u)+γτ(f−1(u)

))

= inf
u∈P(Y)

min
(
1,1−U(u)+[f−1(u)⊆ ((f−1(u)

)◦−∪(f−1(u)
)−◦)])

= inf
u∈P(Y)

min
(
1,1−U(u)+[f−1(u)⊆ (f−1(u)

)◦])

= inf
u∈P(Y)

min
(
1,1−U(u)+τ(f−1(u)

))= C(f).
(7.6)

Theorem 7.7. Let (X,τ), (Y ,U), and (Z,V) be three fuzzifying topological spaces.

For any f ∈ YX and g ∈ ZY ,

(1) � cγC(f)→ (C(g)→ cγC(g◦f));
(2) � C(g)→ (cγC(g)→ cγC(g◦f)).

Proof. (1) We prove that [cγC(f)] ≤ [(C(g) → cγC(g ◦ f))]. If [C(g)] ≤
[cγC(g◦f)], then the result holds. If [C(g)] > [cγC(g◦f)], then we have[

C(g)
]−[cγC(g◦f)]= inf

v∈P(Z)
min

(
1,1−V(v)+U(g−1(v)

))

− inf
v∈P(Z)

min
(
1,1−V(v)+cγτ(g◦f)−1(v)

)

≤ sup
v∈P(Z)

(
U
(
g−1(v)

)−cγτ(g◦f)−1(v)
)

≤ sup
u∈P(Y)

(
U(u)−cγτ(f−1(u)

))
.

(7.7)

Therefore,[
C(g) �→ cγC(g◦f)]=min

(
1,1−[C(g)]+[cγC(g◦f)])

≥ inf
u∈P(Y)

min
(
1,1−U(u)+cγτ(f−1(u)

))= cγC(f). (7.8)

(2) Since the conjunction ∧· is commutative, from (1) above, one can deduce that

[
C(g) �→ (cγC(f) �→ cγC(g◦f))]= [¬(C(g)∧· cγC(f)∧· ¬cγC(g◦f)

)]

= [¬(cγC(f)∧· C(g)∧· ¬cγC(g◦f)
)]

= [cγC(f) �→ (C(g) �→ cγC(g◦f))]= 1.

(7.9)
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