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The operators of deletion and contraction for clutters are generalized to those for an-
tichains of finite bounded posets. A generalization of the result by Seymour (1976), de-
scribing the relationship between the operators of deletion, contraction, and the blocker
map, is considered as a comparison in the lattice of antichains of a poset.
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1. Introduction. Deletion and contraction are basic operators on clutters. Recall

that for a finite nonempty set S, a family of its subsets is called a clutter (or a Sperner

family ) if no set from that family contains another. Denote by 0̂ the empty subset of S.

The clutter ∅ (containing no sets) and the clutter {0̂} are called trivial.

Consider a nontrivial clutter � on the ground set S. Let x ∈ S. Recall that the deletion

�\x and contraction �/x are the clutters, defined as follows:

�\x = {G ∈ � :G �� x},
�/x = {inclusion-wise minimal sets of the family

{
G−{x} :G ∈ �

}}
,

(1.1)

on the ground set S−{x}.
Deletion and contraction are also defined for the trivial clutters

∅\x =∅/x =∅, {
0̂
}\x = {0̂}/x = {0̂}, (1.2)

on the ground set S−{x}.
IfX = {x1, . . . ,xn} ⊆ S,n≥ 1, then the deletion �\X and contraction �/X are defined

in the following way: �\X = �\x1\···\xn, and �/X = �/x1/···/xn. Deletions and

contractions, sequentially performed on a clutter, produce its minors.

The blocker of a nontrivial clutter � on the ground set S is the clutter �(�) on S,

consisting of all the inclusion-wise minimal subsets H ⊆ S with the property, for each

G ∈ �, |H∩G| ≥ 1.

The blockers of the trivial clutters are defined as follows (see, e.g., [2]):

�
({

0̂
})=∅, �(∅)= {0̂}. (1.3)

Seymour described in [4] the relationship between a clutter � on the ground set S,

deletions, contractions, and relevant blockers; if X is a nonempty subset of S then we

have

�(�)\X =�(�/X), �(�)/X =�(�\X). (1.4)
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Recall that the clutters on S are in natural one-to-one correspondence with the

antichains of the Boolean lattice of all subsets of S.

We present in this paper operators of deletion and contraction for antichains of a

finite bounded poset. The main results of the paper are Theorems 2.5 and 2.6. Theorem

2.5 states that deletion and contraction for antichains are (co)closure operators on the

lattice of antichains of the poset. Theorem 2.6 provides a generalization of result (1.4)

to antichains of the poset.

It is a consequence of Theorem 2.6 that equalities (1.4) might be read as

�(�)\X =�(�/X)��(�)��(�)/X =�(�\X), (1.5)

where � is a certain comparison that comes from the lattice of antichains of the

Boolean lattice of all subsets of S.

2. Deletion and contraction. We refer the reader to [5, Chapter 3] for basic infor-

mation and terminology in the theory of posets.

We use minQ to denote the set of all minimal elements of a poset Q. If Q has a

least element then it is denoted 0̂Q; if Q has a greatest element then it is denoted 1̂Q.

Throughout this note, P stands for a finite bounded poset with |P |> 1; Pa denotes

its atom set, that is the set of all elements covering 0̂P . I(A) and F(A) denote the order

ideal and filter of P generated by an antichain A of P , respectively.

We denote the distributive lattice of all antichains of P by A(P). If A1,A2 ∈ A(P)
then we set

A1 ≤A2 iff F
(
A1
)⊆ F

(
A2
)
. (2.1)

The least and greatest elements 0̂A(P) and 1̂A(P) of A(P) are the trivial antichains ∅⊂ P
and {0̂P}, respectively. For the rest of the paper, we denote by ∧ and ∨ the operations

of meet and join in the lattice A(P); if A1,A2 ∈ A(P) then

A1∨A2 =min
(
A1∪A2

)
,

A1∧A2 =min
(
F
(
A1
)∩F

(
A2
))
,

(2.2)

respectively.

Let A be a nontrivial antichain of P , that is A ∈ A(P)−{0̂A(P), 1̂A(P)}. The blocker

b(A) of A, defined in [3], is the antichain

min
{
b ∈ P :

∣∣I(b)∩I(a)∩Pa
∣∣≥ 1∀a∈A}. (2.3)

The blockers of the trivial antichains are defined as follows:

b
(
0̂A(P)

)= 1̂A(P), b
(
1̂A(P)

)= 0̂A(P). (2.4)

For a one-element antichain {a} of P , we write b(a) instead of b({a}). If a ≠ 0̂P then

b(a)= I(a)∩Pa, and we have {a} ≤ b(b(a))≤ b(a).
If A is a nontrivial antichain of P then its blocker b(A) is determined, in particular,

by the equality b(A)=∧a∈A b(a).
The map b : A(P)→ A(P), reflecting an antichain to its blocker, is the blocker map

on A(P); it is antitone. The composite map b◦b is a closure operator on A(P). The
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image b(A(P)) is called in [3] the lattice of blockers in P and it is denoted B(P). The

restriction b |B(P) of the blocker map is an anti-automorphism of B(P). The lattice B(P)
is a meet-subsemilattice of A(P). For every blocker B ∈ B(P), its preimage b−1(B) is a

convex join-subsemilattice of A(P); the greatest element of b−1(B) is b(B).
We start with generalizing the notions of deletion and contraction.

Definition 2.1. Let X ⊆ Pa, |X| ≥ 1.

(i) If {a} is a nontrivial one-element antichain of P then the deletion {a}\X and

contraction {a}/X are the antichains

{a}\X =

{a}, if

∣∣b(a)∩X∣∣= 0,

0̂A(P), if
∣∣b(a)∩X∣∣≥ 1,

{a}/X =



{a}, if

∣∣b(a)∩X∣∣= 0,

b
(

b(a)−X), if
∣∣b(a)∩X∣∣≥ 1, b(a)�X,

1̂A(P), if b(a)⊆X.

(2.5)

(ii) If A is a nontrivial antichain of P then the deletion A\X and contraction A/X
are the antichains

A\X =
∨
a∈A

({a}\X), A/X =
∨
a∈A

({a}/X). (2.6)

(iii) The deletion and contraction for the trivial antichains of P are

0̂A(P)\X = 0̂A(P)/X = 0̂A(P),

1̂A(P)\X = 1̂A(P)/X = 1̂A(P).
(2.7)

If we take into consideration the empty subset∅a of the atom set Pa, then for every

A∈ A(P) we define the antichains A\∅a and A/∅a to be equal to A.

The following observations are an immediate consequence of Definition 2.1: if {a}
is a one-element antichain of P , then we have

{a}\X ≤ {a} ≤ {a}/X, (2.8)

b(a)\X ≤ b
({a}/X)≤ b(a)≤ b(a)/X = b

({a}\X). (2.9)

Another observation is the following lemma.

Lemma 2.2. Let X ⊆ Pa, |X| ≥ 1. If A1,A2 ∈ A(P) and A1 ≤A2, then

A1\X ≤A2\X, A1/X ≤A2/X. (2.10)

If A∈ A(P) then the elements A\X, A, and A/X of the lattice A(P) are comparable.
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Lemma 2.3. If A∈ A(P) and X ⊆ Pa, |X| ≥ 1, then

A\X ≤A≤A/X. (2.11)

Proof. There is nothing to prove if A is a trivial antichain. Suppose that A is non-

trivial. With the help of (2.6) and (2.8), we see that A\X =∨a∈A({a}\X)≤∨a∈A{a} =
A≤∨a∈A({a}/X)=A/X.

If {a} is a nontrivial one-element antichain of P and X ⊆ Pa, |X| ≥ 1, then we ob-

viously have {a}\X = ({a}\X)\X. The antichain {a}/X has an analogous property.

Indeed, if |b(a)∩X| = 0 or if b(a) ⊆ X then ({a}/X)/X = {a}/X, due to the defini-

tion of contraction. Further, if |b(a)∩X| ≥ 1 and b(a) � X then, on one hand, we

have ({a}/X)/X ≥ {a}/X, by Lemma 2.3. On the other hand, for every b ∈ {a}/X =
b(b(a)−X) we have b(b)−X ≥ b(a)−X and, as a consequence, we have ({a}/X)/X =∨
b∈{a}/X({b}/X) ≤ b(b(a)−X) = {a}/X. We conclude that ({a}/X)/X = {a}/X. In

view of (2.6), we can formulate the following lemma.

Lemma 2.4. If A∈ A(P) and X ⊆ Pa, |X| ≥ 1, then

(A\X)\X =A\X, (A/X)/X =A/X. (2.12)

Altogether, Lemmas 2.2, 2.3, and 2.4 describe the connection of the maps (\X) :

A(P)→ A(P) and (/X) : A(P)→ A(P) with (co)closure operators (see, e.g., [1, Chapter

IV]).

Theorem 2.5. Let X ⊆ Pa, |X| ≥ 1. The map (\X) is a coclosure operator on A(P).
The map (/X) is a closure operator on A(P).

Given a nonempty atom subset X, we denote, slightly abusing denotations, the im-

ages (\X)(A(P)) = {A\X : A ∈ A(P)} and (/X)(A(P)) = {A/X : A ∈ A(P)} by A(P)\X
and A(P)/X, respectively. We can interpret well-known properties of (semi)lattice

maps and (co)closure operators on lattices in case of maps (\X) and (/X).
Definition 2.1 implies that the maps (\X),(/X) : A(P) → A(P) are upper {0̂A(P),

1̂A(P)}-homomorphisms, that is for all A1,A2 ∈ A(P), we have (A1∨A2)\X = (A1\X)∨
(A2\X), (A1∨A2)/X = (A1/X)∨(A2/X) and, moreover, we have 0̂A(P)\X = 0̂A(P)/X =
0̂A(P) and 1̂A(P)\X = 1̂A(P)/X = 1̂A(P).

The posets A(P)\X and A(P)/X, with the partial orders induced by the partial order

on A(P), are lattices.

The lattice A(P)\X is a join-subsemilattice of A(P). Denote by∧A(P)\X the operation

of meet in A(P)\X. If D1,D2 ∈ A(P)\X, then we have D1∧A(P)\X D2 = (D1∧D2)\X.

The lattice A(P)/X is a sublattice of A(P).
If D ∈ A(P)\X, then the preimage (\X)−1(D) of D under the map (\X) is the closed

interval [D,D∨X] of A(P).
If D ∈ A(P)/X, then the preimage (/X)−1(D) of D under the map (/X) is a convex

join-subsemilattice of the lattice A(P), with the greatest element D.

Equalities (1.4) may be generalized in the context of an arbitrary finite bounded

poset. Indeed, let A∈ A(P) and X ⊆ Pa, |X| ≥ 1. We can deduce from Lemma 2.3 that
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the comparisons

b(A)\X ≤ b(A)≤ b(A)/X, b(A/X)≤ b(A)≤ b(A\X) (2.13)

hold, and we make an additional conclusion in the following theorem.

Theorem 2.6. If A∈ A(P) and X ⊆ P a, |X| ≥ 1, then

b(A)\X ≤ b(A/X)≤ b(A)≤ b(A)/X ≤ b(A\X). (2.14)

Proof. There is nothing to prove if the antichain A is trivial.

If A1, A2 are arbitrary antichains of P and X ⊆ Pa, |X| ≥ 1, then we can check with

the help of routine machinery that

(
A1∧A2

)\X ≤ (A1\X
)∧(A2\X

)
, (2.15)(

A1∧A2
)
/X ≤ (A1/X

)∧(A2/X
)
. (2.16)

Suppose that A is nontrivial. We prove that b(A)\X ≤ b(A/X). Using comparisons

(2.15) and (2.9), we see that

b(A)\X =
( ∧
a∈A

b(a)
)
\X ≤

∧
a∈A

(
b(a)\X)≤ ∧

a∈A
b
({a}/X)= b

( ∨
a∈A

({a}/X)
)
= b(A/X).

(2.17)

We prove that b(A)/X ≤ b(A\X). With the help of (2.16) and (2.9), we see that

b(A)/X =
( ∧
a∈A

b(a)
)
/X ≤

∧
a∈A

(
b(a)/X

)= ∧
a∈A

b
({a}\X)= b

( ∨
a∈A

({a}\X)
)
= b(A\X).

(2.18)
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