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1. Introduction. The aim of this paper is to pose two problems concerning varieties

of groups generated (1) by (Cartesian or direct) wreath products NWrH of abelian

groups N and H and, more generally, (2) by (Cartesian or direct) wreath products

XWrY of sets of abelian groups X and Y (see background information below). Recall

that for the sets X and Y of (not necessarily abelian) groups, their wreath product

XWrY is defined as the set

XWrY= {NWrH |N ∈ X, H ∈ Y}. (1.1)

Problem 1.1 (see [14, Problem 6.5]). Let N and H be arbitrary (nilpotent, meta-

belian, soluble) groups. Find a criterion by which the following equation holds:

var(NWrH)= var(N)·var(H). (1.2)

The second problem is the much more general analog of the first one.

Problem 1.2. Let X and Y be arbitrary sets of (nilpotent, metabelian, soluble)

groups. Find a criterion by which the following equation holds:

var(XWrY)= var(X)·var(Y). (1.3)

(A restricted version of this problem, for the sets of abelian groups only was posed

in [14]. Since that problem is solved in [12] (see the second criterion in Section 3 of this

paper), we present that problem in this general form, that is, for the case of arbitrary

sets of groups.)

Notice that in our problems we did not specify whether the wreath product con-

sidered is Cartesian or direct. The point is that for arbitrary groups (or group sets)

their Cartesian wreath product and their direct wreath product always generate the

same variety of groups [15]. Thus, in order to avoid immaterial repetitions we con-

sider Cartesian wreath products only and do not formulate each problem, theorem,

or criterion for both wreath products.
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Section 2 contains the background information for our problems, in particular, the

theorems of Higman and Houghton who considered the problem of some abelian

groups. Section 3 presents our recent results generalizing the theorems of Higman

and Houghton for the case of arbitrary abelian groups and for the case of arbitrary

sets of abelian groups. Section 4 gives an outline of techniques and arguments used

in the proofs. Section 5 contains the first examples that are not exclusively related

to abelian groups. These examples illustrate our problems and also show that the

criteria mentioned in Sections 2 and 3 do not work for the case of non-abelian groups.

Section 6 is an illustration of our construction: we consider the subvariety lattice of

the variety A2
p and find the subvarieties that can be generated by wreath products of

abelian groups.

2. Background information and the history of the problem

2.1. Varieties of groups, their products, and wreath products. A variety of groups

is a nonempty class of groups closed under homomorphic images, subgroups, and

Cartesian products. By Birkhoff’s theorem [3, 15] each variety V is defined by a suitable

word set V ⊆ F∞ (here F∞ denotes the absolutely free group of infinite rank), that

is, V consists of all the groups G on which v(g1, . . . ,gk) = 1 holds for each word

v(x1, . . . ,xn) ∈ V and for each set of elements g1, . . . ,gk ∈ G. Then v(x1, . . . ,xn) ≡ 1

is said to be an identity of the group G. The set A of all abelian groups, for example,

is a variety defined by a single identity [x1,x2] = x−1
1 x−1

2 x1x2 ≡ 1. Another example

related to the topic of this paper is the variety An of all abelian groups of exponents

dividing n, where n is a positive integer, obtained by adding a new identity xn ≡ 1 to

the previous one. Every variety of abelian groups should be equal either to A or to An
for a suitable n; Nc is the variety of all nilpotent groups of class at most c; Be is the

Burnside variety of all groups exponents of which divide the positive integer e; E is

the trivial variety consisting only of the trivial group {1}. The variety V is generated

by the group G (by the groups set X) if V is the minimal variety containing the group

G (the set X) or, equivalently, if V consists of all factors of all Cartesian powers of

G (of factors of Cartesian products of groups of the set X). This fact is denoted by

V= var(G)(by V= var(X)). For further information on varieties of groups see [15].

We omit the definition and the basic properties of Cartesian and direct wreath prod-

ucts (denoted by Wr and wr, respectively) and refer to [8, 11, 15, 16] for detailed

information.

Wreath products are particularly useful tools (probably the most useful ones) while

studying the product varieties of groups. Recall that the product variety U·V is defined

to consist of all extensions of groups of U by means of groups of V, that is, U·V consists

of groups G which have a normal subgroup N such that N ∈U and G/N ∈ V. And, by

Kaloujnine and Krassner’s theorem [10], every extension G of mentioned type can be

isomorphically embedded into the Cartesian wreath product NWrH, where H �G/N.

This together with the fact that the abelian groups (at least finitely generated abelian

groups) in some sense are the simplest class of groups, explain the very early interest

to the wreath products of abelian groups as means of study for metabelian groups and

for metabelian varieties of groups (a group G or a variety V are said to be metabelian
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if they have the identity

[[
x1,x2],

[
x3,x4

]]≡ 1; (2.1)

thus, a metabelian group is simply an extension of an abelian group by an abelian

group).

2.2. The theorems of Higman and Houghton. The initial result in the mentioned

direction belongs to Higman (see [7, Lemma 4.5 and Example 4.9] and [15, 24.65,

54.41]), who proved that, when Cp and Cn are finite cycles of orders p and n (where

p is a prime), then the wreath product CpWrCn generates the product variety Ap ·An
(clearly, var(Cn)= An).

Houghton’s result covered the case of arbitrary finite cycles A = Cm and B = Cn.

Namely, the equality

var
(
CmwrCn

)= var
(
Cm
)·var

(
Cn
)= Am ·An (2.2)

holds if and only if m and n are coprime [15].

Also there are several other known cases in the literature. For instance, it is a well-

known example that, if H = Cp⊕Cp⊕··· is an infinite direct power of the cycle Cp ,

then CpWrH generates Ap ·Ap . On the other hand, the group

CpWrCp⊕···⊕Cp︸ ︷︷ ︸
s

(2.3)

does not generate Ap ·Ap for any positive integer s [15]. That is, the Houghton’s the-

orem does not have obvious generalization for the case of arbitrary abelian groups.

Since H = Cp⊕Cp⊕··· is a discriminating group (see the definition in Section 4.3),

the mentioned example is a consequence of the following much more general result:

for an arbitrary group N and an arbitrary discriminating group H the wreath product

NWrH discriminates and, thus, generates the variety var(N)·var(H) [1, 2].

2.3. Generalization for the case of arbitrary abelian groups. The results listed

lead to the following more general questions.

Question 2.1. Let N and H be arbitrary abelian groups. Find a criterion by which

the following equation holds:

var(NWrH)= var(N)·var(H). (2.4)

It is easy to notice that the variety generated by NWrH is always contained in

var(N)·var(H) but is not in general equal to the latter. So the actual problem is to find

a criterion under which var(N)·var(H) contains a group not belonging to var(NWrH).
The next question is a generalization of the first one.

Question 2.2. Let X and Y be arbitrary sets of abelian groups. Find a criterion by

which the following equation holds:

var(XWrY)= var(X)·var(Y). (2.5)

The answers to these questions are given in [12, 14] (see Section 3).
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3. The general criteria for Questions 2.1 and 2.2

3.1. The general criterion for the case of wreath products of arbitrary abelian

groups. The answer to Question 2.1 is given by [14, Theorem 6.1]. The mentioned

theorem, however, is based on special notation. Thus, we reformulate that result in a

form which depends on traditional notions only.

Theorem 3.1. For arbitrary abelian groups N and H,

var(NWrH)= var(N)·var(H) (3.1)

holds if and only if

(1) at least one of the groups N and H is of infinite exponent; or

(2) if expN =m and expH = n are finite and for every prime number p dividing

both m and n the p-primary component H(p) of H is a direct sum H(p) =∑
i∈I Cpki , of cycles Cpki with orders pki , i∈ I, such that infinitely many of these

summands are of order pk′ , where pk′ is the highest power of p dividing n.

(Recall that, by Prüfer’s theorem, every abelian group of finite exponent is really a

direct product of finite cycles.)

This theorem shows that (3.1) can be falsified only if both N and H are of finite

exponents and there is a prime divisor p of expN and expH such that the p-primary

component H(p) of H contains only finitely many direct summands Cpk′ (where, as

above, pk′ is the highest power of p dividing n).

In particular, when N and H are finite groups, our condition simply means that

expN and expH are coprime.

3.2. Examples. By Houghton’s theorem, the wreath product

Cpk WrCps (k > 0, s > 0) (3.2)

does not generate the variety Apk ·Aps (this also immediately follows from the fact

that (3.2) is a nilpotent groups while Apk ·Aps is not a nilpotent variety). According to

the criterion cited above, the even wreath product NWrH with

H = Cpk⊕···⊕Cpk⊕···
Cpk−1⊕···⊕Cpk−1⊕···

...

Cp⊕···⊕Cp⊕···

(3.3)

(infinitely many summands in each row) and with

N = Cps ⊕···⊕Cps⊕
Cps−1⊕···⊕Cps−1⊕···

...

Cp⊕···⊕Cp⊕···

(3.4)
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(finitely many summands in the first row and infinitely many summands in the rest

of rows) will not generate the variety Apk ·Aps .
On the other hand, the wreath product

Cpk Wr
(
Cps ⊕···⊕Cps ⊕···

)
(3.5)

generates the variety Apk ·Aps .
Continuing the examples, we see that if the (finite) exponents m and n of (finite

or infinite) abelian groups N and H, respectively are coprime, then NWrH, always

generates the variety Am ·An.

This means, in particular, that the criterion of Houghton is true not only for the

case of finite cycles but also for arbitrary finite abelian groups. This fact, however,

seems to be present in mathematical folklore.

3.3. The general criterion for the case of wreath products of arbitrary sets of

abelian groups. The answer to Question 2.2 for the case of abelian groups is given

by [12, Theorem 7.1]. Again, the mentioned theorem is based on special notation. We

reformulate that result in a form depends only on traditional notions.

Theorem 3.2. For arbitrary sets X and Y of abelian groups,

var(XWrY)= var(X)·var(Y) (3.6)

holds if and only if

(1) at least one of the sets X and Y is of infinite exponent; or

(2) if expX =m and expY = n are finite, and for every prime number p dividing

both m and n
(a) either Y contains a group H such that the p-primary component H(p) of H

is a direct sum H(p) =∑i∈I Cpki , of cycles Cpki with orders pki , i ∈ I, such

that infinitely many of these summands are of order pk′ , where pk′ is the

highest power of p dividing n,

(b) or for arbitrary positive integer l the set Y contains a group Hl such that

the p-primary component Hl(p) of Hl is a direct sum Hl(p)=
∑
j∈J Cpkj , of

cycles C
pkj

with orders pkj , j ∈ J, such that at least l of these summands are

of order pk′ .

We see that (3.6) can be falsified only if both X and Y are of finite exponents and if

there is a prime divisor p of expX and expY, and a positive integer h such that the

p-primary component H(p) of every group H ∈ Y contains only finitely many direct

summands Cpk′ (where, as above, pk′ is the highest power of p dividing n), and the

number of the mentioned summands Cpk′ is restricted by h for every group H ∈ Y.

(Thus, h depends on p, X, and Y but not on the group H.)

3.4. Examples. Actually, each one of the examples of Section 3.2 can be considered

as an illustration of Theorem 3.2 for the case when the sets X and Y consist of one

group each. It is not complicated to construct examples with sets of groups consisting

of more than one group.
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Continuing the arguments of the first example in Section 3.2, we see that for an

arbitrary set X generating the variety Apk and for the set Y= {Ni | i∈ I}, where

Ni = Cps ⊕···⊕Cps⊕
Cps−1⊕···⊕Cps−1⊕···

...

Cp⊕···⊕Cp⊕···

(3.7)

(hi summands in the first row and infinitely many summands in the rest of rows,

i ∈ I), the wreath product XWrY will generate the variety Apk ·Aps if and only if the

numbers hi, i∈ I, are not restricted by a positive integer h.

It is easy to build other examples not consisting of p-groups only. If we add, say,

the cycle Cql for arbitrary prime q ≠ p to the set Y, then

var(XWrY)= Apk ·Apsql (3.8)

holds if and only if, as above, the numbers hi, i ∈ I, are not restricted by a positive

integer h.

4. Techniques of the proofs. Since our purpose is to pose problems and not to

give proofs, we restrict ourselves by a brief outline of the argument used to deal with

wreath products of abelian groups. It is important to note that the methods described

below only are some of the many methods used in the theory of varieties of groups.

4.1. The initial idea of Higman. The elegance and beauty of Higman’s initial idea

described in his important paper [7] are already good reasons to start with its descrip-

tion.

As it is well known, every variety V can be generated by its finitely generated groups,

for example, by its V-free groups of finite ranks:

Fr (V)= Fr /V
(
Fr
)
, r = 1,2, . . . , (4.1)

where Fr is the free group of rank r , and where V(Fr ) is the verbal subgroup of Fr for

the word set V . In particular, if the variety V is locally finite (i.e., if its groups are locally

finite), then it can be generated by its finite groups. Moreover, V also can be generated

by its finite monolithical groups, that is, by its finite groups which have one nontrivial

normal subgroup only (the latter is called the monolith of G). For, if the group G ∈ V
has several minimal normal subgroups, say, M1, . . . ,Mt , then they intersect trivially

and the group G is monomorphically embeddable into the direct product

G/M1×···×G/Mt (4.2)

by the ruleg� (gM1, . . . ,gMt), for allg ∈G. Assume now thatG is a finite monolithical

group in the variety Ap ·An, wherep is a prime not dividingn (clearly Ap ·An is a locally

finite variety) and show that G belongs to var(CpWrCn).
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The group G is an extension of a group A∈ Ap by a group B ∈ An; A is isomorphic

with the additive group of a finite-dimensional space over the field Fp :

A� Cp⊕···⊕Cp︸ ︷︷ ︸
l

. (4.3)

By Schur’s theorem, we can think of the group B �G/A as of a subgroup of G. Thus,

we can consider transformations of A by conjugations of elements of B. This defines

a linear representation of the group B of degree l over Fp . By Maschke’s theorem,

this representation is completely reducible and, since G is monolithical, A consists

of only one B-irreducible direct summand which coincides with the monolith M of

G. The representation defined is faithful, for, if a nontrivial element r of the abelian

group B centralizes A =M , then it generates a cyclic subgroup 〈r〉 normal in G (for,

clearly, r also centralizes the abelian group B). Then, clearly, 〈r〉 contains a subgroup

minimal and normal in G and different from M . Since the abelian group B has an

irreducible and faithful representation, it must be a cycle and, thus, a subgroup of Cn.

By Kaloujnine and Krassner’s theorem, G is embeddable into the appropriate wreath

product MwrCn which belongs to the variety CpwrCn.

On the other hand, if n is divisible by p then var(CpWrCn) is not equal to Ap ·An,

for, the latter contains the group

CpWr
(
Cp⊕···⊕Cp⊕···

)
. (4.4)

4.2. The case of arbitrary finite abelian groups N and H. The method of Higman

cannot directly be applied for the case when N and H are arbitrary finite abelian

groups. However, a combination of it with techniques connected with Hall Π-sub-

groups in groups G ∈ Am ·An allows us to prove the above-mentioned criterion.

Theorem 4.1. For arbitrary finite abelian groups N and H of exponents m and n,

respectively,

var(NWrH)= var(N)·var(H)= Am ·An (4.5)

holds if and only if m and n are coprime.

The proof of this theorem can be found in [13].

4.3. The case of infinite abelian groups, a dichotomy. The structure of infinite

abelian groups of nonfinite exponent is much more complicated than that of finite

abelian groups [5, 6], and, at first sight, their consideration may demand methods very

different from that of varieties of groups. The following main dichotomy, however,

enables us to reduce our consideration to direct sums of finite cycles by means of

the important notion of discriminating groups (see the definition after Theorem 4.2),

namely:

Theorem 4.2. Each abelian group

(1) either is of finite exponent and, thus, is a direct sum of (possibly infinitely many)

copies of some finitely many cycles of prime power orders, or

(2) is a discriminating group.
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The group D is said to be discriminating, if for arbitrary finite-word set V with the

property that, for each v ∈ V there exists a homomorphism δv of a free group Fn into

the group D, such that δv(v)≠ 1, there exists a single homomorphism δ of Fn into D,

such that δ(v)≠ 1 for all v ∈ V . In other words, D is a discriminating group if every

finite set of identities {v ≡ 1 | v ∈ V} that can be separately falsified in D, can also be

simultaneously falsified in D for certain choice of values d1,d2, . . . ,dn ∈D.

And in analogy with this, the group set D is said to be discriminating, if for arbitrary

finite word set V with the property that, for each v ∈ V there exists a homomorphism

δv of a free group Fn into a group Dv ∈ D, such that δv(v) ≠ 1, there exists a single

homomorphism δ of Fn into a single groupDV ∈D, such that δ(v)≠ 1 for all v ∈ V . In

other words, D is a discriminating group if every finite set of identities {v ≡ 1 | v ∈ V}
that can be separately falsified in some groups Dv ∈ D can also be simultaneously

falsified in a single group DV ∈D for certain choice of values d1,d2, . . . ,dn ∈DV .

If the abelian group H is a discriminating group, then the wreath product of N
and H generates var(N) · var(H). The same is true for sets X and Y, where Y is a

discriminating set of groups [12]. This allows us only to consider the abelian groups

which, according to our dichotomy, are direct sums of the above-mentioned type.

4.4. The functions λ(N,H,t). To deal with the case mentioned above we define

special functions:

λ(N,H,t). (4.6)

For given abelian p-groups N and H of finite exponents and for given positive integer

t the value λ(N,H,t) is defined to be the maximum of the nilpotency classes of the

t-generated groups in the variety var(NWrH).
Note the fact that these functions seem to be very handy tools to detect the cases

when var(NWrH) is different from var(N) ·var(H). Namely, for the given N and H
we calculate the upper bound of λ(N,H,t) and we find in var(N)·var(H) a nilpotent

group, the last of which is greater than the bound we calculated.

For example, let N be an abelian group of exponent pu (i.e., N generates the variety

Apu ) and let the abelian group H of exponent pk have the direct decomposition

H = Ck1⊕Ck2⊕···⊕Ckt
(
k= k1 ≥ k2 ≥ ··· ≥ kt

)
. (4.7)

Then,

λ(N,H,t)≤
t∑
i=1

(
pki−1

)+(u−1)(p−1)pk−1+1. (4.8)

For further details refer to [12, 14].

5. The case of non-abelian groups. Problems 1.1 and 1.2 offered for non-abelian

groups, as we see, naturally follow from Theorems 3.1 and 3.2.

Consider the examples which illustrate our problems and show that the criteria of

Theorems 3.1 and 3.2 no longer work on non-abelian groups. Moreover, there are no

direct analogs of our criteria even for the case of “small” finite nilpotent or metabelian

groups, that is, for classes of groups “nearest” to the abelian groups.
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Example 5.1. Let N = F2(N2∩B3) be the free group of rank 2 in the variety of all

nilpotent groups of class at most 2 and exponent dividing 3 and let H = C2. Then the

following equation holds:

V·A2 ≠ var(NwrH)
(= var(NWrH)

)
. (5.1)

However, the exponents expN and expH are coprime. To prove this we representN as

N = F2(V)=
〈
x1,x2 |

[
x1,x2,x1

]= [x1,x2,x2
]= x3

1 = x3
2 = 1

〉
(5.2)

and define the group R to be the extension of N by means of the group of operators

generated by automorphisms ν1,ν2 ∈Aut(N) defined as follows:

ν1 : x1  �→ x−1
1 , ν1 : x2  �→ x2;

ν2 : x1  �→ x1 , ν2 : x2  �→ x−1
2 .

(5.3)

Clearly 〈ν1,ν2〉 � C2⊕C2 ∈ A2. As it is shown in [4], R is a critical group, that is, a

finite group that does not belong to the variety generated by its proper factors. Every

one of its proper factors, but not R itself, satisfies the identity

[[
x1,x2

]
,
[
x3,x4

]
,x5

]≡ 1. (5.4)

On the other hand, the wreath productNwrH satisfies this identity because its second

commutator subgroup lies in the center.

Example 5.2. LetN andH be arbitrary finite groups generating varieties U= Ap ·Aq
and Ar respectively, where p,q,r are arbitrary pairwise different primes. Then the

following equation holds:

U·Ar ≠ var(NwrH)
(= var(NWrH)

)
. (5.5)

Again, expA and expB are coprime.

We simply have to recall that the product of three nontrivial varieties U · Ar =
Ap ·Aq ·Ar cannot, by the theorem of Šmelkin on product varieties generated by finite

groups [17], be generated by only one finite group NwrH.

6. An application: subvarieties generated by wreath products in the subgroup

lattice of a product variety. We conclude this paper by an example showing the role

of the subvarieties generated by wreath products of abelian groups in the subgroup

lattice of the variety A2
p = Ap ·Ap (p > 2 is a prime). Wreath products CpWr

∑s
i=1Cp

(s = 1,2, . . .) generate infinitely many subvarieties of A2
p . The subgroup lattice of this

variety is described by Kovács and Newman in [9]. Figure 6.1 illustrates this subgroup

lattice where the subvarieties which can be generated by wreath products of abelian

groups are circled.

In Figure 6.1, Np∗ is the subvariety defined in the variety Np by the additional

identity:
p∏
s=2

[
xs,x1, . . . ,xs−1,xs+1, . . . ,xp

]≡ 1. (6.1)
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A2
p = Ap ·Ap = var(CpWr

∑∞
i=1Cp)��

...

A2
p∩Bp2∩Nnp−n+1�

A2
p∩Bp2∩Nnp−n=var(CpWr

∑n
i=1Cp)��

A2
p∩Bp2∩Nnp−n−1�

...

A2
p∩Bp2∩Np+1�

A2
p∩Bp2∩Np = var(CpWrCp)��

�
�
�
�� A2

p∩Bp∩Np∗

���� �A2
p∩Bp2∩Np−1

�
�
�
��

����

�

A2
p∩Bp∩Np−1

���

� � �

���

� � �

�
A2
p∩Bp2∩N2

� A2
p∩Bp∩N2

�A2
p∩Bp2∩N1=A2

p �
�
�
�

�
�
�
�

��

Ap = var(CpWr{1})= var({1}WrCp)

��E= var({1}Wr{1})

Figure 6.1

Clearly A2
p = var(CpWr

∑∞
i=1Cp) holds. Further, as it is easy to see from Figure 6.1,

all the proper subvarieties V of A2
p containing A2

p ∩ Bp2 ∩Np form a chain. These

subvarieties V can be characterized by their nilpotency class:

V= A2
p∩Bp2∩Nc, (6.2)

where c = p,p+1, . . . . When c can be presented as

c =np−n=n(p−1) (6.3)

for some positive integer n, then V can be presented as

V= var


CpWr

n∑
i=1

Cp


. (6.4)

This means that for every subvariety V contained in A2
p and containing A2

p∩Bp2∩Np

there is an integer s ≥ 1 such that

var


CpWr

s∑
i=1

Cp


⊆ V⊆ var


CpWr

s+1∑
i=1

Cp


. (6.5)
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Moreover, for any s ≥ 1 there are the following p−2 subvarieties of A2
p “between”

var(CpWr
∑s
i=1Cp) and var(CpWr

∑s+1
i=1 Cp).

In addition, there are 2p−3 subvarieties of A2
p “between” the varieties A2

p∩Bp2∩Np

and Ap . None of them can be generated by wreath product of abelian groups.

Notice that the two final subvarieties, that is, the subvariety Ap and the trivial sub-

variety E can be generated by wreath products of abelian groups.

The condition, that V is generated by a wreath product of abelian groups, clearly,

cannot be replaced by the fact that V is generated by a wreath product (of any groups),

for, each variety V can be generated by a wreath product, namely, by TWr{1} =
{1}WrT , where T is an arbitrary group generating V.
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