γ -SETS AND γ -CONTINUOUS FUNCTIONS

WON KEUN MIN

Received 17 September 2001

We introduce a new class of sets, called γ -sets, and the notion of γ -continuity and investigate some properties and characterizations. In particular, γ -sets and γ -continuity are used to extend known results for semi-open sets and semi-continuity.

2000 Mathematics Subject Classification: 54C08, 54A10, 54A20.

1. Introduction. Let *X*, *Y*, and *Z* be topological spaces on which no separation axioms are assumed unless explicitly stated. Let *S* be a subset of *X*. The closure (resp., interior) of *S* will be denoted by cl *S* (resp., int *S*). A subset *S* of *X* is called a semi-open set [2] (resp., α -set [4]) if $S \subset cl(int(S))$ (resp., $S \subset int(cl(int(S)))$). The complement of a semi-open set (resp., α -set) is called semi-closed set (resp., α -closed set). The family of all semi-open sets (resp., α -sets) in *X* will be denoted by SO(*X*) (resp., $\alpha(X)$). A function $f: X \to Y$ is called semi-continuous [2] (resp., α -continuous [3]) if $f^{-1}(V) \in SO(X)$ (resp., $f^{-1}(V) \in \alpha(X)$) for each open set *V* of *Y*. A function $f: X \to Y$ is called semi-open [2] (resp., α -open [3]) if for every semi-open (resp., α -open) set *U* in *X*, f(U) is semi-open (resp., α -open) in *Y*.

A subset M(x) of a space X is called a semi-neighborhood of a point $x \in X$ if there exists a semi-open set S such that $x \in S \subset M(x)$. In [1], Latif introduced the notion of semi-convergence of filters and investigated some characterizations related to semi-open continuous functions. Now, we recall the concept of semi-convergence of filters. Let $S(x) = \{A \in SO(X) : x \in A\}$ and let $S_x = \{A \subset X : \exists \mu \subset S(x) \text{ such that } \mu \text{ is finite and } \cap \mu \subset A\}$. Then, S_x is called the semi-neighborhood filter at x. For any filter F on X, we say that F semi-converges to x if and only if F is finer than the semi-neighborhood filter at x.

2. y-sets

DEFINITION 2.1. Let (X, τ) be a topological space. A subset *U* of *X* is called a γ -set in *X* if whenever a filter *F* semi-converges to x and $x \in U$, $U \in F$.

The class of all γ -sets in X will be denoted by $\gamma(X)$. In particular, the class of all γ -sets induced by the topology τ will be denoted by γ_{τ} .

REMARK 2.2. From the definition of semi-neighborhood filter and γ -set, we can easily say that every semi-open set is a γ -set, but the converse is always not true.

EXAMPLE 2.3. Let *X* be the real number set with the usual topology. For each $x \in X$, since both (a, x] and [x, b) are semi-open sets containing *x*, where a < x < b, $\{x\}$ is

an element of S_x . For any filter F on X, if F semi-converges to x and since F includes S_x , then x is a y-set. But it is not semi-open.

REMARK 2.4. In a topological space (X, τ) , it is always true that

$$\tau \subset \alpha(X) \subset \mathrm{SO}(X) \subset \gamma(X). \tag{2.1}$$

THEOREM 2.5. Let (X, τ) be a topological space. The intersection of finitely many semi-open subsets in X is a γ -set.

PROOF. Let U_1 and U_2 be semi-open sets in *X*. For each $x \in U_1 \cap U_2$, we get $U_1 \cap U_2 \in S_x$. Thus, from the concept of the semi-convergence of filters, whenever every filter *F* semi-converges to x, $U_1 \cap U_2 \in F$.

DEFINITION 2.6. Let (X, τ) be a topological space. The γ -interior of a set A in X, denoted by $int_{\gamma}(A)$, is the union of all γ -sets contained in A.

THEOREM 2.7. Let (X, τ) be a topological space and $A \subset X$. (a) $\operatorname{int}_{Y}(A) = \{x \in A : A \in S_{X}\}.$ (b) A is γ -set if and only if $A = \operatorname{int}_{Y}(A)$.

PROOF. (a) For each $x \in int_{\gamma}(A)$, there exists a γ -set U such that $x \in U$ and $U \subset A$. From the notion of γ -set, the subset U is in the semi-neighborhood filter S_x . Since S_x is a filter, $A \in S_x$. Conversely, let $x \in A$ and $A \in S_x$, then there exist $U_1 \cdots U_n \in S(x)$ such that $U = U_1 \cap \cdots \cap U_n \subset A$. By Theorem 2.5, U is a γ -set and $U \subset A$. Thus $x \in int_{\gamma}(A)$. (b) The proof is obvious.

THEOREM 2.8. Let (X, τ) be a topological space. Then, the class $\gamma(X)$ of all γ -subsets in X is a topology on X.

PROOF. Since \emptyset and X are semi-open, they are also γ -sets in X. Let $A, B \in \gamma(X)$, $x \in A \cap B$, and let F be a filter. Suppose the filter F semi-converges to x. Then $A, B \in F$ and since F is a filter, $(A \cap B) \in F$. Thus, $A \cap B$ is a γ -set.

For each $\alpha \in I$ let $A_{\alpha} \in \gamma(X)$ and $U = \bigcup A_{\alpha}$. For each $x \in U$ and for a filter F semiconverging to x there exists a subset A_{α} of U such that $x \in A_{\alpha}$, and since A_{α} is γ -set, it is obvious that $A_{\alpha} \in F$. Since F is a filter, U is an element of the filter F and thus $U = \bigcup A_{\alpha}$ is a γ -set.

In a topological space (X, τ) , the class of all γ -sets induced by the topology τ will be denoted by (X, γ_{τ}) . A subset *B* of *X* is called a γ -closed set if the complement of *B* is a γ -set. Thus, the intersection of any family of γ -closed sets is a γ -closed set and the union of finitely many γ -closed sets is a γ -closed set. \Box

Obviously, we obtain the following theorem by definition of the γ -set.

THEOREM 2.9. Let (X,τ) be a topological space. A set G is γ -closed if and only if whenever F semi-converges to x and $A \in F$, $x \in A$.

DEFINITION 2.10. Let (X, τ) be a topological space and $A \subset X$,

$$cl_{\gamma}(A) = \{ x \in X : A \cap U \neq \emptyset \ \forall U \in S_{\chi} \}.$$

$$(2.2)$$

We call $cl_{\gamma}(A)$ the γ -closure of the set A.

Now we can get the following theorem.

THEOREM 2.11. Let (X, τ) be a topological space and let A be a subset of X. Then the following properties hold:

(1) $A \subset \operatorname{cl}_{\gamma}(A)$;

- (2) A is y-closed if and only if $A = cl_y A$;
- (3) $\operatorname{int}_{\gamma}(A) = X \operatorname{cl}_{\gamma}(X A);$
- (4) $\operatorname{cl}_{\gamma}(A) = X \operatorname{int}_{\gamma}(X A).$

3. γ -continuous and γ -irresolute functions

DEFINITION 3.1. Let (X, τ) and (Y, μ) be topological spaces. A function $f : X \to Y$ is called γ -continuous if the inverse image of each open set of Y is a γ -set in X.

Since the class of all γ -sets in a given topological space is also a topology, we get the following equivalent statements.

THEOREM 3.2. Let (X,τ) and (Y,μ) be topological spaces. If $f: (X,\tau) \to (Y,\mu)$ is a function, then the following statements are equivalent:

- (1) f is γ -continuous;
- (2) the inverse image of each closed set in Y is γ -closed;
- (3) $\operatorname{cl}_{\gamma}(f^{-1}(B)) \subset f^{-1}(\operatorname{cl}(B))$ for every $B \subset Y$;
- (4) $f(cl_{\gamma}(A)) \subset cl(f(A))$ for every $A \subset X$;
- (5) $f^{-1}(\operatorname{int}(B)) \subset \operatorname{int}_{Y}(f^{-1}(B))$ for every $B \subset Y$.

THEOREM 3.3. Let $f : (X, \tau) \rightarrow (Y, \mu)$ be a function between topological spaces. Then the following statements are equivalent:

- (1) f is γ -continuous at x;
- (2) if a filter F semi-converges to x, then f(F) converges to f(x);
- (3) for $x \in X$ and for each neighborhood U of f(x), there is a subset $V \in S_x$ such that $f(V) \subset U$.

PROOF. (1) \Rightarrow (2). Let *V* be any open neighborhood of f(x) in *Y*. Then $f^{-1}(V)$ is a γ -set containing *x*. Thus $f^{-1}(V)$ is an element in S_x . Since *F* semi-converges to *x* and f(F) is a filter, $V \in f(F)$. Consequently, f(F) converges to f(x).

 $(2)\Rightarrow(3)$. Let U be any γ -neighborhood of f(x). Since always S_x semi-converges to x, from the hypothesis $S_{f(x)} \subset f(S_x)$, and so $U \in f(S_x)$. Thus, there is a subset $V \in S_x$ such that $f(V) \subset U$.

 $(3)\Rightarrow(1)$. The proof is obvious.

We can easily verify the following result.

COROLLARY 3.4. Let $f : (X,\tau) \to (Y,\mu)$ be a function. If f is semi-continuous at $x \in X$, then whenever a filter F semi-converges to x in X, f(F) converges to f(x) in Y.

REMARK 3.5. The following example shows that the converse of Corollary 3.4 may not be true. And we say that every γ -continuous function is semi-continuous.

EXAMPLE 3.6. Let \mathbb{R} be the set of real numbers with the usual topology. We define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 0, if $x \in Q$ and otherwise, $f(x) = \sqrt{2}$. Clearly, a filter *F* semi-

converges to *x* if and only if $\dot{x} \in F$. Thus $\dot{f}(x) \in f(F)$ and so f(F) converges to f(x). For an open interval (-1,1) containing 0, $f^{-1}\{(-1,1)\} = Q$. Since *Q* is not semi-open in \mathbb{R} , *f* is not semi-continuous.

DEFINITION 3.7. Let (X, τ) and (Y, μ) be topological spaces. A function $f : X \to Y$ is called γ -irresolute if the inverse image of each γ set of Y is a γ -set in X.

The following theorems are obtained by Definition 3.7.

THEOREM 3.8. Let $f : (X, \tau) \rightarrow (Y, \mu)$ be a function between topological spaces. Then the following statements are equivalent:

- (1) f is γ -irresolute;
- (2) the inverse image of each γ -closed set in Y is a γ -closed set;
- (3) $\operatorname{cl}_{\gamma\tau}(f^{-1}(V)) \subset f^{-1}(\operatorname{cl}_{\gamma\mu}(V))$ for every $V \subset Y$;
- (4) $f(cl_{\gamma\tau}(U)) \subset cl_{\gamma\mu}(f(U))$ for every $U \subset X$;
- (5) $f^{-1}(\operatorname{int}_{\gamma\mu}(B)) \subset \operatorname{int}_{\gamma\tau}(f^{-1}(B))$ for every $B \subset Y$.

THEOREM 3.9. Let $f : (X, \tau) \rightarrow (Y, \mu)$ be a function between topological spaces. Then the following statements are equivalent:

- (1) f is γ -irresolute;
- (2) for $x \in X$ and for each $V \in S_f(x)$, there exists an element U in the semineighborhood filter S_x such that $f(U) \subset V$;
- (3) for each $x \in X$, if a filter F semi-converges to x, then f(F) semi-converges to f(x) in Y.

PROOF. (1) \Rightarrow (2). The proof is obvious.

 $(2)\Rightarrow(3)$. Let *V* be an element of the semi-neighborhood filter of $S_{f(x)}$ and *U* be an element of S_x and let *F* be a filter on *X* semi-converging to *x*. Then $f(S_x) \subset f(F)$. Since *U* is an element in S_x and f(F) is a filter, we can say that $V \in f(F)$. Consequently, f(F) semi-converges to f(x).

(3)⇒(1). Let *V* be any *y*-set in *Y* and suppose $f^{-1}(V)$ is not empty. For each $x \in f^{-1}(V)$, since the semi-neighborhood filter S_x semi-converges to *x* and the hypothesis, clearly, $f(S_x)$ semi-converges to *x*. And since *V* is *y*-set containing f(x) and $S_{f(x)} \subset f(S_x)$, $V \in f(S_x)$. Now we can take some *y*-set *U* in S_x such that $f(U) \subset V$. Thus, $U \subset f^{-1}(V)$ and since S_x is a filter, so $f^{-1}(V)$ is an element of S_x . And $f^{-1}(V)$ is a *y*-set in *X* from Theorem 2.7(b).

COROLLARY 3.10. Let $f : (X, \tau) \to (Y, \mu)$ be a function. If f is irresolute, then whenever a filter F semi-converges to x in X, f(F) semi-converges to f(x) in Y.

REMARK 3.11. We can get the following diagrams:

continuity $\Rightarrow \alpha$ -continuity \Rightarrow semi-continuity $\Rightarrow \gamma$ -continuity; α -irresolute \Rightarrow irresolute $\Rightarrow \gamma$ -irresolute.
(3.1)

DEFINITION 3.12. For two topological spaces (X, τ) and (Y, μ) , a function f: $(X, \tau) \rightarrow (Y, \mu)$ is γ -open if for every open set G in X, f(G) is a γ -set in Y.

THEOREM 3.13. Let $f : (X, \tau) \to (Y, \mu)$ be a function between topological spaces. Then, f is γ -open if and only if $int(f^{-1}(B)) \subset f^{-1}(int_{\gamma\mu}(B))$, for each $B \subset Y$. **PROOF.** Let $B \subset Y$ and $x \in int(f^{-1}(B))$. Then, $f(int(f^{-1}(B)))$ is a γ -set containing f(x). Since $f(int(f^{-1}(B))) \in S_{f(x)}$ and $S_{f(x)}$ is a filter, $B \in S_{f(x)}$. Thus, $f(x) \in int_{\gamma\mu}(B)$ and so $x \in f^{-1}(int_{\gamma\mu}(B))$.

Conversely, let *A* be an open in *X* and $y \in f(A)$. Then,

$$A \subset \operatorname{int} \left(f^{-1} f(A) \right) \subset f^{-1} \left(\operatorname{int}_{\gamma \mu} \left(f(A) \right) \right).$$
(3.2)

Let $x \in A$ be such that f(x) = y, then $x \in f^{-1}(\operatorname{int}_{y\mu}(f(A)))$. Then, $y \in \operatorname{int}_{y\mu}(f(A))$, and from Theorem 2.7(b) f(A) is a y-set.

REMARK 3.14. If any function is semi-open, then it is also γ -open. But the converse may not hold. Consider a function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 0 for all $x \in \mathbb{R}$, where the real number set \mathbb{R} with the usual topology. Then f is γ -open. For any semi-open set G, $f(G) = \{0\}$ and $\{0\}$ is not semi-open set, thus f is not semi-open.

THEOREM 3.15. Let $f : (X, \tau) \to (Y, \mu)$ be a function between topological spaces. The function f is γ -open if and only if for each $x \in X$ and for each neighborhood G of x, f(G) is also an element of semi-neighborhood filter $S_{f(x)}$ in Y.

PROOF. Let *G* be a neighborhood of *x*, then there exists an open set *U* such that $x \in U \subset G$. Since *f* is *y*-open, $f(x) \in f(U) = \operatorname{int}_{y\mu}(f(U))$, and so $f(U) \in S_{f(x)}$. Since $S_{f(x)}$ is a filter, $f(G) \in S_{f(x)}$.

Conversely, let $B \subset Y$ and $x \in \text{int}(f^{-1}(B))$, then since $\text{int}(f^{-1}(B))$ is an element of S_x and S_x is a filter, $f^{-1}(B) \in S_x$. By the hypothesis $f(f^{-1}(B)) \in S_{f(x)}$, and since $S_{f(x)}$ is a filter, B is also an element of $S_{f(x)}$. By Definition 2.6, $f(x) \in \text{int}_{\gamma\mu}(B)$ and by Theorem 3.13, the function f is γ -open.

REMARK 3.16. Now we get the following diagram:

open function $\Rightarrow \alpha$ -open function \Rightarrow semi-open function $\Rightarrow \gamma$ -open function.

(3.3)

REFERENCES

- [1] R. M. Latif, *Semi-convergence of filters and nets*, to appear in Soochow J. Math.
- [2] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [3] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, *α-continuous and α-open mappings*, Acta Math. Hungar. 41 (1983), no. 3-4, 213–218.
- [4] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), no. 3, 961-970.

WON KEUN MIN: DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, CHUNCHEON 200-701, KOREA

E-mail address: wkmin@cc.kangwon.ac.kr