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We consider the Fröbenius-Perron semigroup of linear operators associated to a semidy-
namical system defined in a topological space X endowed with a finite or a σ -finite regular
measure. We prove that if there exists a faithful invariant measure for the semidynami-
cal system, then the Fröbenius-Perron semigroup of linear operators is C0-continuous in
the space L1

µ(X). We also give a geometrical condition which ensures C0-continuity of the

Fröbenius-Perron semigroup of linear operators in the space Lpµ(X) for 1≤ p <∞, as well

as in the space L1
loc.
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1. Introduction. An important problem in the study of the dynamics of nonsingular

transformations is to know if they admit an absolutely continuous invariant measure

(acim). For interval maps, for example, we have a well-known theorem of Lasota and

Yorke [5], which roughly states that if the map is smooth by parts (Cr , with r ≥ 2) and

expanding, then it admits an acim, and with some additional conditions it is exact

with respect to this acim (for more details, see [5]); extensions of this result have

been obtained for the n-dimensional case (see [3]). When we deal with a continuous

semidynamical or a dynamical system (i.e., with a semi-flow or a flow) the problem is

more complicated.

A useful technical tool for studying the problem of the existence of an acim is the

Fröbenius-Perron operator (see [3, 4] for more details). Let X be a topological space

and let µ be a regular measure defined on the Borel σ -algebra of X (see Section 2.1);

if τ : X → X is a nonsingular transformation, then the Fröbenius-Perron operator as-

sociated to τ , denoted by Pτ (in fact Pτ depend also on µ, and sometimes we use the

notation Pτ,µ in order to indicate such dependence on the measure), is a linear oper-

ator, naturally defined in the space L1
µ(X). The central point here is that an invariant

density, that is, a nonnegative measurable function of unit norm and fixed for the

Fröbenius-Perron operator corresponds to a density of an acim for the transforma-

tion τ (see Section 2.4).

Let τt :X →X be a semidynamical system. Denote by Pt the Fröbenius-Perron oper-

ator associated to the transformation τt . The family {Pt}t≥0 = {Pt,µ}t≥0 satisfies

P0 = Id, Pt+s = Pt ◦Ps, ∀t,s ≥ 0, (1.1)

that is, {Pt}t≥0 is a semigroup of linear operators on L1
µ(X).

For a semigroup of continuous linear operators defined in the space L1
µ(X), a central

problem is to know if the semigroup is C0-continuous, that is, if the following relation
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holds:

lim
t→0

Pt(f )= f , ∀f ∈ L1
µ(X). (1.2)

If this is the case, we may consider the infinitesimal generator of the semigroup

which is defined by

A(f)= lim
t→0

Pt(f )−f
t

, (1.3)

for elements f ∈ L1
µ(X) for which the above limit exists (see [2, 6]). It is known that

a function f : X → R satisfies Pt(f )= f , for all t ≥ 0, if and only if A is defined for f
and the differential equation A(f)= 0 is satisfied. In this way, the problem of finding

or proving the existence of an acim for the semidynamical system is equivalent to the

problem of finding or proving the existence of a nontrivial zero for the infinitesimal

generator of the Fröbenius-Perron semigroup of linear operators associated, provided

that this semigroup is strongly continuous.

Let V be a smooth vector field defined in a smooth manifold, and let {τt}t∈R be

its flow. In this case, the Fröbenius-Perron operator, for f of class C1 is given by the

equation A(f)=∇(fV) (where ∇ denote the divergence operator). We recover in this

way a well-known theorem of Liouville which states that a flow preserves the canonical

measure in the manifold if and only if the vector field has divergence equal to zero. The

operatorA defined in (1.3) can be viewed as a generalization of the divergence operator

for continuous semi-flows for which the associated Fröbenius-Perron semigroup of

linear operators is C0-continuous.

In this paper, we study general conditions that ensure this C0-continuity.

In Section 2, we establish the notation and recall some basic results from the semi-

group theory, and the definition of the Fröbenius-Perron operator and some of its

properties.

In Section 3, we consider the case in which we know a priori that there exists a

faithful acim for the system, that is, an acim with a positive density. In that case,

we prove Theorem 3.3 which implies that the problem of finding a faithful acim is

equivalent to the problem of finding a zero for the infinitesimal generator.

Since the problem to deal with is exactly the problem of the existence of the acim,

we have to search an intrinsic property of the flow that ensures the strong continuity

of the semigroup. The condition is: there exists T > 0 such that

µ
(
τ−1
t (A)

)
µ(A)

≤M, ∀t ≤ T , ∀A∈�. (1.4)

To understand condition (1.4), we may consider the case of a dynamical system. In

that case, each transformation τt :X →X has an inverse, and the associated Fröbenius-

Perron operator is given by

Pt(f )=
(
f ◦τ−t

)·J(τ−t), (1.5)

where J(τ−t) is the density of the measure (τt)∗(µ), where (τt)∗µ(B)= µ(τ−1
t (B) for

B measurable, that is,

µ
(
τ−1
t (A)

)=
∫
A
J
(
τ−t

)
dµ (1.6)

for more details see [4].
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Thus, if we have an upper bound and good behaviour for J(τ−t) near zero, then

we use the dominated convergence theorem to prove that condition (1.2) holds for

continuous functions. The extension of the result for arbitrary integrable functions is

obtained by using the fact that the set of continuous functions is dense in the space

of integrable functions.

For a semidynamical system, we do not have an explicit expression like (1.5) for the

associated Fröbenius-Perron operator. However, a bound of J(τ−t) can be interpreted

as an estimate of the type that appears in condition (1.4).

In Section 4, we prove that, under general hypotheses, condition (1.4) holds if and

only if the Fröbenius-Perron semigroup of linear operators can be defined in the space

Lpµ(X), and it is C0-continuous in that space (see Theorems 4.1 and 4.2).

In Section 5, we prove that condition (1.4) also ensures strong continuity in the

space L1
µ(X)when (X,�,µ) is a probability space (Theorem 5.1). The precise statement

of the main result is the following (for the concepts involved, see Section 2).

Theorem 1.1. LetX be a topological space endowed with a regular probability mea-

sure µ. Let {τt}t≥0 be a continuous proper semidynamical system defined on X. If the

semidynamical system satisfies (1.4), then the associated Fröbenius-Perron semigroup

of linear operators is C0-continuous in L1
µ(X).

Finally, to make this work more complete, we deal with the L1
µ,loc(X) case in

Section 6. The presentation is quite informal since there are some technical difficulties

derived from the fact that L1
µ,loc(X) is only a locally convex space and not a Banach

space (we must add some hypotheses in this case in order to make the semigroup

approach to the acim problem available).

2. Basic results. In this section, we give a survey of definitions, results and nota-

tions that are necessary for the rest of the paper.

2.1. Measure theory. Let X be a topological space and let � be its Borel σ -algebra.

Let µ be a measure defined over �. We say that µ is regular if, for all A∈�, we have

µ(A)= sup
{
µ(K) :K ⊂A, K compact

}= inf
{
µ(C) :A⊂ C, C open

}
. (2.1)

We note that if X is a metric space, then a probability measure defined on the Borel

σ -algebra is regular. In general, if a measure µ is regular, then the set of continuous

functions with compact support is dense in the space Lpµ(X), for all 1≤ p <∞.

2.2. Semidynamical systems. Let X be a topological space. A family {τt}t≥0 of

continuous transformations τt : X → X is a semidynamical system if the following

conditions are satisfied:

(i) τ0 = Id;

(ii) τt ◦τs = τt+s for all t,s ≥ 0;

(iii) the map [0,∞[×X →X given by (t,x)→ τt(x) is continuous.

If each transformation τt has a continuous inverse τ−t , then the family {τt}t∈R is a

continuous flow. However, for general semidynamical systems, the maps τt may not

necessarily have an inverse.
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We say that a semidynamical system {τt}t≥0 is proper if, for each compact setK ⊂X
and for each t > 0, the set ∪s≤tτ−1

s (K) is compact.

2.3. Semigroups in Banach spaces. Let L be a Banach space with respect to a norm

‖·‖. A family {Tt}t≥0 of continuous linear operators Tt : L → L (t ≥ 0) is called a

semigroup of linear operators if the following conditions are satisfied:

T0 = Id, Tt+s = Tt ◦Ts, ∀t,s ≥ 0. (2.2)

For more details see [6] or [2]. We say that a semigroup {Tt}t≥0 of linear operators is

C0-continuous, if

lim
t→0

∥∥Tt(f )−f∥∥= 0, ∀f ∈ L. (2.3)

When a semigroup {Tt}t≥0 is C0-continuous, there exist constantsM ≥ 1 and w ≥ 0

such that, for all f ∈ L we have

∥∥Tt(f )∥∥≤Mewt‖f‖. (2.4)

If {Tt}t≥0 is a semigroup defined on L, then the adjoint family {T∗t }t≥0 is a semi-

group defined on the dual space L∗. By a duality theorem, we have that if {Tt}t≥0 is

C0-continuous and L is reflexive, then {T∗t }t≥0 is C0-continuous in L∗ (see [6, Corollary

10.6, page 41]).

2.4. Fröbenius-Perron operator. Let (X,µ,�) be a measure space. We say that a

transformation τ : X → X is nonsingular if for all A ∈� such that µ(A) = 0, we have

µ(τ−1(A))= 0. If a transformation τ :X →X is nonsingular, then associated to it there

exists a linear operator Pτ = Pτ,µ : L1
µ(X) → L1

µ(X), called Fröbenius-Perron operator

which is characterized by the relation∫
A
Pτ(f)dµ =

∫
τ−1(A)

f dµ, (2.5)

for all f ∈ L1
µ(X) and all A∈�.

It is well known (see [1, 4]) that a probability measure µ on X is τ-invariant (i.e.,

µ(τ−1(A)) = µ(A) for all A ∈�) if and only if Pτ(1) = 1 (this is also true for σ -finite

measure spaces, but in that case there is a problem with the space where the Fröbenius-

Perron operator is defined, as we will see). In general, τ preserves a measuredν = fdµ,

with f ∈ L1
µ(X) if and only if Pτ(f)= f . It is also well known that the Fröbenius-Perron

operator is a linear contraction in L1
µ(X) endowed with the L1

µ-norm, that is, ‖Pτ‖L1
µ
≤ 1

(see [3, 4]). Moreover, for f ∈ L1
µ(X) and a.e. x ∈ X, we have |P(f)(x)| ≤ P(|f |)(x).

On the other hand, if we change the measure µ by an absolutely continuous one given

by dν = gdµ, then the change in the Fröbenius-Perron operator is given by

Pτ,ν(f )= Pτ,µ(f ·g)g
. (2.6)

Another important property of the Fröbenius-Perron operator is given by the equality

∫
X
Pτ(f)·gdµ =

∫
X
f ·(g◦τ)dµ, (2.7)
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valid for all f ∈ L1
µ(X) and all g ∈ L∞µ (X). Equation (2.7) permits us define a linear

operator Kτ : L∞µ (X)→ L∞µ (X) given by Kτ(g)= g◦τ . The operator Kτ is well defined

if τ is a nonsingular transformation. This operator is called the Koopman operator.

For more details about these concepts see [1] or [4].

If we have a semidynamical system {τt}t≥0 such that each transformation τt is

nonsingular, then we denote the family of Fröbenius-Perron operators associated by

Pt = Pτt . This is a semigroup of continuous linear operators in the space L1
µ(X) (see

[4]). We will also use the notation Kt for the Koopman operator Kτt .
We note that the Fröbenius-Perron operator may also be defined and is bounded in

other spaces of functions if the transformation τ has a good behaviour, for example,

Lpµ(X) spaces or BV(X), the space of functions of bounded variation. For example, in

Section 4, we consider this operator in Lpµ(X) spaces, and we prove that the geometri-

cal condition (1.5) ensures continuity of each operator Pt (and also the C0-continuity

of the semigroup {Pt}t≥0 in the space Lpµ(X)). We note that if Pt is continuous in Lpµ(X),
then the duality equation (2.7) is valid for all f ∈ Lpµ(X) and for all g ∈ Lqµ(X), with

1/p+1/q = 1, that is, Kt is the adjoint operator of Pt .

2.5. Conditional expectation and Fröbenius-Perron operator. Let (X,�,µ) be a

probability space. Suppose τ :X →X preserves µ, then we have another way of intro-

ducing the Fröbenius-Perron operator associated to τ . This is given for f ∈ L1
µ(X) by

the equality

Pτ(f)◦τ = E
(
f ,τ−1(�)

)
, (2.8)

where the expression on the right-hand side denotes the conditional expectation of

f with respect to the σ -algebra τ−1(�). In Section 3, we use this approach and the

following result of convergence that arises in Martingale theory (see [1, page 81]).

Theorem 2.1. Let {�n}n∈N be a collection of σ -algebras such that �n ⊂�n+1, for

all n. Then E(f ,�n) converges to E(f ,�∞), in the L1 sense, where �∞ denotes the

σ -algebra generated by all the �n.

3. Strong continuity with an absolutely continuous invariant measure. Let X be

a topological space and let µ be a regular probability measure defined on the Borel

σ -algebra on X. In this section, we consider a nonsingular semidynamical system

{τt}t≥0 defined over X. We prove that if there exists a faithful acim (an acim with

positive density), then the associated Fröbenius-Perron semigroup is C0-continuous

in L1
µ(X). We first prove the following two lemmas.

Lemma 3.1. Suppose that {τt}t≥0 has an acim ν such that dν = gdµ, with g > 0

(a.e.). Then,

lim
t→0

(
Pt,ν(f )◦τt

)= f , (3.1)

for each f ∈ L1
ν(X) in the L1

ν(X) sense.
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Proof. The sequence of σ -algebras {�t}t≥0, where �t = τ−1
t (�) for all t ≥ 0, is

increasing as t goes to zero. By the martingale convergence theorem, we have, for f
in L1

ν(X),

lim
t→0

(
Pt,ν(f )◦τt

)= E(f ,�∞
)
, (3.2)

where �∞ is the σ -algebra generated by all the σ -algebras �t for t > 0. Thus, we

must prove that �∞ is equal to �. For this, let A be an open set. By continuity of the

semidynamical system {τt}t≥0, the function |χA◦τt−χA| converges pointwise to zero

as t goes to zero, and by the dominated convergence theorem, we have

ν
(
τ−1
t (A)(A)

)=
∫
X

∣∣�A ◦τt−�A
∣∣dν (3.3)

converges to zero as t goes to zero. Thus, for each n ∈ N, we may consider a se-

quence tn > 0 such that ν(τ−1
tn (A)(A)) < 1/2n. From this, it is easy to see that

ν(∪∞n≥mτ−1
tn (A)(A)) < 1/2m−1. Hence,

ν
((∩∞m=1∪∞n≥mτ−1

tn (A)
)(A))≤ ν(∩∞m=1

(∪∞n≥mτ−1
tn (A)(A)

))= 0. (3.4)

This implies that A∈�∞, and since A is an arbitrary open set, this implies that �∞ is

equal to �, which completes the proof of Lemma 3.1.

Lemma 3.2. Suppose that {τt}t≥0 has a faithful acim ν given by dν = gdµ, with

g ∈ L1
µ(X) and g > 0 (a.e.). Then, for each f ∈ L1

ν(X),

lim
t→0

Pt,ν(f )= f (3.5)

in the L1
ν(X) sense.

Proof. Let ε be an arbitrary positive number. We take a sequence {fn}n∈N of

bounded continuous functions that converges to a function f ∈ L1
ν(X) and choose

n0 ∈N such that ‖fn0−f‖ ≤ ε/4. By the invariance of ν and since the operator Pt,ν is

a linear contraction, we have

∥∥Pt,ν(f )−f∥∥L1
ν
≤ ∥∥Pt,ν(f )−Pt,ν(fn0

)∥∥
L1
ν
+∥∥Pt,ν(fn0

)−fn0

∥∥
L1
ν
+∥∥fn0−f

∥∥
L1
ν

≤ 2
∥∥f −fn0

∥∥
L1
ν
+∥∥Pt,ν(fn0

)◦τt−fn0 ◦τt
∥∥
L1
ν

≤ ε
2
+∥∥Pt,ν(fn0

)◦τt−fn0

∥∥
L1
ν
+∥∥fn0−fn0 ◦τt

∥∥
L1
ν
.

(3.6)

For small t, by Lemma 3.1 we have ‖Pt,ν(fn0)◦τt−fn0‖L1
ν
≤ ε/4. Now, by continuity

of the semidynamical system and by the dominated convergence theorem, we have

limt→0‖fn0 −fn0 ◦τt‖L1
ν
= 0. Thus, for t small we have ‖fn0 −fn0 ◦τt‖L1

ν
≤ ε/4. This

implies, for t small, that ‖Pt,ν(f )−f‖L1
ν
≤ ε, which completes the proof of Lemma 3.2.

Theorem 3.3. Suppose that the semidynamical system {τt}t≥0 has a faithful acim.

Then, the semigroup {Pt,µ}t≥0 is C0-continuous in L1
µ(X).
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Proof. Let ν the faithful acim given by dν = gdµ, with g ∈ L1
µ(X) and g > 0 (a.e.).

Let f ∈ L1
µ(X). Then, f/g ∈ L1

ν(X), and we have, by equality (2.6), that

∥∥Pt,µ(f )−f∥∥L1
µ
=
∫
X

∣∣Pt,µ(f )−f∣∣dµ
=
∫
X

∣∣∣∣∣gPt,ν
(
f
g

)
−f

∣∣∣∣∣dµ
=
∫
X

∣∣∣∣∣Pt,ν
(
f
g

)
− f
g

∣∣∣∣∣dν
=
∥∥∥∥∥Pt,ν

(
f
g

)
− f
g

∥∥∥∥∥
1

�→ 0 as t �→ 0.

(3.7)

By Lemma 3.2, the last quantity converges to zero as t goes to zero, which proves

the theorem.

4. Strong continuity in Lp . In this section, we consider a semidynamical system

defined over a topological space X provided of a regular measure µ defined on its

Borel σ -algebra, and prove that condition (1.4) is equivalent to strong continuity of

the associated Fröbenius-Perron semigroup defined over the space Lpµ(X).
We say that a semidynamical system is strongly nonsingular if it satisfies condition

(1.4). It is easy to see that the following conditions for being strongly nonsingular are

equivalent:

(i) for each t > 0, there exists Mt such that

µ
(
τ−1
s (A)

)≤Mtµ(A) (4.1)

for all s ≤ t and all A∈�;

(ii) there exist T > 0 and M =MT > 0 such that

µ
(
τ−1
s (A)

)≤MTµ(A) (4.2)

for all A∈� and all s ≤ T .

In fact, condition (4.1) implies trivially (4.2), and if condition (4.2) is assumed, then

condition (4.1) holds by putting Mt =Mt/T+1.

Finally, it is easy to see that every strongly nonsingular semidynamical system is

nonsingular.

Theorem 4.1. Let {τt}t≥0 be a nonsingular semidynamical system such that its as-

sociated semigroup of Fröbenius-Perron operators {Pt}t≥0 is a C0-continuous semigroup

of bounded linear operators in the space Lpµ(X) for some 1 < p < ∞. Then {τt}t≥0 is

strongly nonsingular.

Proof. By the hypothesis, the semigroup of linear operators {Pt}t≥0 is a C0-semi

group over a reflexive space. Thus, the semigroup of Koopman operators {Kt}t≥0 is a

C0-semigroup in the space Lqµ(X), where q = p/(p−1) is the conjugate of p (see [6,

Corollary 10.6, page 41]). Therefore, there exist constants M ≥ 1 and w > 0 such that,

for all f ∈ Lqµ(X), we have that ‖Kt(f)‖Lqµ ≤ Mewt‖f‖Lqµ . Now, if µ(A) is finite, then
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χA ∈ Lqµ(X) and ‖Kt(χA)‖Lqµ ≤ Mewt‖χA‖Lq . Thus, ‖χτ−1
t (A)‖Lqµ ≤ Mewt(µ(A))1/q and

from this it follows that µ(τ−1
t (A))≤ (Mewt)qµ(A), which proves our theorem.

If a measure µ is regular and the semidynamical system {τt}t≥0 is proper, then we

have the converse of the above result.

Theorem 4.2. Suppose the measure µ is regular on X. If {τt}t≥0 is a proper and

strongly nonsingular semidynamical system, then, for all 1 < p < ∞, the associated

Fröbenius-Perron semigroup {Pt}t≥0 is a C0-semigroup of linear bounded operators in

the space Lpµ(X).

The idea for the proof of Theorem 4.2, is to prove that condition (4.1) ensures strong

continuity for the dual semigroup {Kt}t≥0 in the dual space Lqµ(X). For this we first

prove the following two lemmas.

Lemma 4.3. Under the hypotheses of Theorem 4.2, ‖Ks(f)‖Lqµ ≤ M
1/q
t ‖f‖Lqµ for all

f ∈ Lqµ(X) and all s ≤ t.
Proof. Let f ∈ Lqµ(X) be a simple function given by f =∑n

i=1λiχAi , with Ai∩Aj =
∅, for i≠ j, then we have

‖f‖Lqµ =
( n∑
i=1

∣∣λi∣∣qµ(Ai)
)1/q

,
∥∥Kt(f)∥∥Lqµ =

( n∑
i=1

∣∣λi∣∣qµ(τ−1
s
(
Ai
)))1/q

. (4.3)

On the other hand, by condition (4.1) we have, for s ≤ t, that
( n∑
i=1

∣∣λi∣∣qµ(τ−1
s
(
Ai
)))1/q

≤
( n∑
i=1

∣∣λi∣∣qMtµ
(
Ai
))1/q

, (4.4)

and this implies that ‖Ks(f)‖Lqµ ≤M
1/q
t ‖f‖Lqµ . Finally, since the set of simple functions

is dense in the space Lqµ(X), the lemma follows.

Lemma 4.4. If the hypotheses of Theorem 4.1 are satisfied, then the Koopman semi-

group of operators {Kt}t≥0 is a C0-continuous semigroup of linear bounded operators

in the space Lqµ(X).

Proof. Let f ∈ Lqµ(X) and let ε > 0. We take a sequence {fn}n∈N of continuous

functions with compact support, sayK, such that limn→∞‖fn−f‖Lqµ = 0 and we choose

n0 ∈N such that
∥∥f −fn0

∥∥
Lqµ ≤

ε
2
(
M1/q+1

) , (4.5)

where M = MT is fixed. By continuity of the Koopman semigroup, the function

Ks(fn0)−fn0 converges pointwise to zero as s goes to zero. If K is the support of

fn0 , then, since the semidynamical system is proper, the set K̃ = ∪s≤tτ−1
s (K) is com-

pact. Now, it is clear that supp(Ks(fn0)−fn0) ⊂ K̃ for s ≤ t, and by the dominated

convergence theorem we have lims→0‖Ks(fn0)−fn0‖Lqµ = 0. Thus, we may take t0 > 0

such that, for all s ≤ t0, we have
∥∥Ks(fn0

)−fn0

∥∥
Lqµ ≤

ε
2
. (4.6)
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Using inequalities (4.5) and (4.6), we have, for s ≤min{T ,t0}, that

∥∥Ks(f)−f∥∥Lqµ ≤ ∥∥Ks(f)−Ks(fn0

)∥∥
Lqµ +

∥∥Ks(fn0

)−fn0

∥∥
Lqµ +

∥∥fn0−f
∥∥
Lqµ

≤ (M1/q+1
) ε

2
(
M1/q+1

) + ε
2

= ε
(4.7)

which proves the lemma.

Proof of Theorem 4.2. It follows directly by the duality theorem (see Sections

2.3 and 2.4).

5. Strong continuity in L1. One of the most important applications of Fröbenius-

Perron operator arise in probability spaces by considering its action over the space

L1
µ(X). For these spaces, we have the following result.

Theorem 5.1. LetX be a topological space endowed with a regular probability mea-

sure µ and let {τt}t≥0 be a proper semidynamical system. If the semidynamical system

is strongly nonsingular, then the associated Fröbenius-Perron semigroup of operators

{Pt}t≥0 is C0-continuous in the space L1
µ(X).

Proof. Let f ∈ L1
µ(X) and ε > 0. We fix p > 0 and consider a sequence {fn}n∈N in

Lpµ(X) such that limn→∞‖fn−f‖L1
µ
= 0. Since µ(X)= 1 we have

∥∥Pt(f )−f∥∥L1
µ
≤ ∥∥Pt(f )−Pt(fn)∥∥L1

µ
+∥∥Pt(fn)−fn∥∥L1

µ
+∥∥fn−f∥∥L1

µ

≤ 2
∥∥fn−f∥∥L1

µ
+∥∥Pt(fn)−fn∥∥L1

µ

≤ 2
∥∥fn−f∥∥L1

µ
+∥∥Pt(fn)−fn∥∥Lpµ .

(5.1)

We choose n0 such that ‖f −fn0‖L1
µ
≤ ε/3. By Theorem 4.1, there exists tε > 0 such

that ‖Pt(fn0)−fn0‖Lpµ ≤ ε/3 for all t ≤ tε. Therefore, for t ≤ tε we have ‖Pt(f )−f‖L1
µ
≤

ε. Since f and ε are arbitrary, this finishes the proof.

Theorem 5.1 is useful for compact metric spaces of finite measure, in that case

{τt}t≥0 is proper. For noncompact or unbounded metric spaces with nonfinite mea-

sure we assume that the system is strongly continuous over bounded sets, that is, we

assume that for each ball

B = B(x0,r
)= {x ∈X : d

(
x,x0

)
< r

}
, (5.2)

there exists a constant M =M(x,r) and T = T(x,r) such that

µ
(
τ−1
t (A)∩B

)≤Mµ(A∩B) (5.3)

for all t ≤ T and A∈�. Now we have the following theorem.

Theorem 5.2. Under the hypotheses of Theorem 5.1, suppose also that condition

(5.3) is true and the measure is finite over bounded sets. Then, the Fröbenius-Perron

semigroup is C0-continuous in L1
µ(X).
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The proof of Theorem 5.2 is based in the reduction of it to Theorem 5.1 in each ball

B = B(x,r). For that, we define a new measure µ̃ in X by putting

µ̃(A)= µ(A∩B). (5.4)

This new measure is finite, and the semidynamical system {τt}t≥0 is strongly non-

singular with respect to µ̃. By Theorem 4.2, we have, for each f ∈ L1
µ̃(X), that

lim
t→0

P̃t(f )= f (5.5)

in the L1
µ̃ sense, where P̃t = Pt,µ̃ . Using this, we prove the following lemma.

Lemma 5.3. Let f ∈ L1
loc(X,µ) be a function of compact support K. Then,

lim
t→0

∫
K

∣∣Pt(f )−f∣∣dµ = 0. (5.6)

Proof. We take a ball B = B(x,r) containing K and we have

∫
K

∣∣Pt(f )−f∣∣dµ ≤
∫
B

∣∣Pt(f )−f∣∣dµ
≤
∫
B

∣∣Pt(f )− P̃t(f )∣∣dµ+
∫
B

∣∣P̃t(f )−f∣∣dµ̃.
(5.7)

By (5.5), we have to prove that

lim
t→0

∫
B

∣∣P̃t(f )−Pt(f )∣∣dµ = 0. (5.8)

Let k be a positive integer and let Ck,t be the set

Ck,t =
{
x ∈ B :

∣∣Pt(f )(x)− P̃t(f )(x)∣∣≥ 1
k

}
. (5.9)

We claim that µ(Ck,t) converges to zero when t goes to zero, for all k. To prove the

claim, we consider the sets

C1
k,t =

{
x ∈ B : Pt(f )(x)− P̃t(f )(x)≥ 1

k

}
,

C2
k,t =

{
x ∈ B : Pt(f )(x)− P̃t(f )(x)≤−1

k

}
.

(5.10)

By (2.6), we have

∫
C1
k,t

Pt(f )dµ−
∫
C1
k,t

P̃t(f )dµ =
∫
τ−1
t (C1

k,t)
f dµ−

∫
τ−1
t (C1

k,t)
f dµ̃, (5.11)

and from this, we have
µ
(
C1
k,t
)

k
≤
∫
τ−1
t (C1

k,t)−B
f dµ. (5.12)

As in the proof of Lemma 3.1, and using the fact that the system is proper, it is not

difficult to see that µ(τ−1
t (B)−B) converges to zero when t goes to zero, which implies
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that µ(C1
k,t) converges to zero. Likewise, µ(C2

k,t) converges to zero with t, and this

proves our claim.

To finish the proof of Lemma 5.3, let ε > 0. We choose k≥ 2µ(B)/ε and we have∫
B

∣∣Pt(f )− P̃t(f )∣∣dµ =
∫
Ck,t

∣∣Pt(f )− P̃t(f )∣∣dµ+
∫
B−Ck,t

∣∣Pt(f )− P̃t(f )∣∣dµ,
∫
B

∣∣Pt(f )− P̃t(f )∣∣dµ ≤ ε
2
+
∫
Ck,t

∣∣Pt(f )− P̃t(f )∣∣dµ.
(5.13)

Finally, we have∫
Ck,t

∣∣Pt(f )− P̃t(f )∣∣dµ ≤
∫
Ck,t

(
Pt
(|f |)+ P̃t(|f |))dµ

=
∫
τ−1
t (Ck,t)

|f |dµ+
∫
τ̃−1
t (Ck,t)

|f |dµ̃.
(5.14)

Since µ̃(τ−1
t (Ck,t))≤ M̃µ(Ck,t) and µ(τt(C−1

k,t ))≤ M̃µ(Ck,t)+µ(τ−1
t (B)−B), these mea-

sures converge to zero (by the claim), and then the last two integrals have values less

than ε/4 for t small. This implies that∫
B

∣∣Pt(f )− P̃t(f )∣∣dµ ≤ ε (5.15)

for t small, which finishes the proof.

Proof of Theorem 5.2. Let f ∈ L1
µ(X) and ε > 0 arbitrary. We take a sequence

{fn}n∈N converging to f and such that each fn has compact support. Then we have,

as in the proof of Theorem 4.2, that∫
X

∣∣Pt(f )−f∣∣dµ ≤ 2
∥∥f −fn∥∥L1+

∫
X

∣∣Pt(fn)−fn∣∣dµ. (5.16)

If we take n0 ∈N such that ‖f −fn0‖ ≤ ε/4, then we have

∫
X

∣∣Pt(f )−f∣∣dµ ≤ ε
2
+
∫
X

∣∣Pt(fn0

)−fn0

∣∣dµ. (5.17)

If K is a compact set containing supp(fn0), then

∫
X

∣∣Pt(f )−f∣∣dµ ≤ ε
2
+
∫
K

∣∣Pt(fn0

)−fn0

∣∣dµ+
∫
X−K

∣∣Pt(fn0

)∣∣dµ. (5.18)

By Lemma 5.3 we have, for t small enough,∫
K

∣∣Pt(fn0

)−fn0

∣∣dµ ≤ ε
4
. (5.19)

Also, ∫
X−K

∣∣Pt(fn0

)∣∣dµ ≤
∫
X−K

Pt
(∣∣fn0

∣∣)dµ =
∫
τ−1
t (X−K)

∣∣fn0

∣∣dµ. (5.20)

Since
∫
X−K |fn0 |dµ = 0 and µ{τ−1

t (X−K)−(X−K)} converges to zero, we have, for t
small, ∫

X−K

∣∣Pt(fn0

)∣∣dµ ≤ ε
4
. (5.21)
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This implies that for small t, we have

∫
X

∣∣Pt(f )−f∣∣dµ ≤ ε, (5.22)

which finishes the proof.

6. Strong continuity in L1
loc. Since L1

loc(X) is not a Banach space, the approach of

Section 2.3 is not advisable here. However, there is a more general setting of semigroup

theory for locally convex spaces (see [7]). In this case, the hypothesis for the family

{Tt}t≥0 of continuous linear operators Tt : L→ L are the following conditions:

(i) T0 = Id;

(ii) Tt ◦Ts = Tt+s for all t,s ≥ 0;

(iii) limt→t0 Tt(f )= Tt0(f ) for all t0 ≥ 0 and f ∈ L;

(iv) {Tt}t≥0 is an equicontinuous family, that is, for any continuous seminorm p
on L, there exists a continuous seminorm q such that p(Tt(f )) ≤ q(f) for all

t ≥ 0 and f ∈ L.

If these conditions are satisfied, then the equality A(f)= 0 is equivalent to Tt(f )=
f for all t ≥ 0.

We consider the case where L= L1
µ,loc(X) and {Tt}t≥0 is the Fröbenius-Perron semi-

group of linear operators associated to a semidynamical system {τt}t≥0. Since condi-

tions (i) and (ii) hold trivially, we consider conditions (iii) and (iv). For this, we assume

condition (5.3) and that the semidynamical system is strongly proper, that is, for any

compact set K the set K̃ =∪t≥0τ−1
t (K) is a compact set. This hypothesis is restrictive,

but it allows us to continue with our approach. In fact, condition (iv) follows from it

since for all f ≥ 0 and all t ≥ 0, we have

∫
K
Pt(f )dµ =

∫
τ−1
t (K)

f dµ ≤
∫
K̃
f dµ. (6.1)

Finally, using the method of the proof of Theorem 5.2, it is possible to prove that

condition (iii) also holds. Then, we have extended Theorem 5.2 to L1
µ,loc(X) for a large

class of systems defined over X.
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