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1. Introduction. Iterations processes are powerful tools for solving both differen-

tial and integral equations in a complete metric space. One of the generalizations of

the Picard iterations scheme consists of iterations generated by an infinite sequence

(Tn) of operators Tn and described by

x0 ∈X, xn+1 = Tn
(
xn
)
, (1.1)

where X is a complete metric space and Tn a selfmap of X.

This type of schemes was considered and studied by some authors using various

contractive conditions (see [1] and the references therein).

The consideration of (1.1) is motivated by its application to Hammerstein integral

equations. Its use gives rise to new sufficient conditions for the existence of solutions

of these equations. For that purpose, (1.1) is formulated as follows:

x0 ∈X, Xn+1 = Tnf
(
xn
)
, (1.2)

where both Tn and f are selfmaps of X. The contractive condition to be satisfied in

our paper is given by

d
(
Tmfx,Tnfy

)≤max
{
γd(x,y),ad

(
x,Tmfx

)+bd(y,Tnfy)}, (1.3)

for anym,n∈N and for any x,y ∈X, where 0≤ γ < 1 and a, b are given real numbers

such that 0≤ a, b < 1 with a+b < 1.

A slightly weakened contractive condition considered is described by

d
(
Tnfx,Tn+1fy

)≤max
{
γd(x,y),ad

(
x,Tnfx

)+bd(y,Tn+1fy
)}
, (1.4)

for all x,y ∈X and all n sufficiently large, where γ, a, and b are the numbers appear-

ing in (1.3).

The type of Hammerstein integral equations we consider in this paper is in the form

u(x)+
∫
Ω
k(x,y)f

(
y,u(y)

)
dy = 0, (1.5)
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where Ω is a measurable subset of RN (or CN ), N � 1 and k(x,y), f(x,t) are real- or

complex-valued functions defined on Ω×Ω and on Ω×R (or on Ω×C), respectively

and measurable in both variables. We are looking for solutions of (1.5) in the Banach

space L1(Ω) of real- or complex-valued functions u on Ω that are Lebesgue integrable

on Ω, equipped with its usual norm ‖·‖L1(Ω) given by

‖u‖L1(Ω) =
∫
Ω

∣∣u(x)∣∣dx. (1.6)

2. Hammerstein integral equations

Theorem 2.1. Let Ω, f(x,t), and k(x,y) be as described above and such that

(1) f(x,u(x))∈ L1(Ω) for all u∈ L1(Ω),
(2) for every u∈ L1(Ω), there exists a nonnegative function β∈ L1(Ω) such that

for almost all x ∈Ω,
∫
Ω |k(x,y)u(y)|dy ≤ β(x),

(3) there exists a real number 0≤ h< 1/3 such that
∫
Ω

∣∣k(x,y)[u(y)−v(y)]∣∣dy ≤ h
∣∣∣∣u(x)−

∫
Ω
k(x,y)v(y)dy

∣∣∣∣ (2.1)

for all u,v ∈ L1(Ω) and for almost all x,y in Ω,

(4) |f(y,u(y))−v(y)| ≤ |u(y)−v(y)| for all u,v ∈ L1(Ω).
Then, (1.5) has a unique solution in L1(Ω).

Proof. For every u∈ L1(Ω), we may set

fu(x)= f (x,u(x)),
Kfu(x)=

∫
Ω
k(x,y)f

(
y,u(y)

)
dy.

(2.2)

By conditions (1) and (2),Kf defines an operator from L1(Ω) into itself. From condition

(3), we deduce that

‖Ku−Kv‖L1(Ω) ≤ h‖u−Kv‖L1(Ω). (2.3)

For all natural number n≥ 1, we may set

Knfu(x)=K(Kn−1fu(x)
)=

∫
Ω
k(x,y)Kn−1fu(y)dy (2.4)

with the convention that K0 = I.
First we prove by mathematical induction on n ∈N0, with N0 =N\{0} that for all

u,v ∈ L1(Ω) and all n,m∈N0 we have

∥∥Knfu−Kmfv∥∥L1(Ω) ≤ hn
∥∥fu−Kmfv∥∥L1(Ω). (2.5)

Indeed, for n= 1 we have by (2.3),

∥∥Kfu−Kmfv∥∥L1(Ω) =
∥∥K(fu−Km−1fv

)∥∥
L1(Ω) ≤ h

∥∥fu−Kmfv∥∥L1(Ω). (2.6)

Assume that for n= r we have

∥∥Krfu−Kmfv∥∥L1(Ω) ≤ hr
∥∥fu−Kmfv∥∥L1(Ω), (2.7)
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then, for n= r +1 we get

∥∥Kr+1fu−Kmfv∥∥L1(Ω) ≤ h
∥∥Krfu−Kmfv∥∥L1(Ω) ≤ hr+1

∥∥fu−Kmfv∥∥L1(Ω) (2.8)

which establishes the claim.

But conditions (1) and (4) imply that

∥∥fu−Kmfv∥∥L1(Ω) ≤
∥∥u−Kmfv∥∥L1(Ω). (2.9)

Furthermore, we know that

∥∥u−Kmfv∥∥L1(Ω) ≤
∥∥u−Knfu∥∥L1(Ω)+

∥∥Knfu−Kmfv∥∥L1(Ω), (2.10)

as 0<h< 1, it is clear that hn ≤ h and hence, we get

∥∥Knfu−Kmfv∥∥L1(Ω) ≤ h
∥∥u−Knfu∥∥L1(Ω)+h

∥∥Knfu−Kmfv∥∥L1(Ω), (2.11)

which finally yields

∥∥Knfu−Kmfv∥∥L1(Ω) ≤
h

1−h
∥∥u−Knfu∥∥L1(Ω)+

h
1−h

∥∥v−Kmfv∥∥L1(Ω). (2.12)

Condition (1.3) is, therefore, satisfied, with a= b = h/(1−h) and

h
1−h +

h
1−h =

2h
1−h < 1, because 3h< 1. (2.13)

Now, for arbitrary u0 ∈ L1(Ω), we may consider the approximation process (1.2) in

the following form:

u0 ∈ L1(Ω), un+1 =Knf
(
un
)
, (2.14)

and show that it converges. Indeed, by mathematical induction onn∈N0, we establish

that
∥∥un−un+1

∥∥
L1(Ω) ≤

(
max

{
γ,

h
1−2h

})n∥∥u0−u1

∥∥
L1(Ω), (2.15)

where γ is given in (1.3). Indeed, for n= 1 we have by (2.14) and by (2.12) that

∥∥u1−u2

∥∥
L1(Ω) =

∥∥K0fu0−Kfu1

∥∥
L1(Ω)

≤ h
1−h

∥∥u0−u1

∥∥
L1(Ω)+

h
1−h

∥∥u1−u2

∥∥
L1(Ω),

(2.16)

from which we deduce that

∥∥u1−u2

∥∥
L1(Ω) ≤

h
1−2h

∥∥u0−u1

∥∥
L1(Ω), (2.17)

hence (2.15) is valid for n= 1.



356 ALBERT K. KALINDE

Assume now that (2.15) is true for n = r , we prove it for n = r +1. Indeed, using

(2.14) and (2.12) again we get

∥∥ur+1−ur+2

∥∥
L1(Ω) =

∥∥Krfur −Kr+1fur+1

∥∥
L1(Ω)

≤ h
1−h

∥∥ur −Krfur∥∥L1(Ω)+
h

1−h
∥∥ur+1−Kr+1fur+1

∥∥
L1(Ω),

(2.18)

from which we deduce, after applying (2.14) again, that

∥∥ur+1−ur+2

∥∥
L1(Ω) ≤

h
1−2h

∥∥ur −ur+1

∥∥
L1(Ω). (2.19)

Then, the induction hypothesis applied to the right-hand side yields that (2.15) is valid

for n= r +1 and this establishes the claim.

Now set α=max{γ,h/(1−2h)}, it is clear that 0≤α< 1.

We show that (un) is a Cauchy sequence. Indeed, for all p ∈Nwe obtain by applying

(2.15) that

∥∥un−un+p∥∥L1(Ω) ≤
∥∥un−un+1

∥∥
L1(Ω)+···+

∥∥un+p−1−un+p
∥∥
L1(Ω)

≤αn(1+α+α2+···+αp−1)∥∥u0−u1

∥∥
L1(Ω)

≤ αn

1−α
∥∥u0−u1

∥∥
L1(Ω).

(2.20)

This implies that (un) is a Cauchy sequence in L1(Ω) and hence converges to, say

w ∈ L1(Ω).
We prove that Knfw =w for all n∈N0. For arbitrary r ∈N0, we get

∥∥w−Krfw∥∥L1(Ω) ≤
∥∥w−un∥∥L1(Ω)+

∥∥un−Knfun∥∥L1(Ω)+
∥∥Knfun−Krfw∥∥L1(Ω).

(2.21)

Applying (2.12) and (2.14) finally yields

∥∥w−Krfw∥∥L1(Ω) ≤
1−h
1−2h

∥∥w−un∥∥L1(Ω)+
1

1−2h
∥∥un−un+1

∥∥
L1(Ω). (2.22)

For n tending to infinity, the right-hand side converges to 0 and this is valid for any

r ∈N0. Hence, the claim is true and, therefore, (1.5) has a unique solution.

Theorem 2.2. LetΩ be a measurable set inRN (or inCN ) withN � 1. Let f(x,t) be a

function defined onΩ×R (or onΩ×C), that is, real- or complex-valued and measurable

in both variables. Let fk(x,y) be a real- or complex-valued function defined on Ω×
Ω, that is, the limit almost everywhere on Ω×Ω of a sequence (kn(x,y)) of real- or

complex-valued functions kn(x,y) that are measurable in both variables on Ω×Ω.

Assume that these functions are such that

(i) f(x,u(x))∈ L1(Ω) for every u∈ L1(Ω),
(ii) for every u ∈ L1(Ω), there exists a nonnegative function β(x,y) ∈ L1(Ω×Ω)

such that |kn(x,y)u(y)| ≤ β(x,y) a.e. on Ω×Ω for every n∈N,
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(iii) there exist real numbers 0≤ a, b < 1 with a+b < 1, such that

(1+a)
∫
Ω

∣∣kn(x,y)f (y,u(y))∣∣dy
+(1+b)

∫
Ω

∣∣kn+1(x,y)f
(
y,v(y)

)∣∣dy ≤ a∣∣u(x)∣∣+b∣∣v(x)∣∣
(2.23)

for all u,v ∈ L1(Ω), for almost all x ∈Ω and for all n∈N sufficiently large.

Then (1.5) has a unique solution in L1(Ω).

Proof. Let u ∈ L1(Ω) be arbitrary. For every n ∈ N sufficiently large, as kn(x,y)
is measurable in both variables, conditions (i) and (ii) imply, by Fubini’s theorem ap-

plicable to β(x,y), that the quantity Knfu defined on Ω by

Knfu(x)=
∫
Ω
kn(x,y)f

(
y,u(y)

)
dy (2.24)

is a real- or complex-valued function that belongs to L1(Ω) and hence that Knf is a

selfmap of L1(Ω). Since limn→∞kn(x,y) = k(x,y) a.e. on Ω×Ω, the Lebesgue domi-

nated convergence theorem implies by condition (ii) that for every x ∈Ω,

lim
n→∞Knfu(x)= lim

n→∞

∫
Ω
kn(x,y)f

(
y,u(y)

)
dy =

∫
Ω
k(x,y)f

(
y,u(y)

)
dy. (2.25)

Therefore, Kfu defined by

Kfu(x)=
∫
Ω
k(x,y)f

(
y,u(y)

)
dy (2.26)

is a function that belongs to L1(Ω). As u ∈ L1(Ω) is arbitrary and that the sequence

(Knfu) converges pointwise to Kfu, hence the sequence (Knf) of operators from

L1(Ω) into itself converges pointwise to the operator Kf also from L1(Ω) into itself.

We now show that there exist 0≤ a, b < 1 with a+b < 1, such that

∣∣Knfu(x)−Kn+1fv(x)
∣∣≤ a∣∣u(x)−Knfu(x)∣∣+b∣∣v(x)−Kn+1fv(x)

∣∣ (2.27)

a.e. on Ω for all u,v ∈ L1(Ω) and all n∈N sufficiently large.

Assume that for all 0≤ a, b < 1 with a+b < 1, there existu0,v0 ∈ L1(Ω) andn0 ∈N
sufficiently large such that

∣∣Kn0fu0(x)−Kn0+1fv0(x)
∣∣>a∣∣u0(x)−Kn0fu0(x)

∣∣+b∣∣v0(x)−Kn0+1fv0(x)
∣∣

(2.28)

a.e. Then we have
∣∣Kn0fu0(x)

∣∣+∣∣Kn0+1fv0(x)
∣∣>a∣∣u0(x)

∣∣+b∣∣v0(x)
∣∣

−a∣∣Kn0fu0(x)
∣∣−b∣∣Kn0+1fv0(x)

∣∣ (2.29)

a.e. Therefore, we have

a
∣∣u0(x)

∣∣+b∣∣v0(x)
∣∣< (1+a)

∫
Ω

∣∣kn0(x,y)f
(
y,u0(y)

)∣∣dy
+(1+b)

∫
Ω

∣∣kn0+1(x,y)f
(
y,v0(y)

)∣∣dy,
(2.30)
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which is a contradiction to condition (iii). Hence, (2.27) is valid. Consequently, we

deduce that for all n sufficiently large

∥∥Knfu−Kn+1fv
∥∥
L1(Ω) ≤ a

∥∥u−Knfu∥∥L1(Ω)+b
∥∥v−Kn+1fv

∥∥
L1(Ω). (2.31)

Therefore, if we consider the iterations process

u0 ∈ L1(Ω), un+1 =Knf
(
un
)
, (2.32)

by using the same argument as in the proof of Theorem 2.1, then the sequence (un)
converges to say w ∈ L1(Ω).

We prove that limn→∞Knfw =w in L1(Ω). Indeed, forn sufficiently large, we obtain

∥∥w−Knfw∥∥L1(Ω) ≤
∥∥w−un+2

∥∥
L1(Ω)+

∥∥un+2−Knfw
∥∥
L1(Ω)

≤ ∥∥w−un+2

∥∥
L1(Ω)+

∥∥Kn+1fun+1−Knfw
∥∥
L1(Ω).

(2.33)

Then applying (2.31), we get

∥∥w−Knfw∥∥L1(Ω) ≤
∥∥w−un+2

∥∥
L1(Ω)+a

∥∥un+1−Kn+1fun+1

∥∥
L1(Ω)+b

∥∥w−Knfw∥∥L1(Ω),
(2.34)

from which we deduce that for n sufficiently large,

(1−b)∥∥w−Knfw∥∥L1(Ω) ≤
∥∥w−un+2

∥∥
L1(Ω)+a

∥∥un+1−un+2

∥∥
L1(Ω). (2.35)

This implies that limn→∞Knfw = w in L1(Ω). As the sequence (Knf) of operators

converges pointwise to the operator Kf , hence

w = lim
n→∞

(
Knfw

)= lim
n→∞Knf(w)=Kf(w), (2.36)

and this shows that w ∈ L1(Ω) is the unique solution of (1.5). This completes the

proof.
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