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Thermoelastic equations without energy dissipation are formulated for a body which has
previously received a large deformation and is at nonuniform temperature. A linear theory
of thermoelasticity without energy dissipation for prestressed bodies is derived and the
uniqueness theorem for a class of mixed initial-boundary value problems is established.
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1. Introduction. The so-called second sound effect has been given increasing atten-

tion in recent decades. This effect arises from the possible transport of heat by a wave

propagation process rather than diffusion. Many articles have been devoted to the de-

velopment of the generalized theory of thermoelasticity that predicts a finite speed

for heat propagation. Lord and Shulman [11], employing a modified Fourier’s law,

developed what now is known as extended thermoelasticity. Green and Lindsay [6],

based on an entropy production inequality proposed by Green and Laws [5], formu-

lated temperature-rate dependent thermoelasticity that includes the temperature-rate

among constitutive variables. Lebon [10] formulated heat-flux dependent thermoelas-

ticity on the basis of a nonclassical approach to thermodynamics which includes the

heat flux among the constitutive variables and assumes an equation of evolution for

the heat flux. All these theories yield governing systems of hyperbolic equations and

predict finite speed for heat propagation.

Recently, Green and Naghdi [7] reexamined the basic postulates of thermomechan-

ics. They postulated three types of constitutive repose functions for the thermal phe-

nomena and, accordingly, formulated three models of thermoelasticity. The nature of

these three types of constitutive functions [8] is that when the respective theories are

linearized, model I theory is the same as the classic heat conduction theory (based

on Fourier’s law); model II theory predicts a finite speed for heat propagation and

involves no energy dissipation, now referred to as thermoelasticity without energy

dissipation; model III theory permits propagation of thermal signals at both finite and

infinite speeds and there is a structural difference between these field equations and

those developed in [5, 6, 10, 11]. Ciarletta [3] later formulated a theory of micropolar

thermoelasticity without energy dissipation. Detailed and comprehensive references

to the developments of generalized thermoelasticity are found in two nice review pa-

pers by Chandrasekharaiah [1, 2].

In this paper, we adapt the postulates made by Green and Naghdi [7] and formulate

a thermoelasticity theory without energy dissipation for solids which have previously
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received a large deformation and are at nonuniform temperatures. The classical theory

for prestressed thermoelastic bodies has been obtained by Green [4] for the isothermal

case and by Iesan [9] for the nonisothermal case.

2. Nonlinear formulae. Consider a thermoelastic solid whose configuration changes

continuously, under external mechanical actions and heating, from an original refer-

ence state Ω0, with uniform temperature T0 and uniform thermal-displacement α0, to

a deformed stateΩ. Let ∂Ω0 and ∂Ω be the closed surface ofΩ0 andΩ, respectively. Let

XK denote the position of a particle X in the reference state, and xk = xk(X1,X2,X3, t)
the position in the deformed state, where t is the time. We assume that xi is suffi-

ciently smooth and det(xi,A) > 0 in order for this deformation to be possible.

In the material description, the basic nonlinear equations in thermoelasticity with-

out energy dissipation take the form [2, 3, 8]

TJi,J+ρ0fi = ρ0ẍi, (2.1)

ρ0Tη̇= ρ0S+TΦK,K (2.2)

in Ω0×[0, t0), where t0 is some time instant that may be infinite. In the above equa-

tions, T is the absolute temperature, S is the external rate of heat supply per unit

mass and time, ρ0 is the initial mass density, TJi is the first Piola-Kirchhoff stress

tensor (TJi ≠ TiJ), fi is the external body force per unit mass, η is the entropy per

unit mass, ΦK is the internal entropy flux vector. IfQK denotes the flux of heat across

surfaces in the deformed body that were originally coordinate planes perpendicular

to the XK -axes through the point X, measured per unit time, thenQK = TΦK . Through

this paper, a superposed dot stands for the material time derivative while a comma

followed by a subscript denotes partial derivatives with respect to the spatial coordi-

nates, in the deformed configuration if the subscript is a minuscule, in the reference

configuration if the subscript is a majuscule; that is, g,J = ∂g/∂XJ and g,i = ∂g/∂xi.
Einstein summation on repeated indices is also used throughout this paper.

The constitutive variables are the strain tensor EAB , T , and α,J with the geometric

equations

2EAB = xi,Axi,B−δAB, (2.3)

where α is the thermal-displacement (wα̇= T) and δAB is the Kronecker delta.

The constitutive equations are

Ψ = Ψ(EIJ ,T ,α,J), (2.4)

TJI = ∂Ψ
∂EJI

, TJi = xi,ITJI , (2.5)

ρ0η=−∂Ψ∂T , ΦK = ∂Ψ
∂α,K

, (2.6)

where Ψ is the Helmholtz free-energy per unit volume.

Unlike other theories of hyperbolic thermoelasticity, in obtaining the above consti-

tutive equations, the second law of thermodynamics in the form of an entropy produc-

tion inequality was not used. Rather, this inequality is automatically satisfied [2, 8].
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3. Small deformation superposed on a large deformation. In this section, we con-

sider three states of the solid, the initial state Ω0, the first deformed state Ω, and the

final deformed state Ω∗ corresponding respectively to the uniform temperature T0,

uniform thermal-displacement α0 and zero displacement; temperature T , thermal-

displacement α, and displacement vi; and temperature T∗, thermal displacement α∗

and displacement vi +ui. Following Iesan [9], we call Ω the primary state and Ω∗

the secondary state. Thermodynamic quantities and forces associated with Ω∗ are

denoted by an asterisk. The position coordinates of the particle X at time t in Ω∗ will

be denoted by yi =yi(X1,X2,X3, t) with det(yi,A) > 0.

We define the incremental displacement ui and incremental temperature θ as

ui =yi−xi, θ = T∗−T . (3.1)

Here we consider the case in which ui and θ are small; that is, there exists a real

parameter ε, small enough for its square and higher powers to be neglected, such that

ui = εu′i, θ = εθ′, (3.2)

where u′i and θ′ are independent of ε.
In the secondary state Ω∗, the basic equations are of the same form as those in the

primary state Ω. We have the equation of motion

T∗Ji,J+ρ0f∗i = ρ0ÿi, (3.3)

the energy equation

ρ0T∗η̇∗ = ρ0S∗+T∗Φ∗K,K, (3.4)

the geometric equations

2E∗AB =yi,Ayi,B−δAB, (3.5)

and the constitutive equations

Ψ∗ = Ψ(E∗IJ ,T∗,α∗,K), (3.6)

T∗JI =
∂Ψ∗

∂E∗JI
, T∗Ji =yi,IT∗JI , (3.7)

ρ0η∗ = −∂Ψ
∗

∂T∗
, Φ∗K =

∂Ψ∗

∂α∗,K
. (3.8)

Next, we derive the equations satisfied by ui and θ. Keeping (3.2) in mind, we get

the following second-order approximation:

Ψ
(
E∗IJ ,T∗,α

∗
,K
)−Ψ(EIJ ,T ,α,K)= aIJ(E∗IJ−EIJ)+aK(α∗,K−α,K)−aθ

+ 1
2
CIJMN

(
E∗IJ−EIJ

)(
E∗MN−EMN

)−bIJ(E∗IJ−EIJ)θ
+ 1

2
bIJK

(
E∗IJ−EIJ

)(
α∗,K−α,K

)+ 1
2
dθ2

−dK
(
α∗,K−α,K

)
θ+ 1

2
dKL

(
α∗,K−α,K

)(
α∗,L−α,L

)
,
(3.9)
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where bIJ , bIJK , and dIJ have certain symmetries in their indices, and that

CIJMN = CMNIJ = CJIMN, aK = ∂Ψ
∂α,K

= ΦK, (3.10)

a=−∂Ψ
∂T

= ρ0η, aIJ = ∂Ψ
∂EIJ

= TIJ . (3.11)

Substituting (3.9) into (3.7) and (3.8), we obtain

ρ0η∗ = ρ0η+dθ+bIJ
(
E∗IJ−EIJ

)+dK(α∗,K−α,K),
T∗IJ = TIJ+CIJMN

(
E∗MN−EMN

)−bIJθ+bIJK(α∗,K−α,K),
Φ∗K = ΦK+bIJK

(
E∗IJ−EIJ

)−dKθ+dKL(α∗,L−α,L).
(3.12)

Since it is required that ΦK vanishes at equilibrium, that is, for α,K = 0 and T,K = 0, we

also must have that

bIJK = 0, dK = 0 if T,K = 0. (3.13)

From geometric equations and the relation

yi,A = xi,A+ui,A, (3.14)

we get that

2E∗AB = 2EAB+xi,Aui,B+xi,Bui,A, (3.15)

where we have used the fact that uis are small, and hence, the terms like ui,Aui,B have

been neglected. Introducing the notation

eAB = 1
2

(
xi,Aui,B+xi,Bui,A

)
, (3.16)

we find that

E∗AB = EAB+eAB. (3.17)

Let

τ =
∫ t

0

(
T∗−T)dt =

∫ t
0
θdt, (3.18)

we have

α=
∫ t

0

(
T −T0

)
dt+T0t+α0, α∗ =

∫ t
0

(
T∗−T0

)
dt+T0t+α0, (3.19)

α∗−α=
∫ t

0

(
T∗−T0

)
dt−

∫ t
0

(
T −T0

)
dt = τ, α∗,K−α,K = τ,K. (3.20)

Substituting (3.17) and (3.20) into (3.12), we find that

ρ0η∗ = ρ0η+dθ+bIJeIJ+dKτ,K, (3.21)

T∗IJ = TIJ+CIJMNeMN−bIJθ+bIJKτ,K, (3.22)

Φ∗K = ΦK+bIJKeIJ−dKθ+dKLτ,L. (3.23)
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From (2.5), (3.7), (3.14), and (3.22), we find that

T∗Ji = TJi+TJIui,I+CJIMNxi,IeKL−bJIxi,Iθ+bJIKxi,Iτ,K. (3.24)

If we denote

πJi = T∗Ji−TJi, ϕK = Φ∗K−ΦK, γ = η∗−η, (3.25)

then we have

ρ0γ = dθ+bIJeIJ+dKτ,K,
πJi = TJIui,I+CJIMNxi,IeMN−bJIxi,Iθ+bJIKxi,Iτ,K,
ϕK = bIJKeIJ−dKθ+dKLτ,L.

(3.26)

Subtracting (2.1) and (2.2) from (3.3) and (3.4), respectively, we find the incremental

equations

πJi,J+ρ0Fi = ρ0üi, ρ0Tγ̇ = ρ0s+ϕK,K, (3.27)

where Fi = f∗i −fi and s = S∗−S.

4. Linear theory of thermoelasticity for initially stressed bodies. In this section,

we consider the special case when the primary state Ω of the solid is identical with

that of the initial solid Ω0 so that x1 = X1, x2 = X2, x3 = X3, and we suppose that

Ω0 is subjected to an initial stress and an initial heat flux caused by the nonuniform

initial temperature T0. Due to the action of external loadings and heating, the solid Ω0

undergoes a deformation. There arise displacements ui = εu′i, thermal displacement

α, and temperature increment θ = εθ′. Here, we systematically neglect all powers of ε
above the first, except in the free energy function Ψ , where we retain quadratic terms

of ε.
The work of Section 3 can be applied to this special case and yields a linear theory

of thermoelasticity without energy dissipation in the presence of initial stress and

heat flux. In this case, we have

xi,I = δiI , T = T0, EAB = 0, α=α0, τ̇ = θ. (4.1)

All coefficients defined in the previous section are now evaluated at EAB = 0, α = α0,

and T = T0. For convenience, from now on, we change all the majuscule subscripts

into minuscule subscripts. From (3.17), we find that

eij = 1
2

(
ui,j+uj,i

)
. (4.2)

The governing equations (3.27) become

πji,j+ρ0Fi = ρ0üi, ρ0T0γ̇ = ρ0s+T0ϕk,k. (4.3)

The constitutive relations (3.26) reduce to

ρ0γ = dθ+bijui,j+dKτ,k,
πij = dijmnum,n−bijθ+bijkτ,k,
ϕk = bijkui,j−dkθ+dkmτ,m,

(4.4)

where dijmn = Cijmn+δjmTin with δjm being the usual Kronecker delta.
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The coefficients Cijmn, bij , bijk, dkm, dk, and d are functions of the position coor-

dinates. The coefficients Cijmn have the symmetry as in (3.10), bij and dkm have the

usual symmetry about their indices and that bijk = bjik.
The functions Tin characterize the initial stress and they can be arbitrary functions

apart from satisfying the energy equation for the static case and the condition that

Ω0 is in equilibrium. The presence of the initial heat flux vector is determined by the

nonuniformity of the initial temperature T0. This fact implies the appearance of the

coefficients bijk and dk in the expression for ϕk. If T0 is constant, then bijk = 0 and

dk = 0.

Substituting (4.4) into (4.3), we find the governing equations in the linear theory of

thermoelasticity for initially stressed bodies

(
djimnum,n−bijθ+bijkτ,k

)
,j+ρ0Fi = ρ0üi, (4.5)

T0
(
dθ̈+bijüi,j+dkθ̇,k

)−T0
(
bijku̇i,j−dkθ̇+dkmθ,m

)
,k = ρ0ṡ. (4.6)

If Tin = 0 and T0 is a constant, for nonhomogeneous and anisotropic materials, the

above equations reduce to
(
Cijmnum,n−bijθ

)
,j+ρ0Fi = ρ0üi,

T0
(
dθ̈+bijüi,j

)−T0
(
dkmθ,m

)
,k = ρ0ṡ.

(4.7)

For homogeneous and isotropic materials, the above equations reduce to the same

set of governing equations as developed in [8].

5. Uniqueness theorem. In this section, we establish a uniqueness theorem for a

class of initial-boundary value problems associated with the governing equations (4.5)

and (4.6) for prestressed solids.

In the context of the theory considered, an initial-boundary value problem consists

in determining the functions ui(x,t) and θ(x,t) for x ∈Ω and t > 0, by solving (4.5)

and (4.6) with Fi(x,t), s(x,t), Tin, and T0 being prescribed functions for x ∈ Ω and

t > 0; under the initial conditions

ui(x,0)= 0, u̇i(x,0)= 0, θ(x,0)= 0, θ̇(x,0)= 0 for x ∈Ω, (5.1)

and the boundary conditions for t > 0

ui = ūi for x ∈ ∂Ω1, πjinj = p̄i for x ∈ ∂Ωc1,
θ = θ̄ for x ∈ ∂Ω2, T0ϕknk = q̄ for x ∈ ∂Ωc2,

(5.2)

where ūi, p̄i, θ̄, and q̄ are prescribed functions in the domains of their definition,

∂Ωi+∂Ωci = ∂Ω for i= 1,2 and ni is the outward normal vector to ∂Ω.

To establish the uniqueness theorem, we impose the following restrictions on the

material constants:

(i) the initial mass density ρ0 and the specific heat d are strictly positive; that is,

there exist positive constants r and d0 with the same dimensions as of ρ0 and

d, respectively, such that

ρ0 ≥ r > 0, d≥ d0 > 0; (5.3)
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(ii) dijmn is positive definite in the sense that there exists a positive constant β
with the same dimension of dijmn such that

dijmnξijξmn ≥ βξijξij, dijmn = dmnij = djimn (5.4)

for all second order tensors ξij ;
(iii) the heat conductivity tensordkm is symmetric and positive definite in the sense

that there exists a positive constant b such that

dkmξkξm ≥ bξkξk, dkm = dmk (5.5)

for all vectors ξk;
(iv) there exists a constant h with the same dimension of b such that

4b2
ijk < βh, h < b. (5.6)

Theorem 5.1. If assumptions (i), (ii), (iii), and (iv) hold and T0 > 0, then there exists

at most one solution to the initial-boundary value problem defined by (4.5), (4.6), (5.1),

and (5.2).

Proof. It suffices to show that for Fi = 0, ṡ = 0, and homogeneous boundary con-

ditions, the solution is trivial.

From (4.5), the homogeneous boundary conditions and integration by parts, we get

∫
Ω
ρ0üiu̇i dΩ =

∫
Ω

(
dijmnum,n−bijθ+bijkτ,k

)
,ju̇i dΩ

=−
∫
Ω

(
dijmnum,n−bijθ+bijkτ,k

)
u̇i,j dΩ;

(5.7)

that is,

∫
Ω

(
ρ0üiu̇i+dijmnu̇i,jum,n−biju̇i,jθ+bijkτ,ku̇i,j

)
dΩ = 0. (5.8)

Taking into consideration the homogeneous initial conditions and integrating (4.6),

we find

(
dθ̇+biju̇i,j+dkθ,k

)−(bijkui,j−dkθ+dkmτ,m),k = 0. (5.9)

Multiplying this by θ and integrating over Ω, we find

∫
Ω

(
dθ̇+biju̇i,j+dkθ,k

)
θdΩ−

∫
Ω

(
bijkui,j−dkθ+dkmτ,m

)
,kθdΩ= 0. (5.10)
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Using the homogeneous boundary conditions and integration by parts, we find

∫
Ω

[
dθ̇θ+dkmθ,kτ,m+bijkui,jθ,k+bijθu̇i,j

]
dΩ = 0. (5.11)

Adding (5.8) and (5.11), we find

∫
Ω

[
ρ0üiu̇i+dijmnu̇i,jum,n+dθ̇θ+dkmθ,kτ,m+bijk ddt

(
ui,jτ,k

)]
dΩ = 0; (5.12)

that is,

d
dt

∫
Ω

[
ρ0u̇iu̇i+dijmnui,jum,n+dθ2+dkmτ,kτ,m+2bijkui,jτ,k

]
dΩ = 0. (5.13)

Taking into consideration the homogeneous initial conditions, we find

∫
Ω

[
ρ0u̇iu̇i+dijmnui,jum,n+dθ2+dkmτ,kτ,m+2bijkui,jτ,k

]
dΩ = 0. (5.14)

Using Schwartz inequality, we find

∣∣2bijkui,jτ,k∣∣≤ β
2
ui,jui,j+

4b2
ijk

β
τ,kτ,k ≤ β

2
ui,jui,j+hτ,kτ,k. (5.15)

From (5.14), (5.15), and the assumption (i), (ii), (iii), and (iv), we find that

∫
Ω

[
ru̇iu̇i+ β

2
ui,jui,j+d0θ2+(b−h)τ,kτ,k

]
dΩ ≤ 0. (5.16)

Equation (5.16) readily yields the trivial solution

ui(x,t)= 0, θ(x,t)= 0, for x ∈Ω, t ≥ 0. (5.17)
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