FUZZY NEIGHBORHOOD STRUCTURES ON PARTIALLY ORDERED GROUPS

KAMEL EL-SAADY and M. Y. BAKIER

Received 5 May 2001

Ahsanullah (1988) showed the compatibility between group structures and *I*-fuzzy neighborhood systems. In this paper, we require not only that the *I*-fuzzy neighborhood systems be compatible with the group structures, but also compatible with the order relation, in one sense or another.

2000 Mathematics Subject Classification: 54A40, 54H15, 54E15, 06F15, 20F60, 22A05.

1. Introductions. In [8], Katsaras combine the concepts of [0,1]-topology and order structure to bring out the so-called ordered fuzzy topological spaces. Several authors have continued on the work of Katsaras in the area of [0,1]-topology and order [3, 4, 10].

In [2] Ahsanullah introduced the notion of *I*-fuzzy neighborhood groups. In this paper, we aim to introduce and study the concept of *I*-fuzzy neighborhood structures on ordered groups.

2. Preliminaries. Let *X* be a nonempty set. A relation \leq on *X* is said to be preorder if it is reflexive and transitive. An antisymmetric preorder is said to be a partially order. By a preordered (resp., an ordered) set, we mean a set *X* with a preorder (resp., a partially order) relation on it and we denote it by (X, \leq) . Every set can be considered as a partially ordered set equipped with the discrete order ($x \leq y$ if and only if x = y).

A function *f* from a preordered set (X, \le) to a preordered set (X', \le') is called isotone or order-preserving (resp., antitone or order-inverting) if $x \le y$ in *X* implies $f(x) \le' f(y)$ (resp., $f(y) \le' f(x)$) in *X'*. The function *f* is said to be order isomorphism if it is bijection and $(\forall x, y \in X) \ x \le y \Leftrightarrow f(x) \le' f(y)$.

Suppose that (G, *) is a semigroup and that *G* is endowed with an order \leq . We say that $(G, *, \leq)$ is an ordered semigroup if the low of composition and the order are related by the property: for all $x, y \in G$

$$x \le y \Longrightarrow (\forall z \in G) \ x \ast z \le y \ast z, \quad z \ast x \le z \ast y.$$

$$(2.1)$$

If (G_1, T_1, \leq_1) and (G_2, T_2, \leq_2) are ordered semigroups. A mapping $f : G_1 \to G_2$ is said to be order-homomorphism if it is both isotone and semigroup homomorphism. By an ordered group we mean an ordered semigroup which is a group.

In this paper, we use the multiplicative ordered group (G, \cdot, \leq) which is sometimes written as (G, \leq) .

Combining the notion of order-isomorphism and group isomorphism, we say that an ordered group (G_1, \leq_1) is OG-isomorphic to an ordered group (G_2, \leq_2) if there is a mapping $f: G_1 \rightarrow G_2$ which is both order isomorphism and group isomorphism.

An *I*-fuzzy set μ , in a preordered set (X, \leq) , is called increasing (resp., decreasing) if $x \leq y$ implies $\mu(x) \leq \mu(y)$ (resp., $\mu(y) \leq \mu(x)$) [8].

A Chang-Goguen *L*-topology (cf. [5, 6, 7]) on a set *X* is a subset $\tau \subset L^X$, closed under finite infs and arbitrary sups. A pair (X, τ) is called a Chang-Goguen *L*-topological space; (X, τ) is called stratified *L*-topological space if τ contains all the constant *L*-fuzzy sets. The category of Chang-Goguen *L*-topological spaces (resp., stratified Chang-Goguen *L*-topological spaces) is denoted by |L-Top| (resp., |SL-Top|). Both |L-Top| and |SL-Top| are topological categories. If L = I = [0, 1], the above categories are denoted by |I-Top| and |SI-Top|, respectively.

By an *I*-topological (resp., stratified *I*-topological) ordered space are we mean a triplet (X, \leq, τ) , consisting of a partially ordered set (X, \leq) and an *I*-topology (resp., stratified *I*-topology) τ on *X*.

By *II*-TopOS*I* (resp., *ISI*-TopOS*I*), we mean the category of all *I*-topological (resp., stratified *I*-topological) ordered spaces as object and all order-preserving continuous mappings between them as morphisms.

The order \leq , in an *I*-topological ordered space (X, \leq, τ) , is said to be closed [8] if and only if the following condition holds: if $x \neq y$, then there are neighborhoods μ , ρ of x, y, respectively, such that $i(\mu) \wedge d(\rho) = 0$.

Let (X, \leq, τ) be an *L*-topological ordered space. If the order is closed, then *X* is Hausdorff [8].

An *I*-fuzzy quasi-uniformity [9] is a subset **U** of $I^{X \times X}$ which is prefilter and has the following three properties:

(1) $\alpha(x, x) = 1 \forall \alpha \in U$ and $\forall x \in X$,

- (2) $\forall \alpha \in \mathbf{U}, \forall \varepsilon > 0, \exists \alpha_1 \in \mathbf{U} \text{ such that } \alpha_1 \circ \alpha_1 \varepsilon \le \alpha$,
- (3) **U** = **U**, that is, for every family $\{\alpha_{\varepsilon} \in \mathbf{U}, \varepsilon \in I_0\}$ we have $\sup_{\varepsilon \in I(\alpha_{\varepsilon} \varepsilon) \in \mathbf{U}}$.

The family $\mathbf{U}^{-1} = \{\alpha^{-1} : \alpha \in \mathbf{U}, \alpha^{-1}(x, y) = \alpha(y, x)\}$ is an *I*-fuzzy quasi-uniformity on *X* called the conjugate of **U**. We denote by **U**^{*} the *I*-fuzzy uniformity which generated by **U**, that is, $\mathbf{U}^* = \mathbf{U} \vee \mathbf{U}^{-1} = \{\alpha \land \alpha^{-1} : \alpha \in \mathbf{U}, \alpha^{-1} \in \mathbf{U}^{-1}\}$. The *I*-fuzzy quasiuniformity **U** can generate an order, say \leq_u , by setting

$$x \leq_{u} y \iff \begin{cases} \alpha(x,z) \leq \alpha(y,z) & \forall z \geq x, y, \\ \alpha(x,z) \geq \alpha(y,z) & \forall z \leq x, y. \end{cases}$$
(2.2)

A triplet (X, \leq, \mathbf{U}^*) , consisting of an ordered set (X, \leq) and an *I*-fuzzy uniformity \mathbf{U}^* , is called an *I*-fuzzy uniform ordered space [10] if there exists an *I*-fuzzy quasiuniformity \mathbf{U} on X such that $\mathbf{U}^* = \mathbf{U} \vee \mathbf{U}^{-1}$ and $G(\leq) = G(\leq_u)$.

DEFINITION 2.1 [10]. Let (X_1, \mathbf{U}_1) and (X_2, \mathbf{U}_2) be *I*-fuzzy quasi-uniform spaces. A mapping $f : (X_1, \mathbf{U}_1) \to (X_2, \mathbf{U}_2)$ is said to be quasi-uniformly continuous if and only if $\forall \alpha_2 \in \mathbf{U}_2$, $\exists \alpha_1 \in \mathbf{U}_1$ such that $\alpha_1 \in (f \times f)^{-1}(\alpha_2)$. Where *f* is called quasi-uniform equivalence if *f* is bijective and both *f* and f^{-1} are quasi-uniformly continuous.

360

DEFINITION 2.2 [10]. A mapping $f : (X, \leq, \mathbf{U}^*) \rightarrow (X_1, \leq_1, \mathbf{U}^*)$ is said to be uniformly order-mapping if there exist *I*-fuzzy quasi-uniformities u and u_1 on X and X_1 , respectively such that

- (i) $U^* = U \vee U^{-1}$ and $G(\leq) = G(\leq_u)$;
- (ii) $\mathbf{U}_1^* = \mathbf{U}_1 \vee \mathbf{U}_1^{-1}$ and $G(\leq_1) = G(\leq_{u_1});$
- (iii) $f: (X, \mathbf{U}) \rightarrow (X_1, \mathbf{U}_1)$ is quasi-uniformly continuous.

DEFINITION 2.3 [2]. Let (G, \cdot) be a group and let \aleph be an *I*-fuzzy neighborhood system on *G*. Then, the triplet $(G, \cdot, t(\aleph))$ is called *I*-fuzzy neighborhood group if and only if the following conditions are fulfilled:

- (1) the mapping $m: (G \times G, t(\aleph) \times t(\aleph)) \to (G, t(\aleph)): (x, y) \to xy$ is continuous;
- (2) the mapping $r: (G, t(\aleph)) \to (G, t(\aleph)): x \to x^{-1}$ is continuous.

PROPOSITION 2.4 [2]. Let (G, \cdot) be a group and let \aleph be an I-fuzzy neighborhood system on G. Then, $(G, \cdot, t(\aleph))$ is an I-fuzzy neighborhood group if and only if the mapping

$$h: (G \times G, t(\aleph) \times t(\aleph)) \longrightarrow (G, t(\aleph)): (x, y) \longrightarrow x y^{-1}$$
(2.3)

is continuous

3. Fuzzy neighborhood ordered groups

DEFINITION 3.1. A triplet $(G, \leq, t(\aleph))$ is called *I*-fuzzy neighborhood ordered groups if the following statements hold:

(1) (G, \leq) is a partially ordered group;

- (2) $(G, t(\aleph))$ is an *I*-fuzzy neighborhood group;
- (3) the order \leq is closed.

By |I - FNOGr|, we mean the category of all *I*-fuzzy neighborhood ordered groups as objects and all order-preserving homeomorphisms between them as morphisms.

In agreement with [1], a faithful functor $T: A \rightarrow Set$ is said to be topological (monotopological) if and only if, given any index class $((X_i, \xi_i) : j \in J)$ of *A*-objects indexed by a class *J* and any source (resp., mono-source) $(f_j : X \to X_j)$ in Set, there exists a unique A-structure ξ on X which is initial with respect to $(f_i : X \to (X_i, \xi_i))_{i \in J}$, that is, such that for any A-object (Y, ζ) , a mapping $h: (Y, \zeta) \to (X, \xi)$ is an A-morphism if and only if for every $j \in J$, the composition $f_i \circ h: (Y, \zeta) \to (X_i, \xi_i)$ is an *A*-morphism. Also, we have that the constant function lift to morphism in A and the A-fibre $T^{-1}(S)$ for any set *S* is small.

PROPOSITION 3.2. The category |*I* – FNOGr| is mono-topological.

PROOF. The forgetful functor $T : |I - FNOGr| \rightarrow |Group|$ is given by $T(G, \leq, t(\aleph)) =$ *G*. For some index class *J*, let $(G_{\alpha}, \leq_{\alpha}, t(\aleph_{\alpha})) \in |I - \text{FNOGr}|$ and $(f_{\alpha} : G \to G_{\alpha})_{\alpha \in J}$ be a monosource in |Group|. Let x be the I-fuzzy neighborhood system making the monosource

$$(f_{\alpha}: (G, t(\aleph)) \longrightarrow (G_{\alpha}, t(\aleph_{\alpha})))_{\alpha \in I}$$

$$(3.1)$$

361

initial and let \leq be the order defined by $x \leq y$ if and only if $f_{\alpha}(x) \leq_{\alpha} f_{\alpha}(y)$ for all $\alpha \in J$. Then $(G, \leq, t(\aleph)) \in |I - FNOGr|$. Initiality of the mono-source

$$(f_{\alpha}: (G, \leq, t(\aleph)) \longrightarrow (G_{\alpha}, \leq_{\alpha}, t(\aleph_{\alpha})))_{\alpha \in J}$$

$$(3.2)$$

can easily be checked; thus *T* is mono-topological. The other conditions for a mono-topological category are clearly met. \Box

PROPOSITION 3.3. Let $(G, \leq, t(\aleph)) \in |I - FNOGr|$. Then, for $x, a \in G$,

- (i) the mapping $L_a : G \to G$ (resp., $R_a : G \to G$) defined by $x \to ax$ (resp., $x \to xa$) is an order-preserving homeomorphism;
- (ii) the mapping $r : (G,t(\aleph)) \to (G,t(\aleph)) : x \to x^{-1}$ is an order-inverting homeomorphism.

PROOF. The proof follows from Definition 2.3.

LEMMA 3.4. Let $(G, \leq, t(\aleph)) \in |I - FNOGr|$ and μ be an increasing (resp., decreasing) *I*-fuzzy set in *G*, then

- (i) $R_a^{-1}(\mu)$ is increasing (resp., decreasing);
- (ii) $r^{-1}(\mu)$ is decreasing (resp., increasing).

PROOF. Let *μ* be an increasing *I*-fuzzy set. (i) We have

$$R_{a}^{-1}(\mu)(x) = \mu(R_{a}(x)) = \mu(xa) \le \mu(ya) = \mu(R_{a}(y)),$$

$$R_{a}^{-1}(\mu)(x) = \mu(R_{a}(x)) \le \mu(R_{a}(y)) = R_{a}^{-1}(\mu)(y),$$
(3.3)

that is, $R_a^{-1}(\mu)(x) \le R_a^{-1}(\mu)(\gamma)$ whenever $x \le \gamma$.

(ii) The mapping $r: G \to G$ is decreasing, then

$$r^{-1}(\mu)(x) = \mu(r(x)) = \mu(x^{-1}) \ge \mu(y^{-1}) = \mu(r(y)) = r^{-1}(\mu)(y), \quad (3.4)$$

that is, $r^{-1}(\mu)$ is decreasing.

PROPOSITION 3.5. If $(G, \leq, t(\aleph)) \in |I - \text{FNOGr}|$ and μ is an increasing (resp., decreasing) open I-fuzzy set in G and $\rho \in I^G$, then the I-fuzzy set $(\mu \cdot \rho)$ is an increasing (resp., decreasing) open I-fuzzy set in G.

PROOF. By [2, Proposition 1.10], an *I*-fuzzy set $(\mu \cdot \rho)$ is open. To prove the second part, let $x, y \in G$ with $x \le y$ and μ be increasing *I*-fuzzy, then

$$\mu \cdot \rho(x) = \sup_{x=s \cdot t} \mu(s) \wedge \rho(t) = \sup_{t \in G} \mu(xt^{-1}) \wedge \rho(t)$$

$$= \sup_{t \in G} \mu(R_t^{-1}(x)) \wedge \rho(t) = \sup_{t \in G} R_t(\mu)(x) \wedge \rho(t).$$
(3.5)

But the mapping $R_t : G \to G : x \to xt$ is increasing, then, by fixing $t \in G$, it follows that

$$\mu \cdot \rho(x) = \sup_{t \in G} R_t(\mu)(x) \wedge \rho(t) \le \sup_{t \in G} R_t(\mu)(y) \wedge \rho(t) = \mu \cdot \rho(y), \tag{3.6}$$

that is, *I*-fuzzy set $\mu \cdot \rho$ is increasing.

PROPOSITION 3.6. Let $(G, \leq, t(\aleph)) \in |I - \text{FNOGr}|$, then for all increasing (resp., decreasing) *I*-fuzzy set $\mu \in \aleph(e)$ and for all $\varepsilon \in I_0$, there exists $\rho \in \aleph(e)$ such that $i(\rho \cdot \rho) - \varepsilon \leq \mu$ (resp., $d(\rho \cdot \rho) - \varepsilon \leq \mu$).

PROOF. Since $(G, t(\aleph))$ is an *I*-fuzzy neighborhood group, then the continuity of the mapping $m : (G \times G, t(\aleph) \times t(\aleph)) \to (G, t(\aleph)) : (x, y) \to xy$ is equivalent to the fact that $\forall \mu \in \aleph(e)$ and $\forall \varepsilon \in I_0$, there exists $\rho \in \aleph(e)$ (see [2, Proposition 2.5]) such that $\rho \cdot \rho - \varepsilon \leq \mu$. If we choose μ to be increasing then

$$\rho \cdot \rho \le i(\rho \cdot \rho) \le \mu + \varepsilon, \tag{3.7}$$

where $i(\rho \cdot \rho)$ is the smallest increasing *I*-fuzzy set containing $(\rho \cdot \rho)$ and it follows that $i(\rho \cdot \rho) - \varepsilon \le \mu$ and this completes the proof.

4. Fuzzy quasi-uniformity on *I*-fuzzy neighborhood ordered groups. As given in [2], if (G, \cdot) is a group, then we define

$$\mu_L : G \times G \longrightarrow I, \quad \text{where } \mu_L(x, y) = \mu(x^{-1}y),$$

$$\mu_R : G \times G \longrightarrow I, \quad \text{where } \mu_R(x, y) = \mu(yx^{-1}).$$
(4.1)

If $(G, \cdot, t(\aleph))$ is an *I*-fuzzy neighborhood group and $\mu \in \aleph(e)$, then μ_L (resp., μ_R) is called the left (resp., right) *I*-fuzzy entourages associated with μ . We can easily note that the left (resp., right) *I*-fuzzy entourages μ_L (resp., μ_R) is not symmetric, if $x \neq y$, then $y^{-1}x \neq e \neq x^{-1}y$ and this implies that $\mu_L(x, y) = \mu(x^{-1}y) \neq \mu(y^{-1}x) = \mu_L(y, x)$. Also, $\mu_R(x, y) \neq \mu_R(y, x)$.

In the sequel, we use $\aleph^i(e)$ (resp., $\aleph^d(e)$) to denote the system of all increasing (resp., decreasing) *I*-fuzzy neighborhoods of *e*. From the above discussion we have the following easily established result.

THEOREM 4.1. Let $(G, \leq, t(\aleph)) \in |I - FNOGr|$ and $\aleph^i(e)$ (resp., $\aleph^d(e)$) denote the system of all increasing (resp., decreasing) I-fuzzy neighborhoods of *e*. Then,

- (i) the family β_L (resp., β_R) = {μ_L (resp., μ_R) : μ ∈ κⁱ(e)} is a basis for the left (resp., right) *I*-fuzzy quasi-uniformity u_L (resp., u_R) on G;
- (ii) the family β_L^{-1} (resp., β_R^{-1}) = { μ_L^{-1} (resp., μ_R^{-1}) : $\mu \in \aleph^d(e)$ } is a basis for the conjugate left (resp., right) I-fuzzy quasi-uniformity \mathbf{U}_L^{-1} (resp., \mathbf{U}_R^{-1}) on *G*;
- (iii) the family $\beta_s = \{\mu_L \land \mu_R : \mu \in \aleph^i(e)\}$ is a basis for the two-sided I-fuzzy quasiuniformity $(u_R \lor u_L)$ on *G*.

We denote $\mathbf{U}_L \vee \mathbf{U}_L^{-1}$ (resp., $\mathbf{U}_R \vee \mathbf{U}_R^{-1}$) by \mathbf{U}_L^* (resp., \mathbf{U}_R^*). It is clear that \mathbf{U}_L^* (resp., \mathbf{U}_R^*) is an *I*-fuzzy uniformity on *G* called the left (resp., right) *I*-fuzzy uniformity generated by \mathbf{U}_L (resp., \mathbf{U}_R). Also, the two-sided *I*-fuzzy uniformity $\mathbf{U}^* = \mathbf{U}_R^* \vee \mathbf{U}_L^*$ can be generated by the two-sided *I*-fuzzy quasi-uniformity ($\mathbf{U}_R \vee \mathbf{U}_L$).

It is known that the entourages of the above I-fuzzy quasi-uniformities can generate an order on G by setting

$$x \leq^* y \iff (\forall_Z \in G) \ \mu_L(y, z) \leq \mu_L(x, z).$$
(4.2)

The partial order \leq^* is said to be generated by the left *I*-fuzzy quasi-uniformity U_L.

DEFINITION 4.2. Let G_1 , G_2 be groups and U_2 , U_2 be quasi-uniformities on G_1 and G_2 , respectively. A mapping $f : G_1 \to G_2$ is called a quasi-uniform isomorphism if it is a quasi-uniform equivalence (see Definition 2.1) and group isomorphism.

PROPOSITION 4.3. Let $(G, \leq, t(\aleph)) \in |I - FNOGr|$ and let U_L be the associated left *I*-fuzzy quasi-uniformity on *G*, then

- (i) L_x (resp., R_x): $(G, U_L) \rightarrow (G, U_L)$ is a quasi-uniform isomorphism;
- (ii) L_x (resp., R_x): $(G, \leq, \mathbf{U}_L^*) \rightarrow (G, \leq, \mathbf{U}_L^*)$ is a uniformly order isomorphism.

PROOF. (i) It follows immediately from the formulas

$$(L_X \times L_X)^{-1}(\mu_L) = \mu_L.$$
(4.3)

(ii) The existence of the associated left *I*-fuzzy quasi-uniformity U_L which generate the *I*-fuzzy uniformity U_L^* and the order \leq^* with $G(\leq^*) = G(\leq)$ and from (i) the proof becomes clear.

PROPOSITION 4.4. Let $(G, \leq, t(\aleph)) \in |I - FNOGr|$ and U_L (resp., U_R) be the associated left (resp., right) *I*-fuzzy quasi-uniformity on *G*, then

- (i) the mapping $r: (G, U_L) \rightarrow (G, U_R)$ is a quasi-uniform isomorphism;
- (ii) the mapping $r: (G, \leq, \mathbf{U}_L^*) \to (G, \leq, \mathbf{U}_R^*)$ is a uniform order-isomorphism.

PROOF. (i) The mapping $r : G \to G$ is a group isomorphism. But for $\mu_R \in \mathbf{U}_R$, we have that $(r \times r)^{-1}(\mu_R)(x, y) = \mu_R(r(x), r(y)) = \mu_R(X^{-1}, y^{-1}) = \mu(y^{-1}x)$, that is, $(r \times r)^{-1}(\mu_R) = \tilde{\mu}_L$. And this means that $r : (G, u_L) \to (G, u_R)$ is a quasi-uniform equivalence and so it is quasi-uniform isomorphism.

(ii) This can be proven by Definition 2.1 and part (i) and this completes the proof. $\hfill\square$

We omit the proof of the following easily established proposition.

PROPOSITION 4.5. Let $(G, \leq, t(\aleph))$ and $(G', \leq', t(\aleph')) \in |I - \text{FNOGr}|$ and let U_L , U'_L be the associated left I-fuzzy quasi-uniformities on G and G', respectively. Then, the order-preserving homeomorphism $f: G \to G'$ is uniformly order-mapping.

REFERENCES

- [1] J. Adámek, H. Herrlich, and G. E. Strecker, *Abstract and Concrete Categories*, Pure and Applied Mathematics, John Wiley & Sons, New York, 1990.
- [2] T. M. G. Ahsanullah, On fuzzy neighborhood groups, J. Math. Anal. Appl. 130 (1988), no. 1, 237-251.
- [3] A. A. Allam, S. A. Hussein, and K. El-Saady, *Fuzzy syntopogenous structures and order*, Fuzzy Sets and Systems 63 (1994), no. 1, 91–98.
- [4] M. Y. Bakier and K. El-Saady, *Fuzzy topological ordered vector spaces*. *I*, Fuzzy Sets and Systems 54 (1993), no. 2, 213–220.
- [5] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. 24 (1968), 182–190.
- [6] J. A. Goguen, *The fuzzy Tychonoff theorem*, J. Math. Anal. Appl. **43** (1973), 734-742.
- [7] U. Höhle and A. P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, Mathematics of Fuzzy Sets, Fuzzy Sets Ser., vol. 3, Kluwer, Massachusetts, 1999, pp. 123– 272.
- [8] A. K. Katsaras, Ordered fuzzy topological spaces, J. Math. Anal. Appl. 84 (1981), no. 1, 44-58.

- [9] _____, *Fuzzy neighborhood structures and fuzzy quasi-uniformities*, Fuzzy Sets and Systems **29** (1989), no. 2, 187-199.
- [10] A. S. Mashhour, A. A. Allam, and K. El-Saady, *Fuzzy uniform structures and order*, J. Fuzzy Math. 2 (1994), no. 1, 57–67.

Kamel El-Saady: Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

E-mail address: el-saady@lycos.com *URL*: http://at.yorku.ca/h/a/a/a/43.htm

M. Y. BAKIER: MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, ASSIUT UNIVERSITY, ASSIUT, EGYPT