GRADED RADICAL W TYPE LIE ALGEBRAS I

KI-BONG NAM

Received 24 August 2001 and in revised form 28 January 2002

We get a new \mathbb{Z} -graded Witt type simple Lie algebra using a generalized polynomial ring which is the radical extension of the polynomial ring $\mathbf{F}[x]$ with the exponential function e^x .

2000 Mathematics Subject Classification: 17B20.

1. Introduction. Let **F** be a field of characteristic zero (not necessarily algebraically closed). Throughout this paper, \mathbb{Z}_+ and \mathbb{Z} denote the nonnegative integers and the integers, respectively. Let $\mathbf{F}[x]$ be the polynomial ring in indeterminate x. Let $\mathbf{F}(x) = \{f(x)/g(x) \mid f(x), g(x) \in F[x], g(x) \neq 0\}$ be the field of rational functions in one variable. We define the **F**-algebra $V_{\sqrt{m},e}$ spanned by

$$\begin{cases} e^{dx} f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \mid d, a_1, \dots, a_m, t \in \mathbb{Z}, \ f_i \neq x, \\ (a_1, b_1) = 1, \dots, (a_m, b_m) = 1, \ 1 \le i \le m \end{cases},$$

$$(1.1)$$

where $b_1, ..., b_m$ are fixed nonnegative integers, and $(a_i, b_i) = 1, 1 \le i \le m$, means that a_i and b_i are relatively primes, and $f_1, ..., f_n$ are the fixed relatively prime polynomials in $\mathbf{F}[x]$. The **F**-subalgebra $V_{\sqrt{m}, e}^+$ of $V_{\sqrt{m}, e}$ is spanned by

$$\left\{ e^{dx} f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \mid d, a_1, \dots, a_m \in \mathbb{Z}, \ t \in \mathbb{Z}_+, \ f_i \neq x, \\ (a_1, b_1) = 1, \dots, (a_m, b_m) = 1, \ 1 \le i \le m \right\}.$$

$$(1.2)$$

Let $W_{\sqrt{m},e}(\partial)$ be the vector space over **F** with elements $\{f\partial \mid f \in V_{\sqrt{m},e}\}$ and the standard basis $\{e^{dx}f_1^{a_1/b_1}\cdots f_m^{a_m/b_m}x^t\partial \mid e^{dx}f_1^{a_1/b_1}\cdots f_m^{a_m/b_m}x^t\partial \in W_{\sqrt{m},e}\}$. Define a Lie bracket on $W_{\sqrt{m},e}(\partial)$ as follows:

$$[f\partial, g\partial] = f(\partial(g))\partial - g(\partial(f))\partial, \quad f, g \in V_{\sqrt{m}, e}.$$
(1.3)

It is easy to check that (1.3) defines a Lie algebra $W_{\sqrt{m},e}(\partial)$ with the underlying vector space $W_{\sqrt{m},e}(\partial)$ (see also [1, 3, 5]). Similarly, we define the Lie subalgebra $W^+_{\sqrt{m},e}(\partial)$ of $W_{\sqrt{m},e}(\partial)$ using the F-algebra $V^+_{\sqrt{m},e}$ instead of $V_{\sqrt{m},e}$.

The Lie algebra $W_{\sqrt{m},e}(\partial)$ has a natural \mathbb{Z} -gradation as follows:

$$W_{\sqrt{m},e}(\partial) = \bigoplus_{d \in \mathbb{Z}} W^d_{\sqrt{m},e}, \tag{1.4}$$

where $W^d_{\sqrt{m},e}$ is the subspace of the Lie algebra $W_{\sqrt{m},e}(\partial)$ generated by elements of the form $\{e^{dx}f_1^{a_1/b_1}\cdots f_m^{a_m/b_m}x^t\partial \mid f_1,\ldots,f_n\in \mathbf{F}[x], a_1,\ldots,a_m,t\in\mathbb{Z}, m\in\mathbb{Z}_+\}$. We call the subspace $W^d_{\sqrt{m},e}$ the *d*-homogeneous component of $W_{\sqrt{m},e}(\partial)$.

We decompose the *d*-homogeneous component $W^d_{\sqrt{m}e}$ as follows:

$$W^d_{\sqrt{m},e} = \bigoplus_{s_1,\dots,s_m \in \mathbb{Z}} W_{(d,s_1,\dots,s_m)},$$
(1.5)

where $W_{(d,s_1,...,s_m)}$ is the subspace of $W^d_{\sqrt{m},e}$ spanned by

$$\{e^{dx}f_1^{s_1/b_1}\cdots f_m^{s_m/b_m}x^q\partial \mid q\in\mathbb{Z}\}.$$
(1.6)

Note that $W_{(0,0,\dots,0)}$ is the Witt algebra W(1) as defined in [3].

The two radical-homogeneous components $W_{(d,a_1,...,a_m)}$ and $W_{(d,r_1,...,r_m)}$ are equivalent if $a_1 - r_1, ..., a_m - r_m \in \mathbb{Z}$. This defines an equivalence relation on $W_{\sqrt{m},e}^d$. Thus we note that the equivalent class of $W_{(d,a_1,...,a_m)}$ depends only on $a_1,...,a_m$. From now on $W_{(d,a_1,...,a_m)}$ will represent the radical homogeneous equivalent class of $W_{(d,a_1,...,a_m)}$ without ambiguity. It is possible to choose the minimal positive integers $a_1,...,a_m$ for the radical homogeneous equivalent component $W_{(d,a_1,...,a_m)}$.

We give the lexicographic order on all the radical homogeneous equivalent components $W_{(d,a_1,...,a_m)}$ using $\mathbb{Z} \times \mathbb{Z}_+^m$.

The radical equivalent homogeneous component $W^d_{\overline{m}e}$ can be written as follows:

$$W^{d}_{\sqrt{m},e} = \sum_{(a_1,\dots,a_m)\in\mathbb{Z}^m_+} W_{(d,a_1,\dots,a_m)}.$$
(1.7)

Thus for any element $l \in W_{\sqrt{m},e}(\partial)$, *l* can be written uniquely as follows:

$$l = \sum_{(d,a_1,...,a_m) \in \mathbb{Z} \times \mathbb{Z}_+^m} l_{(d,a_1,...,a_m)}.$$
 (1.8)

For any such element $l \in W_{\sqrt{m},e}(\partial)$, H(l) is defined as the number of different homogeneous components of l as in (1.4), and $L_d(l)$ as the number of nonequivalent radical d-homogeneous components of l in (1.8). For each basis element $e^{dx} f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \partial$ of $W_{\sqrt{m},e}(\partial)$ (or $W_{\sqrt{m},e}^+(\partial)$), define $\deg_{\text{Lie}}(e^{dx} f_1^{a_1/b_1} \cdots f_m^{a_m/b_m} x^t \partial) = t$. Since every element l of $W_{\sqrt{m},e}(\partial)$ is the sum of the standard basis element, we may define $\deg_{\text{Lie}}(l)$ as the highest power of each basis element of l. Note that the Lie algebra $W_{\sqrt{m},e}(\partial)$ is self-centralized, that is, the centralizer $C_l(W_{\sqrt{m},e}(\partial))$ of every element l in $W_{\sqrt{m},e}(\partial)$ is one dimensional [1]. We find the solution of

$$1^{1/3} = y$$
 (1.9)

in \mathbb{Z}_7 . Equation (1.9) implies that

$$1 \equiv y^3 \mod 7. \tag{1.10}$$

The solutions of (1.10) are 1, 2, or 4. Thus $1^{1/3} = 1$, 2, or 4 mod 7. Thus the radical number in \mathbb{Z}_p is not uniquely determined generally. So we may not consider the Lie algebras in this paper over a field of characteristic p differently from the Lie algebras in [2, 3, 4]. It is easy to prove that the Lie algebra $W_{(0,...,0)}$ is simple [3].

340

2. Main results. We need several lemmas for Theorem 2.5.

LEMMA 2.1. For any element l in the $(d, a_1, ..., a_m)$ -radical-homogeneous component of $W_{\sqrt{m}}(\partial)$, and for any element $l_1 \in W_{(0,0,...,0)}$, $[l, l_1]$ is an element in the $(d, a_1, ..., a_m)$ -radical homogeneous equivalent component.

The proof of Lemma 2.1 is straightforward.

LEMMA 2.2. A Lie ideal I of $W_{\sqrt{m},e}(\partial)$ which contains ∂ is $W_{\sqrt{m},e}(\partial)$.

PROOF. Let *I* be the ideal in the lemma. The Lie subalgebra which has the standard basis $\{x^i \partial \mid i \in \mathbb{Z}_+\}$ is simple. Let *I* be any ideal of $W_{\sqrt{m},e}(\partial)$ which contains ∂ . Then for any $f \partial \in W_{\sqrt{m},e}(\partial)$,

$$[x\partial, f\partial] = x\partial(f)\partial - f\partial \in I.$$
(2.1)

On the other hand,

$$[\partial, x f \partial] = f \partial + x \partial(f) \partial \in I.$$
(2.2)

Thus by subtracting (2.2) from (2.1) we get $2f \partial \in I$. Therefore, we have proven the lemma, since $I \cap W_{(0,0,\dots,0)}$ contains nonzero elements and so $I \supset W_{(0,0,\dots,0)}$.

LEMMA 2.3. A Lie ideal I of $W_{\sqrt{m},e}(\partial)$ which contains a nonzero element in $W_{(d,a_1,...,a_m)}$ is $W_{\sqrt{m},e}(\partial)$, for a fixed $(d,a_1,...,a_m) \in \mathbb{Z} \times \mathbb{Z}_+$.

PROOF. Let *I* be a Lie ideal of $W_{\sqrt{m},e}(\partial)$ and *l* a nonzero element in the ideal *I*. Then we take an element $l_1 = e^{-dx} f_1^{-a_1/b_1} \cdots f_m^{-a_m/b_m} x^p \partial$ with *p* a sufficiently large positive integer such that $[l, l_1] \neq 0$. Then $[f\partial, [l, l_1]]$ is a nonzero element in $W_{(0,0,\dots,0)}$ by taking an element $f_1^{t_1} \cdots f_m^{t_m} \in \mathbf{F}[x]$, where t_1, \dots, t_m are sufficiently large integers. Thus $I \cap W_{(0,0,\dots,0)}$ contains nonzero elements, and hence, $\partial \in I \cap W_{(0,0,\dots,0)}$ by simplicity of $W_{(0,0,\dots,0)}$. Then the lemma follows from Lemma 2.2.

Throughout this paper, $a \gg b$ means that *a* is a number sufficiently larger than *b*.

LEMMA 2.4. Let *I* be any nonzero Lie ideal of $W_{\sqrt{m},e}(\partial)$. For any nonzero element $l \in I$, there is an element $x^s \partial, s \gg 0$, such that $[x^s \partial, l]$ is the sum of elements in $W_{\sqrt{m},e}(\partial)$ with $\deg_{\text{Lie}}([x^s \partial, l]) > 0$.

PROOF. It is straightforward by choosing a sufficiently large positive integer s.

THEOREM 2.5. The Lie algebra $W_{\sqrt{m},e}(\partial)$ is simple.

PROOF. Let *I* be a nonzero Lie ideal of $W_{\sqrt{m},e}(\partial)$. Let *l* be a nonzero element of *I*. By Lemma 2.4, we may assume that *l* has polynomial terms with positive powers for each basis element of *l*. We prove this theorem in several steps.

STEP 1. If *l* is in the 0-homogeneous component, then the theorem holds. We prove this step, by induction on the number $L_0(l)$ of nonequivalent radical-homogeneous components of the element *l* of *I*. If $L_0(l)$ is 1 and $l \in W_{(0,0,\dots,0)}$, then the theorem holds by Lemmas 2.2, 2.3, and the fact that $W_{(0,0,\dots,0)}$ is simple.

KI-BONG NAM

Assume that $l \in W_{(0,0,\dots,0,a_r,\dots,a_m)}$ with $a_r \neq 0$. If we take an element $f_1^{h_r/k_r} \cdots f_n^{h_m/k_m} x^{h_{m+1}} \partial$ such that $h_r \gg k_r, \dots, h_n \gg k_r$ and $(h_r + k_r)/k_r \in \mathbb{Z}_+, \dots, (h_m + k_m)/k_m \in \mathbb{Z}_+$, then we have $l_1 = [f_1^{h_r/k_r} \cdots f_m^{h_m/k_m} x^{h_{m+1}} \partial, l] \neq 0$. This implies that l_1 is in $W(0,0,\dots,0)$. Thus we have proven the theorem by Lemma 2.2.

By induction, we may assume that the theorem holds for $l \in I$ such that $L_0(l) = k$, for some fixed nonnegative integer k > 1. Assume that $L_0(l) = k + 1$. If l has a $W_{(0,0,\dots,0)}$ radical-homogeneous equivalent component, we take $l_2 \in W_{(0,0,\dots,0)}$ such that $[l, l_2]$ can be written as follows: $[l, l_2] = l_3 + l_4$ where l_3 is a sum of nonzero radical-homogeneous components, and $l_4 = f \partial$ with $f \in \mathbf{F}[x]$. Thus we have the nonzero element

$$\partial, \left[\cdots, \left[\partial, l\right] \cdots\right] = l_2 \in I \tag{2.3}$$

which has no terms in the homogeneous equivalent component $W_{(0,0,\dots,0)}$, where we applied Lie brackets until l_2 has no terms in the radical homogeneous equivalent component $W_{(0,0,\dots,0)}$. Then $l_2 \in I$ such that $H(l_2) \leq k$. Therefore, we have proven the theorem by Lemmas 2.2, 2.3, and induction. If l has no terms in the radical homogeneous equivalent component $(0,0,\dots,0)$, then l has a term in the radical homogeneous equivalent component $(0,0,\dots,0)$, then l has a term in the radical homogeneous equivalent component $W_{(0,a_1,\dots,a_n)}$. Take an element $l_3 = f_1^{c_1/p_1} \cdots f_m^{c_m/p_m} x^{c_{m+1}} \partial$ such that c_1,\dots,c_{m+1} are sufficiently large positive integers such that $c_1 + a_1 \in \mathbb{Z} \cdots c_m + a_m \in \mathbb{Z}$, and which is in a radical homogeneous equivalent component $W_{(0,a_1,\dots,a_m)}$. Then $[l_3,l]$ is nonzero and which has a term in the radical homogeneous equivalent component $W_{(0,a_1,\dots,a_m)}$. So in this case we have proven the theorem by induction.

STEP 2. Assume that *l* is in the *d*-homogeneous component such that $0 \neq d$ and $L_0(l) = 1$, then the theorem holds. By taking $e^{-dx}x^t\partial$, we have $0 \neq [e^{-dx}x^t\partial, l] \in W_{(0,0,\dots,0)}$ by taking a sufficiently large positive integer *t*. Thus we have proven the theorem by Step 1.

STEP 3. If *l* is the sum of (k - 1) nonzero homogeneous components and 0-homogeneous component, then the theorem holds. We prove the theorem by induction on the number of distinct homogeneous components by Steps 1 and 2. Assume that we have proven the theorem when *l* has (k - 1) radical-homogeneous components. Assume that *l* has terms in $W_{(0,0,...,0)}$. By Step 1, we have an element $l_1 \in I$, such that $l_1 = l_2 + f\partial$, where l_2 has (k - 1) homogeneous components and $f \in F[x]$. Then $0 \neq \partial, [\cdots, [\partial, l_1] \cdots] \in I$ has (k - 1) homogeneous components, where we applied the Lie bracket until it has no terms in $W_{(0,0,...,0)}$. Therefore, we have proven the theorem by induction.

Assume that *l* has a (*k*) homogeneous equivalent components. We may assume *l* has the terms which is in $0 \neq d$ -homogeneous component. By taking a sufficiently large positive integer *r*, we have $[e^{-dx}x^r\partial, l] \neq 0$ and it has (*k*) homogeneous components with a term in the radical-homogeneous component $W_{(0,0,\dots,0)}$. Therefore, we have proven the theorem by Step 3.

COROLLARY 2.6. The Lie algebra $W^+_{\sqrt{m},e}(\partial)$ is simple.

PROOF. It is straightforward from Theorem 2.5 without using Lemma 2.4.

COROLLARY 2.7. The Lie subalgebra $W^0_{\sqrt{m},e}$ of $W_{\sqrt{m},e}(\partial)$ is simple.

PROOF. It is straightforward from Step 1 of Theorem 2.5.

PROPOSITION 2.8. For any nonzero Lie automorphism θ of $W^+_{\sqrt{m},e}(\partial)$, $\theta(\partial) = \partial$ holds.

PROOF. It is straightforward from the relation $\theta([\partial, x\partial]) = \theta(\partial)$ and the fact that $W^+_{\sqrt{m},e}(\partial)$ is self-centralized and \mathbb{Z} -graded.

ACKNOWLEDGMENTS. The author thanks the referee for the valuable suggestions and comments on this paper. The author also thanks Professor Kawamoto for his comments on radical numbers of \mathbb{Z}_p .

REFERENCES

- [1] N. Kawamoto, K.-B. Nam, and J. Pakianathan, On generalized Witt algebras in one variable, in preparation.
- [2] A. I. Kostrikin and I. R. Safarevic, Graded Lie algebras of finite characteristic, Math. USSR-Izv. 3 (1970), no. 2, 237-240.
- [3] K.-B. Nam, Generalized W and H type Lie algebras, Algebra Collog. 6 (1999), no. 3, 329-340.
- [4] _____ , Modular W and H type Lie algebras, Bulletin of South Eastern Asian Mathematics, Springer-Verlag, 2002, to appear.
- A. N. Rudakov, Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. [5] USSR-Izv. 3 (1969), 707-722.

KI-BONG NAM: DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF WISCONSIN-WHITEWATER, WHITEWATER, WI 53190, USA

E-mail address: namk@uwwvax.uww.edu