NOTES ON WHITEHEAD SPACE OF AN ALGEBRA

M. ARIAN-NEJAD

Received 2 August 2001

Let *R* be a ring, and denote by [R, R] the group generated additively by the additive commutators of *R*. When $R_n = M_n(R)$ (the ring of $n \times n$ matrices over *R*), it is shown that $[R_n, R_n]$ is the kernel of the regular trace function modulo [R, R]. Then considering *R* as a simple left Artinian *F*-central algebra which is algebraic over *F* with Char F = 0, it is shown that *R* can decompose over [R, R], as R = Fx + [R, R], for a fixed element $x \in R$. The space R/[R, R] over *F* is known as the Whitehead space of *R*. When *R* is a semisimple central *F*algebra, the dimension of its Whitehead space reveals the number of simple components of *R*. More precisely, we show that when *R* is algebraic over *F* and Char F = 0, then the number of simple components of *R* is greater than or equal to dim_{*F*} R/[R, R], and when *R* is finite dimensional over *F* or is locally finite over *F* in the case of Char F = 0, then the number of simple components of *R* is equal to dim_{*F*} R/[R, R].

2000 Mathematics Subject Classification: 12E15, 16K40.

1. Introduction. Additive commutator elements of a ring *R* and the groups and structures they make have a great role in the general specification of a ring, and their study is one of the approaches to recognize rings in noncommutative ring theory [2, 3, 4, 5]. The reason is clear, they have covered the secrets of noncommutative behaviour of the structure. In recent years, these elements are returned once again under a full consideration, and a lot of wonderful works has been done on them [1, 10, 11, 12, 13]. Our study here is also among these studies, and it reveals some of bilateral relations between substructure given by additive commutators (the additive commutator group [*R*,*R*], the additive Whitehead group, and the space *R*/[*R*,*R*]) and some characteristics of the ring. In what follows let *R* be a ring. By [*R*,*R*] we denote the group generated additively by the additive Whitehead group of *R*. This group is an *F*-vector space when *R* is a central *F*-algebra, and is called the Whitehead space of *R*.

2. Results. Our first result is about the additive commutator subgroup of a matrix ring over a given ring.

PROPOSITION 2.1. Let *R* be a unitary ring and let $R_n = M_n(R)$ be the ring of $n \times n$ matrices over *R*. Consider the regular trace function on R_n , as $\text{tr} : R_n \to R$, then

$$[R_n, R_n] = \{ A \in R_n \mid \text{tr}(A) \in [R, R] \}.$$
(2.1)

PROOF. The inclusion " \subseteq " follows by the fact that tr(AB - BA) $\in [R, R]$. In order to show the reverse inclusion, let $\{E_{ij}\}$ be the matrix units and note that if $i \neq j$, we have $E_{ij} = E_{ii}E_{ij} - E_{ij}E_{ii} \in [R_n, R_n]$ and $E_{ii} - E_{jj} = E_{ij}E_{ji} - E_{ji}E_{ij} \in [R_n, R_n]$. For any

 $A = (a_{ij}) \in R_n$, we have the following congruence:

$$A = \sum a_{ij} E_{ij} \equiv \sum a_{ii} E_{ii} \equiv \sum a_{ii} E_{11} \pmod{[R_n, R_n]}.$$
(2.2)

In particular, if $tr(A) \in [R, R]$, then $A \in [R_n, R_n]$.

COROLLARY 2.2. Consider the trace function on R_n module of [R,R]. Clearly the group isomorphism $R_n/[R_n,R_n] \cong R/[R,R]$ can be derived.

THEOREM 2.3. Let *R* be a left Artinian central simple *F*-algebra which is algebraic over *F* with Char *F* = 0. Then *R* decomposes over [R,R] as R = Fx + [R,R], for a fixed $x \in R$.

PROOF. By Wedderburn-Artin theorem, $R = M_n(D)$ for a division ring D and suitable $n \in \mathbb{N}$ [6, 14]. We divide our proof into two parts.

(i) Let n = 1, in other words let $R = M_1(D) = D$ be a division ring. Let $a \in R$ and let $f(t) = t^r + b_1 t^{r-1} + \cdots + b_r$ be the minimal polynomial of a over F, where $b_i \in F$, $i = 1, 2, \ldots, r$ and $r = \dim_F F(a)$. By the Wedderburn theorem [9, page 265], f(t) splits completely in R[t], this means that there exists $c_i \in R^* = D - \{0\}$, $i = 1, 2, \ldots, r - 1$, such that $f(t) = (t - a)(t - c_1 a c_1^{-1}) \cdots (t - c_{r-1} a c_{r-1}^{-1})$. Then we have

$$Tr_{F(a)/F}(a) = a + c_1 a c_1^{-1} + c_2 a c_2^{-1} + \dots + c_{r-1} a c_{r-1}^{-1}$$

= $ra + (c_1 a c_1^{-1} - a) + \dots + (c_{r-1} a c_{r-1}^{-1} - a)$
= $ra + (c_1 (a c_1^{-1}) - (a c_1^{-1}) c_1) + \dots + (c_{r-1} (a c_{r-1}^{-1}) - (a c_{r-1}^{-1}) c_{r-1})$
= $ra + d_1 + d_2 + \dots + d_{r-1} = ra + d$, (2.3)

where $d_1, \ldots, d_{r-1}, d \in [R, R]$. This simply yields $a \in F + [R, R]$ which imply that R = F + [R, R], x = 1.

(ii) Let $n \in \mathbb{N}$ be an arbitrary positive integer. We have $R = M_n(D)$, where *D* is a division ring. By (i), D = F + [D, D], so

$$R = M_n(D) = M_n(F + [D,D]) = M_n(F) + M_n([D,D]) \subseteq M_n(F) + [R,R] \subseteq R.$$
 (2.4)

This implies that $R = M_n(F) + [R,R]$. By this formula, given $A \in R$, there exist $B \in M_n(F)$ and $C \in [R,R]$ such that A = B + C, hence $A = (B - (\operatorname{tr} B/n)I) + (\operatorname{tr} B/n)I + C$, where *I* is the identity matrix of size *n*. By Proposition 2.1, $(B - (\operatorname{tr} B/n)I) \in [R,R]$, and $A = (\operatorname{tr} B/n)I + ((B - (\operatorname{tr} /n)I) + C)$, consequently

$$R = FI + [R, R], \quad x = I.$$
 (2.5)

To see a different statements and initial ideas of these theorems we refer the reader to [1, 2]. Also a multiplicative version of Theorem 2.3 could be found in [11].

Now, we are going to state our main result, which is about the Whitehead space of a semisimple ring. This theorem is a generalization of a nice theorem due to *R*. Brauer [8, page 130].

510

THEOREM 2.4. Let *R* be a left Artinian semisimple central *F*-algebra and let *k* be the number of left simple components of *R*. Then,

- (i) *if* R *is algebraic over* F *and* CharF = 0*, then* $k \ge \dim_F R / [R, R]$ *;*
- (ii) if *R* is finite dimensional over *F*, or is locally finite over *F*, and Char F = 0, then $k = \dim_F R / [R, R]$.

PROOF. Consider the following chain of functions:

$$R \xrightarrow{f_1} M_{n_1}(D_1) \times \cdots \times M_{n_k}(D_k) \xrightarrow{f_2} D_1 / [D_1, D_1] \times \cdots \times D_k / [D_k, D_k],$$
(2.6)

where f_1 is the isomorphism given by the Wedderburn-Artin theorem for the decomposition of a semisimple left Artinian ring into a direct product of simple ring [6, 14], and f_2 is the *F*-algebra homomorphisms, by considering component-wise the trace function on $M_{n_i}(D_i) \mod[D_i, D_i]$, i = 1, ..., k.

By Proposition 2.1 we have, ker $(f_2 \circ f_1) = [R, R]$, noting that $[R, R] \cong [R_1, R_1] \times \cdots \times [R_k, R_k]$, where $R_{n_i} = M_{n_i}(D_i)$, i = 1, ..., k. Therefore the following *F*-isomorphism holds:

$$R/[R,R] \cong D_1/[D_1,D_1] \times \dots \times D_k/[D_k,D_k].$$

$$(2.7)$$

It remains to compute the dimension of Whitehead space of a division ring in the two cases (i) and (ii) above.

First let *D* be algebraic over *F* and Char *F* = 0. We show that any two elements $\bar{a}, \bar{b} \in D/[D,D]$ are linearly dependent. By Theorem 2.3, there exist elements $\alpha, \beta \in F$ and $d_1, d_2 \in [D,D]$, such that $a = \alpha + d_1$ and $b = \beta + d_2$. In other words, $\beta \bar{a} - \alpha \bar{b} = \bar{0}$ in D/[D,D]. Hence in this case dim_{*F*} $D/[D,D] \leq 1$.

Now let *D* be finite dimensional *F*-central algebra. Let $\operatorname{RT}_{D/F} : D \to F$ be the reduced trace function which is surjective by [7, page 148]. Furthermore, by a theorem of Amitsur and Rowen [5, page 171] its kernel is equal to [D,D] and so it is a hyperplane over *F*, in this case dim_{*F*}D/[D,D] = 1.

As a latter case let *D* be a locally finite division ring over it's center *F* and Char F = 0. Now consider the function TR : $D \rightarrow F$ defined by

$$TR(x) = \frac{1}{\deg_F(x)} Tr_{F(x)/F}(x), \qquad (2.8)$$

we show that this function is an *F*-linear surjective map, whose kernel is [D,D]. The claim then is clear.

First note that in this case $1 \notin [D,D]$, for if $1 \in [D,D]$, then there exist some x_i 's and y_i 's in D, such that $1 = \sum (x_i y_i - y_i x_i)$. Let D_1 be the division ring generated by F together with x_i 's and y_i 's. Taking the reduced trace of D_1 over its centre of both sides of $1 = \sum (x_i y_i - y_i x_i)$, we get a contradicting result. Therefore $[D,D] \cap F = \{0\}$. Now, by considering the trace formula (given in the proof of Theorem 2.3) for elements a, b and $\lambda a + b$ ($\lambda \in F$) in D, it is readily verified that

$$\frac{1}{r}\operatorname{Tr}(\lambda a + b) = \frac{\lambda}{n}\operatorname{Tr}(a) + \frac{1}{m}\operatorname{Tr}(b), \qquad (2.9)$$

where r, n, and m are degrees of $\lambda a + b$, a and b. So TR is F-linear. The surjectivity is clear. In order to specify the kernel of TR, consider the trace formula for elements of [D,D]. Suppose that $a \in [D,D]$. Now, we have $\operatorname{Tr}_{F(a)/F}(a) = na + d \in [D,D] \cap F$, where n is the degree of a over F and $d \in [D,D]$. Therefore $\operatorname{TR}(a) = 0$. By the same argument we can see that if $\operatorname{TR}(a) = 0$, then $a \in [D,D]$.

ACKNOWLEDGMENT. The author is indebted in part to the Research Council of the University of Zanjan for support.

REFERENCES

- S. Akbari and M. Arian-Nejad, *Left Artinian algebraic algebras*, Algebra Colloq. 8 (2001), no. 4, 463-470.
- [2] S. Akbari, M. Arian-Nejad, and M. L. Mehrabadi, *On additive commutator groups in division rings*, Results Math. **33** (1998), no. 1-2, 9-21.
- [3] S. Akbari and M. Mahdavi-Hezavehi, *Normal subgroups of* $GL_n(D)$ *are not finitely generated*, Proc. Amer. Math. Soc. **128** (2000), no. 6, 1627–1632.
- S. Akbari, M. Mahdavi-Hezavehi, and M. G. Mahmudi, *Maximal subgroups of* GL₁(D), J. Algebra 217 (1999), no. 2, 422–433.
- [5] S. A. Amitsur and L. H. Rowen, *Elements of reduced trace* 0, Israel J. Math. 87 (1994), no. 1-3, 161–179.
- [6] P. M. Cohn, *Algebra. Vol. 3*, 2nd ed., John Wiley & Sons, Chichester, 1991.
- [7] P. K. Draxl, *Skew Fields*, London Mathematical Society Lecture Note Series, vol. 81, Cambridge University Press, Cambridge, 1983.
- [8] I. N. Herstein, *Noncommutative Rings*, The Carus Mathematical Monographs, vol. 15, The Mathematical Association of America, Washington, DC, 1971.
- [9] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 1991.
- [10] M. Mahdavi-Hezavehi, Extension of valuations on derived groups of division rings, Comm. Algebra 23 (1995), no. 3, 913–926.
- [11] _____, Commutator subgroups of finite dimensional division algebras, Rev. Roumaine Math. Pures Appl. 43 (1998), no. 9-10, 853-867.
- [12] M. Mahdavi-Hezavehi and S. Akbari, *Some special subgroups of* $GL_n(D)$, Algebra Colloq. 5 (1998), no. 4, 361–370.
- [13] M. Mahdavi-Hezavehi, S. Akbari-Feyzaabaadi, M. Mehraabaadi, and H. Hajie-Abolhassan, On derived groups of division rings. II, Comm. Algebra 23 (1995), no. 8, 2881–2887.
- [14] L. H. Rowen, *Ring Theory*, Academic Press, Massachusetts, 1991, Student edition.

M. ARIAN-NEJAD: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZANJAN, ZANJAN, IRAN *E-mail address*: arian@mail.znu.ac.ir

512