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1. Introduction. Humanoid robots are human-like, anthropomorphic mechanisms

with complex, muscle driven, biodynamics with many degrees-of-freedom [8]. This

paper proposes a new generalized Hamiltonian model of humanoid biodynamics, to-

gether with topology analysis of its configuration and momentum phase-space mani-

folds.

Since the early work of Vukobratovic on exoskeletal robotic-suite (see [18, 19]), the

vast body of research has been done in relation to kinematics, dynamics, and control

of biped, anthropomorphic and humanoid robots [6, 13, 17, 19]. Some of the biped

models had the ability of passive dynamic walking and others had powered walking

ability (see [19]). The previous decade was dominated by various solutions to the

kinematic problems of redundancy and singularities [20]. The last decade has been

characterized mostly by extensive use of intelligent, neuro-fuzzy genetic control of

humanoid dynamics [3, 12, 14, 15], and computer-graphics animation [9].

In this paper, the N-dimensional configuration manifold QN of humanoid biody-

namics (HB, for short) is constructed using direct products of constrained rotational

Lie groups SO(n) (for n = 2,3). A two-stage, generalized Hamiltonian formulation

of HB is performed on the momentum phase-space manifold (i.e., cotangent bundle)

T∗QN , using symplectic geometry of rotational Lie groups SO(n) and their algebras

so(n). A dissipative, muscle driven, Hamiltonian HB is first deterministically formu-

lated on T∗QN , and afterwards stochastically generalized to include noise in the form

of both diffusion fluctuations and discontinuous master jumps. Topological analysis

of T∗QN is performed using both cohomology and homology groups. In the case of

reduced configuration manifold, the Betti numbers and Euler-Poincaré characteristic

are given.

2. Generalized Hamiltonian HB

2.1. Configuration manifold of HB. Kinematics of an n-segment humanoid chain

is usually defined as a map between external (usually, end-effector) coordinates
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xr (r = 1, . . . ,n) and internal (joint) coordinates qi(i = 1, . . . ,N) [7, 8]. The forward

kinematics are defined as a nonlinear map xr = xr (qi) with a corresponding lin-

ear vector functions dxr = ∂xr/∂qi ·dqi of differentials and ẋr = ∂xr/∂qi · q̇i of

velocities. (Here and subsequently the summation convention over repeated indices

is understood.) When the rank of the configuration-dependent Jacobian matrix J ≡
∂xr/∂qi is less than n the kinematic singularities occur; the onset of this condition

could be detected by the manipulability measure. Inverse kinematics are defined con-

versely by a nonlinear map qi = qi(xr ) with a corresponding linear vector functions

dqi = ∂qi/∂xr · dxr of differentials and q̇i = ∂qi/∂xr · ẋr of velocities. As HB is

highly redundant (n < N), the inverse kinematic problem admits infinite solutions;

therefore, the pseudo-inverse configuration-control is used instead: q̇i = J∗ẋr , where

J∗ = JT (JJT )−1 denotes the Moore-Penrose pseudo-inverse of the Jacobian matrix J.

Humanoid joints, that is, internal coordinates qi (i= 1, . . . ,N), constitute a smooth

configuration manifold QN , described as follows. Uniaxial, hinge joints represent

constrained, rotational Lie groups SO(2)icnstr, parameterized by constrained angles

qicnstr ≡ qi ∈ [qimin,qimax]. Three-axial, ball-and-socket joints represent constrained ro-

tational Lie groups SO(3)icnstr, parameterized by constrained Euler angles qi = qφicnstr

(in the following text, the subscript cnstr will be omitted, for the sake of simplicity,

and always assumed in relation to internal coordinates qi). All SO(n)-joints are Haus-

dorff C∞-manifolds with atlases (Uα,uα); in other words, they are paracompact and

metrizable smooth manifolds, admitting Riemannian metric.

SO(3)
SO(3)

SO(2)

SO(3)

SO(3)

SO(2)

SO(3)SO(3)

SO(3)
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Figure 2.1. Humanoid configuration manifold QN modeled as anthropo-
morphic product tree of constrained rotational SO(n) groups (for n= 2,3).

Let A and B be two smooth manifolds described by smooth atlases (Uα,uα) and

(Vβ,vβ), respectively. Then, the family (Uα×Vβ,uα×vβ : Uα×Vβ → Rm×Rn)(α,β) ∈
A×B is a smooth atlas for the direct product A×B. Now, if A and B are two Lie groups

(say, SO(n), for n = 2,3 and i = 1, . . . ,N), then their direct product G = A×B is at

the same time their direct product as smooth manifolds and their direct product as
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algebraic groups, with the product law

(
a1,b1

)(
a2,b2

)= (
a1a2,b1b2

)
, a1,2 ∈A, b1,2 ∈ B. (2.1)

Generalizing the direct product toN rotational joint groups, we can draw an anthro-

pomorphic product tree (see Figure 2.1) using a line segment “–” to represent direct

products of humanoid’s SO(n)-joints. This is our basic model of the humanoid con-

figuration manifold QN .

Now, on the HB configuration manifold QN , we are going to perform some cate-

gorical transformations (see [10], as well as [7, 8]). If we apply the functor Lie to the

category •[SO(n)i] of rotational Lie groups SO(n)i and their homomorphisms we ob-

tain the category •[so(n)i] of corresponding tangent Lie algebras so(n)i and their

homomorphisms. If we further apply the isomorphic functor Dual to the category

•[so(n)i], we obtain the dual category ∗• [so(n)∗i ] of cotangent, or, canonical Lie alge-

bras so(n)∗i and their homomorphisms. To go directly from •[SO(n)i] to ∗• [so(n)∗i ],
we use the canonical functor Can [7, 8]. Therefore, we have a commutative triangle

�•[SO(n)i]
Lie Can

�•[so(n)i]
�

DualG
�∗• [so(n)∗i ].

(2.2)

Both the tangent algebras so(n)i and the cotangent algebras so(n)∗i contain infin-

itesimal group generators, angular velocities q̇i = q̇φi in the first case and canonical

angular momenta pi = pφi in the second [15]. As Lie group generators, angular veloc-

ities and angular momenta satisfy the respective commutation relations [q̇φi , q̇ψi] =
εφψθ q̇θi and [pφi ,pψi]= εθφψpθi , where the structure constants εφψθ and εθφψ constitute

totally antisymmetric third-order tensors.

In this way, the functor DualG : Lie� Can establishes a geometrical duality between

kinematics of angular velocities q̇i (involved in Lagrangian formalism on the tangent

bundle of QN ) and that of angular momenta pi (involved in Hamiltonian formalism

on the cotangent bundle of QN ). This is analyzed below. In other words, we have two

functors Lie and Can from a category of Lie groups (of which �•[SO(n)i] is a subcat-

egory) into a category of their Lie algebras (of which �•[so(n)i] and �∗• [so(n)∗i ] are

subcategories), and a natural equivalence (functor isomorphism) between them de-

fined by the functor DualG. (As angular momenta pi are in a bijective correspondence

with angular velocities q̇i, every component of the functor DualG is invertible.)

Applying the functor Lie to the HB-configuration manifold QN (Figure 2.1), we get

the product tree of the same anthropomorphic structure, but having tangent Lie alge-

bras SO(n)i as vertices, instead of the groups SO(n)i. Again, applying the functor Can

to QN , we get the product tree of the same anthropomorphic structure, but this time

having cotangent Lie algebras so(n)∗i as vertices. Both the tangent algebras so(n)i and

the cotangent algebras so(n)∗i contain infinitesimal group generators: angular veloc-

ities q̇i = q̇φi—in the first case, and canonical angular momenta pi = pφi—in the sec-

ond case [7, 8]. As Lie group generators, both the angular velocities and the angular mo-

menta satisfy the commutation relations: [q̇φi , q̇ψi]= εφψθ q̇θi and [pφi ,pψi]= εθφψpθi ,



558 VLADIMIR IVANCEVIC

respectively, where the structure constants εφψθ and εθφψ constitute the totally anti-

symmetric third-order tensors.

The functor Lie defines the second-order Lagrangian formulation on the tangent

bundle TQN (i.e., the velocity phase-space manifold) while the functor Can defines

the first order canonical Hamiltonian formalism on the cotangent bundle T∗QN (i.e.,

the momentum phase-space manifold). As these two formalisms are related by the

isomorphic functor Dual, they are equivalent. Now, as it is easier to make a stochastic

generalization on the first order equations, we will follow the canonical Hamiltonian

functor Can.

2.2. Dissipative, muscle-driven, Hamiltonian HB. The Hamiltonian function H :

T∗QN → R of HB is, in local canonical coordinates qi,pi ∈ Up on the momentum

phase-space manifold T∗QN , given by the equation

H(q,p)= 1
2
gij(q,m)pipj+V(q), (2.3)

where gij(q,m) denotes the contravariant material metric tensor, relating internal

and external coordinates, and including n segmental masses mχ as

gij(q,m)=
n∑
χ=1

mχδrs
∂qi

∂xr
∂qj

∂xs
. (2.4)

Deterministic HB, representing the canonical functor Can : •[SO(n)i]⇒ ∗• [so(n)∗i ],
is given by dissipative, driven δ-Hamiltonian equations,

q̇i = ∂H
∂pi

+ ∂R
∂pi

, (2.5)

ṗi = Fi− ∂H∂qi +
∂R
∂qi
, (2.6)

qi(0)= qi0, pi(0)= p0
i , (2.7)

including contravariant equation (2.5)—the velocity vector-field, and covariant equa-

tion (2.6)—the force one-form, together with initial joint angles and momenta. Here

(i= 1, . . . ,N), and R = R(q,p) denotes the Raileigh nonlinear (biquadratic) dissipation

function, and Fi = Fi(t,q,p) are covariant driving torques of equivalent muscular ac-

tuators, resembling muscular excitation and contraction dynamics in rotational form

[7, 8].

The velocity vector field (2.5) and the force one-form field (2.6) together define the

generalized Hamiltonian vector field XH , which geometrically represents the section

of the momentum phase-space manifold T∗QN , which is itself the cotangent bun-

dle of the HB-configuration manifold QN , (Figure 2.1); the Hamiltonian (total energy)

function H =H(q,p) is its generating function.

As an example, we have considered the common humanoid task of symmetrical

3D load lifting [7, 8]. The general HB-configuration manifold QN (Figure 2.1) is now

reduced to the 9-dimensional torus T 9 and the momentum phase-space manifold cor-

responds to its 18-dimensional cotangent bundle T∗T 9. In this case, the canonical
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velocity and force equations (2.5) and (2.6) obtain relatively simple expanded form

(where symbolically derived using computer algebra, [7, 8])

q̇i = pi



[
Ji
]−1+


mi


 i∑
j=1

Lj cosqj



2


−1

+
∂R
∂pi

, (2.8)

ṗi = Fi
(
t,qi,pi

)−g 10−i∑
j=i
Ljmj sinqj

−
10−i∑
j=i
Lj sinqjpipj


mi


 i∑
k=1

Lk cosqk



3


−1

+ ∂R
∂qi
,

(2.9)

for (i = 1, . . . ,9). Here Ls, ms, and Js denote the segment lengths, masses, and mo-

ments of inertia, respectively, and g is the common gravity constant. In the contra-

variant-velocity equation (2.8) the terms denote rotational velocities, translational ve-

locities and velocity-dumping for the ith joint, respectively, whereas the covariant-

force equation (2.9) contains terms of muscular excitation/contraction actuator

torques Fi = Fi(t,qi,pi) [7, 8], and passive-external torques (gravitational, Coriolis,

centrifugal, and joint-damping, respectively).

As a Lie group, the configuration manifold QN is Hausdorff. Therefore, for x =
(qi,pi)∈Up , Up open in T∗QN , there exists a unique one-parameter group of diffeo-

morphisms φδt : T∗QN → T∗QN , the deterministic δ-Hamiltonian phase-flow [7, 8]

φδt :G1×T∗QN �→ T∗QN,
(
p(0),q(0)

) � �→ (
p(t),q(t)

)
,(

φδt ◦φδs =φδt+s , φδ0 = identity
)
,

(2.10)

given by (2.5), (2.6), and (2.7) such that

d
dt

∣∣∣∣
t=0
φδtx = J∇H(x). (2.11)

2.3. Stochastic Hamiltonian HB. The general N-dimensional Markov process can

be defined by Ito stochastic differential equation (summing upon repeated indexes

assumed) [16]

dxi(t)=Ai
[
xi(t),t

]
dt+Bij

[
xi(t),t

]
dWj(t),

xi(0)= xi0, (i, j = 1, . . . ,N)
(2.12)

or corresponding Ito stochastic integral equation

xi(t)= xi(0)+
∫ t

0
dsAi

[
xi(s),s

]+
∫ t

0
dWj(s)Bij

[
xi(s),s

]
, (2.13)

in which xi(t) is the variable of interest, the vector Ai[x(t),t] denotes deterministic

drift, the matrix Bij[x(t),t] represents continuous stochastic diffusion fluctuations,

and Wj(t) is an N-variable Wiener process (i.e., generalized Brownian motion), and

dWj(t)=Wj(t+dt)−Wj(t).
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The Markov assumption is formulated in terms of the conditional probabilities

P(xi,ti): if the times ti increase from right to left, the conditional probability is de-

termined entirely by the knowledge of the most recent condition. Markov process

is generated by a set of conditional probabilities whose probability-density function

P(x′, t′ | x′′, t′′) obeys the general Chapman-Kolmogorov integro-differential equation

[4]

∂tP
(
x′, t′ | x′′, t′′)=−∑

i

∂
∂xi

{
Ai

[
x(t),t

]
P
(
x′, t′ | x′′, t′′)}

+ 1
2

∑
ij

∂2

∂xi∂xj
{
Bij

[
x(t),t

]
P
(
x′, t′ | x′′, t′′)}

+
∫
dx

{
W

(
x′ | x′′, t)P(x′, t′ | x′′, t′′)

−W(
x′′ | x′, t)P(x′, t′ | x′′, t′′)}

(2.14)

including: deterministic drift, diffusion fluctuations, and discontinuous jumps (given,

respectively, in the first, second, and third rows).

In terms of the Markov stochastic process (2.12), (2.13), and (2.14), we can inter-

pret our deterministic δ-Hamiltonian HB-system (2.5), (2.6), and (2.7) as deterministic

drift corresponding to the Liouville equation. Thus, we can naturally (in the sense of

Langevin) add the covariant vector σi(t) of stochastic forces (diffusion fluctuations

and discontinuous-Master jumps) σi(t)= Bij[qi(t),t]dWj(t)—to the canonical force

equation. In this way we obtain stochasticσ -Hamiltonian HB-system, a stochastic trans-

formation Stoch [Can] of the canonical functor Can,

dqi =
(
∂H
∂pi

+ ∂R
∂pi

)
dt,

dpi =
(
Fi− ∂H∂qi +

∂R
∂qi

)
dt+σi(t),

σi(t)= Bij
[
qi(t),t

]
dWj(t),

qi(0)= qi0, pi(0)= p0
i .

(2.15)

In our case of symmetrical 3D load-lifting, the velocity and force σ -Hamiltonian

HB-equations (2.8) and (2.9) become

dqi =

pi



[
Ji
]−1+


mi


 i∑
j=1

Lj cosqj




2

−1

+
∂R
∂pi


dt,

dpi = Bij
[
qi(t),t

]
dWj(t)

+

Fi−g

10−i∑
j=i
Ljmj sinqj−

10−i∑
j=i
Lj sinqjpipj


mi


 i∑
k=1

Lk cosqk




3

−1

+ ∂R
∂qi


dt.
(2.16)
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Through stochastic σ -Hamiltonian HB-system (2.15), the deterministic δ Hamilton-

ian phase-flow φδt (2.10), extends into stochastic σ Hamiltonian phase-flow

φσt :G1×I∗QN �→ I∗QN,
(
p(0),q(0)

) � �→ (
p(t),q(t)

)
,(

φσt ◦φσs =φσt+s , φσ0 = identity
)
,

(2.17)

where I∗QN denotes Ito quadratic cotangent bundle (see [11]) of HB-configuration

manifold QN . Ito quadratic cotangent bundle I∗QN is defined as a Whitney sum

I∗QN = T∗QN⊕SQN, (2.18)

where SQN corresponds to stochastic tensor bundle whose elements are 2nd-order

tensor fields composed of continual diffusion fluctuations and discontinuous jumps

at every point of the manifold QN . On I∗QN is defined a non-degenerate, stochastic

two-form α which is closed, that is, dα= 0, and exact, that is, α= dβ, where one-form

β represents a section β :QN → I∗QN of the Ito bundle I∗QN .

The quadratic character of Ito stochastic fiber-bundles corresponds to the second

term (trace of the 2nd-order tensor) of associate stochastic Taylor expansion (see [11]).

Besides the σ -Hamiltonian phase-flow φσt (2.17), including N individual random-

phase trajectories, we can also define (see [4, 16]) a mean 〈σ〉-Hamiltonian flow 〈φ〉σt
〈
φ
〉
σt :G1×I∗QN �→ I∗QN,

(〈
p(0)

〉
,
〈
q(0)

〉) � �→ (〈
p(t)

〉
,
〈
q(t)

〉)
,(〈φ〉σt ◦〈φ〉σs = 〈φ〉σt+s , 〈φ〉σ0 = identity

)
,

(2.19)

which gives a sort of stochastic approximation for trajectory of the centre of mass

in HB, usually (in biomechanical literature) taken to be the lumbo-sacral SO(3)-joint

located at the lower third of the spine (see Figure 2.1).

The necessary conditions for existence of a unique nonanticipating solution of σ -

Hamiltonian HB-system in a fixed time interval are Lipschitz condition and growth

condition [11, 16]. For constructing an approximate solution a simple iterative Cauchy-

Euler procedure could be used to calculate (qik+1,p
k+1
i ) from the knowledge of (qik,p

k
i )

on the mesh of time points tk, k = 1, . . . ,s, by adding discrete δ-Hamiltonian drift-

terms Ai(qik)∆tk and Ai(pki )∆tk, as well as a stochastic term Bij(qki ,tk)∆W
j
k .

3. Topology invariants of HB

3.1. Cohomology groups of HB. If � = H•M represents the Abelian category of

cochains [1, 2] on the momentum phase-space manifold T∗QN , we have the category

�•(H•M) of generalized cochain complexes A• in �•M and if A′n = 0 for n < 0, we

have a subcategory �•DR(H•M) of de Rham differential complexes in �•(H•M)

A•DR : 0 �→Ω0(T∗QN) d
�→Ω1(T∗QN)

d
�→Ω2(T∗QN) d

�→ ··· d
�→ΩN(T∗QN) d

�→ ··· ,
(3.1)

where A′N =ΩN(T∗QN) is the vector space of all N-forms on T∗QN over R.
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Let ZN(T∗QN)= Ker(d) and BN(T∗QN)= Im(d) denote, respectively, the real vec-

tor spaces of cocycles and coboundaries of degreeN. Since dN+1dN = d2 = 0, it follows

that BN(T∗QN)⊂ ZN(T∗QN). The quotient vector space

HNDR

(
T∗QN

)= Ker(d)/Im(d)= ZN(T∗QN)/BN(T∗QN) (3.2)

is referred to as the de Rham cohomology group (vector space) of HB on T∗QN . The

elements ofHNDR(T∗QN) are equivalence sets of cocycles. Two cocyclesω1 andω2 are

cohomologous, or belong to the same equivalence set (writtenω1 ∼ω2) if and only if

they differ by a coboundaryω1−ω2 = dθ. Any formωH ∈ΩN(T∗QN) has a de Rham

cohomology class [ωH]∈HNDR(T∗QN).
Hamiltonian symplectic formωH = dpi∧dqi on T∗QN is by definition both a closed

two-form or two-cocycle and an exact two-form or two-coboundary. Therefore, the

two-dimensional de Rham cohomology group of HB is defined as a quotient vector

space

H2
DR

(
T∗QN

)= Z2(T∗QN)/B2(T∗QN). (3.3)

As T∗QN is a compact Hamiltonian symplectic manifold of dimension 2N, it follows

thatωNH is a volume element on T∗QN , and the 2N-dimensional de Rham cohomology

class [ωNH]∈H2N
DR (T∗QN) is nonzero. Since [ωNH]= [ωH]N , then [ωH]∈H2

DR(T∗QN)
and all of its powers up to the Nth must be zero as well. The existence of such an ele-

ment is a necessary condition for T∗QN to admit a Hamiltonian symplectic structure

ωH .

A de Rham complex A•DR on T∗QN can be considered as a system of second-order

differential equations d2θH = 0, θH ∈ ΩN(T∗QN) having a solution represented by

ZN(T∗QN). In local coordinates qi, pi ∈ Up (Up open in T∗QN ), we have d2θH =
d2(pidqi)= d(dpi∧dqi)= 0.

3.2. Homology groups of HB. If �=H•M represents an Abelian category of chains

[1, 2] on T∗QN , we have a category �•(H•M) of generalized chain complexes �• in

�•M , and if A= 0 for n< 0, we have a sub-category �C• (H•M) of chain complexes in

�•M

A• : 0←� C0(T∗QN) ∂←� C1(T∗QN) ∂←� C2(T∗QN) ∂←� ··· ∂←� Cn(T∗QN) ∂←� ··· .
(3.4)

Here AN = CN(T∗QN) is the vector space of all finite chains C on T∗QN over R, and

∂N = ∂ : CN+1(T∗QN)→ CN(T∗QN). A finite chain C such that ∂C = 0 is an N-cycle.

A finite chain C such that C = ∂B is an N-boundary. Let ZN(T∗QN) = Ker(∂) and

BN(T∗QN) = Im(∂) denote, respectively, real vector spaces of cycles and boundaries

of degreeN. Since ∂N−1∂N = ∂2 = 0, then BN(T∗QN)⊂ ZN(T∗QN). The quotient vector

space

HCN
(
T∗QN

)= ZN(T∗QN)/BN(T∗QN) (3.5)
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represents an N-dimensional homology group (vector space) of humanoid dynamics.

The elements of HCN(T∗QN) are equivalence sets of cycles. Two cycles C1 and C2 are

homologous, or belong to the same equivalence set (written C1 ∼ C2) if and only if they

differ by a boundary C1−C2 = ∂B. The homology class of a finite chain C ∈ CN(T∗QN)
is [C]∈HCN(T∗QN).

Similar (co)homology analysis could be also performed on the stochastic Ito qua-

dratic cotangent bundle I∗QN of HB.

3.3. Reduced configuration manifold: Betti numbers and Euler-Poincaré charac-

teristic. The HB-configuration manifold QN (Figure 2.1) can be, for the sake of the

brain-like motor control [5], reduced to N-torus TN , in three steps, as follows.

First, a single three-axial SO(3)-joint can be reduced to the direct product of three

uniaxial SO(2)-joints, in the sense that three hinge joints can produce any orienta-

tion in space, just as a ball-joint can. Algebraically, this means reduction of each of

the three SO(3) rotation matrices to the corresponding SO(2) rotation matrices, by

deleting the rows and columns with zeros and 1.

In this way, we can set the reduction equivalence relation SO(3) � SO(2)×SO(2)×
SO(2).

Second, we have a homeomorphism: SO(2)∼ S1, where S1 denotes the constrained

unit circle in the complex plane, which is an Abelian Lie group.

Third, let IN be the unit cube [0,1]N in RN and “∼” an equivalence relation on RN

obtained by gluing together the opposite sides of IN , preserving their orientation.

The manifold of humanoid configurations depicted in Figure 2.1 can be represented

as a quotient space of RN by the space of the integral lattice points in RN , that is a

constrained N-dimensional torus TN :

RN/ZN = IN/∼�
N∏
i=1

S1
i ≡

{(
qi, i= 1, . . . ,N

)
: mod(2π)

}= TN. (3.6)

Since S1 is an Abelian Lie group, its N-fold direct product TN is also an Abelian Lie

group, the toral group, of all nondegenerate diagonal N×N matrices. As a Lie group,

the HB-configuration space QN ≡ TN has a natural Banach manifold structure with

local internal coordinates qi ∈U , U being an open set (chart) in TN .

Conversely by ungluing the configuration space, we obtain the primary unit cube.

Let “∼∗” denote an equivalent decomposition or ungluing relation. By the Tychonoff

product topology theorem, for every such quotient space there exists a selector such

that their quotient models are homeomorphic, that is, TN/ ∼∗≈ AN/ ∼∗. Therefore,

IN represents a selector for the configuration torus TN and can be used as an N-

directional command-space for the topological control of humanoid motion. Any sub-

set of degrees of freedom on the configuration torus TN (3.6) representing the joints

included in humanoid motion has its simple, rectangular image in the command

space—selector IN . Operationally, this resembles what the brain motor controller,

actually performs on the highest level of human motor control (see [14, 15]).

Now, the Betti numbers for the configuration torus TN (3.6) follow from (3.2) and

(3.5), using the homotopy axiom for de Rham cohomologies, as well as the de Rham



564 VLADIMIR IVANCEVIC

theorem

b0 = 1,

b1 =N,. . . ,bp =
(
N
p

)
, . . . ,bN−1 =N,

bN = 1 (0≤ p ≤N).

(3.7)

Therefore, bN = bN are given by (3.7) for both TN and T∗TN , defining also their Euler-

Poincaré characteristic as [1]

χ
(
TN,T∗TN

)= N∑
p=1

(−1)pbp. (3.8)
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