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The Hyers-Ulam stability in three senses is discussed by Kim (2001) for the generalized
gamma functional equation g(x+p) = a(x)g(x) under some conditions which involve
convergence of complicated series. In this note, those conditions are simplified to be
checked easily and more interesting examples other than the classical gamma functional
equation are displayed.
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1. Introduction. The functional equation

E1(g)= E2(g) (1.1)

is said to have the Hyers-Ulam stability if for an approximate solution f , such that

∣∣E1(f )(x)−E2(f )(x)
∣∣≤ δ (1.2)

for some fixed constant δ≥ 0, there exists a solution g of (1.1) such that

∣∣f(x)−g(x)∣∣≤ ε (1.3)

for some positive constant ε depending only on δ. Sometimes we call f a δ-approxi-

mate solution of (1.1) and g ε-close to f .

Such an idea of stability was given by Ulam [13] for Cauchy equation f(x+y) =
f(x)+f(y) and his problem was solved by Hyers [4]. Later, the Hyers-Ulam stability

was studied extensively (see, e.g., [6, 8, 10, 11]). Moreover, such a concept is also

generalized in [2, 3, 12]. As in [5] we say (1.1) has the generalized Hyers-Ulam-Rassias

stability if for an approximate solution f , such that

∣∣E1(f )(x)−E2(f )(x)
∣∣≤ψ(x) (1.4)

for some fixed function ψ(x), there exists a solution g of (1.1) such that

∣∣f(x)−g(x)∣∣≤ Φ(x) (1.5)

for some fixed function Φ(x) depending only on ψ(x). We say (1.1) has the stability

in the sense of Ger if for an approximate solution f , such that

∣∣∣∣E1(f )(x)
E2(f )(x)

−1
∣∣∣∣≤ψ(x) (1.6)
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for some fixed function ψ(x), there exists a solution g of (1.1) such that

α(x)≤ f(x)
g(x)

≤ β(x) (1.7)

for some fixed functions α(x) and β(x) depending only on ψ(x).
The three senses of the Hyers-Ulam stability are discussed in [5] for the generalized

gamma functional equation

g(x+p)= a(x)g(x), (1.8)

where p > 0 is a fixed real constant. It is proved that (1.8) has the Hyers-Ulam stability

if

∞∑
j=0

j∏
k=0

1
a(x+pk) <+∞, ∀x >n0, (1.9)

for a nonnegative constant n0, has the generalized Hyers-Ulam-Rassias stability if the

function ψ(x) in (1.4) satisfies

∞∑
j=0

ψ(x+pj)
j∏
k=0

1
a(x+pk) <+∞, ∀x >n0, (1.10)

for a nonnegative constant n0, and has the stability in the sense of Ger if the function

ψ(x) in (1.6) satisfies

∞∑
j=0

log
(
1−ψ(x+pj))>−∞,

∞∑
j=0

log
(
1+ψ(x+pj))<+∞, ∀x >n0, (1.11)

for a nonnegative constant n0. In [5] conditions (1.9), (1.10), and (1.11) are checked

with the concrete equation g(x+1)= xg(x), which the well-known gamma function

Γ(x)= ∫∞0 e−ttx−1dt satisfies.

2. On Hyers-Ulam stability

Theorem 2.1. Consider approximate solutions f : (0,+∞)→R of (1.8) which satisfy

that |f(x+p)−a(x)f(x)| ≤ δ for all x >n0 where δ≥ 0 is a fixed constant and n0 is

a nonnegative constant. If the function a(x) satisfies

liminf
k→∞

a(x+pk) > 1, ∀x >n0, (2.1)

then (1.8) has the Hyers-Ulam stability.

Proof. Consider the sequence {uj(x)} defined by

uj(x)=
j∏
k=0

1
a(x+pk) . (2.2)
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Note that

limsup
k→∞

uk
uk−1

= limsup
k→∞

1
a(x+pk)

= 1
liminfk→∞a(x+pk)

< 1, ∀x >n0,

(2.3)

by (2.1). By ratio test we see that the series (1.9) converges for all x > n0. By [5,

Theorem 2.1] we obtain the Hyers-Ulam stability.

A similar idea to give conditions of stability by use of inferior limit was once taken

in [7].

Example 2.2. It is easier to see that the gamma functional equation

g(x+1)= xg(x) (2.4)

has the Hyers-Ulam stability because in this case a(x)= x satisfies

lim
x→+∞a(x)=+∞ (2.5)

and condition (2.1) in Theorem 2.1 is satisfied.

Example 2.3. As in [9], the G-functional equation

g(x+1)= Γ(x)g(x) (2.6)

has the Hyers-Ulam stability because we consider a(x)= Γ(x), which obviously satis-

fies the same as in (2.5).

Similarly, (1.8) also has the Hyers-Ulam stability when a(x) = xr where the real

r > 0 or a(x) = logx,sinhx, which are not power functions, because (2.5) holds in

these cases.

Example 2.4. The functional equation

g(x+1)= arctanxg(x) (2.7)

has the Hyers-Ulam stability because in this case a(x)= arctanx satisfies

lim
x→+∞a(x)=

π
2
> 1 (2.8)

and condition (2.1) in Theorem 2.1 is satisfied.

Example 2.5. With notations that

[x]= 1−qx
1−q , (x;q)∞ =

∏
n≥0

(
1−xqn), (2.9)

where q ∈ (0,1), the equation

g(x+1)= [x]g(x), (2.10)
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called q-Gamma functional equation, is considered in [1, 14]. On {x ∈ C :�x > 0} it

has solutions

Γq(x)= (q;q)∞(1−q)1−x(
qx ;q

)
∞

,

gq(x)=
∫ +∞

0

(−t;q)∞
(−qt−1;q

)
∞(−qxt;q)∞(−q1−xt−1;q

)
∞
(
(q−1)t;q

)
∞

dt
t
.

(2.11)

In particular, the first one is called Jackson’s q-Gamma function. Restricted to real

line, namely to (0,+∞), this equation has the Hyers-Ulam stability because in this

case a(x)= [x] and

lim
x→+∞[x]=

1
1−q > 1, (2.12)

which implies that condition (2.1) in Theorem 2.1 is satisfied.

Theorem 2.1 also provides a method to discuss cases of divergent a(x).

Example 2.6. Consider the functional equation

g(x+1)= (b0+b1 sinx
)
g(x). (2.13)

Although a(x)= b0+b1 sinx oscillates when x→+∞, we still see that

liminf
x→+∞ a(x)= b0−b1. (2.14)

By Theorem 2.1, this equation has the Hyers-Ulam stability when b0−b1 > 1.

Different from Example 2.6, in some cases the fact liminfx→+∞a(x) > 1 does not

hold, but we can still discuss the Hyers-Ulam stability with Theorem 2.1.

Example 2.7. Consider the functional equation

g
(
x+

√
2
)
= a(x)g(x), (2.15)

where

a(x)=



1
2
, x ∈N,

2, x �∈N.
(2.16)

Clearly liminfx→+∞a(x)= 1/2, but

liminf
k→∞

a
(
x+

√
2k
)
= 2, ∀x > 0. (2.17)

By Theorem 2.1, this equation has the Hyers-Ulam stability.
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3. On generalized Hyers-Ulam-Rassias stability

Theorem 3.1. Consider the approximate solutions f : (0,+∞) → R of (1.8) which

satisfy that |f(x+p)−a(x)f(x)| ≤ψ(x) for all x >n0, where ψ : (0,+∞)→ (0,+∞)
is a fixed function and n0 is a nonnegative constant. If

liminf
k→∞

ψ
(
x+p(k−1)

)
ψ(x+pk) a(x+pk) > 1, ∀x >n0, (3.1)

then (1.8) has the generalized Hyers-Ulam-Rassias stability.

We omit the proof of Theorem 3.1 (it can be given similarly by ratio test as done

for Theorem 2.1). Here we focus on various cases of ψ(x):
(i) ψ(x) is a polynomial,

(ii) ψ(x)= logr x, where 0< r �= 1,

(iii) ψ(x)= rx , where 0< r �= 1,

(iv) ψ(x) is bounded.

Corollary 3.2. In cases (i) and (ii), (1.8) has the generalized Hyers-Ulam-Rassias

stability if (2.1) holds. In case (iii), (1.8) has the generalized Hyers-Ulam-Rassias stability

if liminfk→∞a(x+pk) > rp for all x >n0. In case (iv), (1.8) has the generalized Hyers-

Ulam-Rassias stability if limx→+∞a(x)=+∞.

Proof. In fact, limk→∞ψ(x+p(k−1))/ψ(x+pk) = 1 in case (i). In case (ii), we

obtain the same by L’Hospital’s rule. In case (iii), we note that ψ(x+p(k−1))/ψ(x+
pk)≡ r−p and the corresponding result follows. The result in case (iv) is obvious from

Theorem 3.1.

Remark that in the first three cases limk→∞ψ(x+p(k−1))/ψ(x+pk) converges

but in case (iv) this limit may not exist.

Example 3.3. Considerψ(x)= sinx for (1.8) where a(x)= x and a(x)= Γ(x) sep-

arately. They are in case (iv) of the corollary although limk→∞ψ(x+p(k−1))/ψ(x+
pk) does not converge. Therefore both gamma functional equation and G-functional

equation have the generalized Hyers-Ulam-Rassias stability with such an ψ(x). Be-

sides, the q-Gamma functional equation (2.10) can be considered in cases (i), (ii), and

(iii), so it has the generalized Hyers-Ulam-Rassias stability with ψ(x) in the forms of

polynomial, logarithm, and exponential function rx where r < 1/(1−q).

4. On stability in the sense of Ger

Theorem 4.1. Consider the approximate solutions f : (0,+∞) → R of (1.8) which

satisfy that |f(x+p)/a(x)f(x)−1| ≤ψ(x) for all x > n0 where ψ : (0,+∞)→ (0,1)
is a fixed function and n0 is a nonnegative constant. If

∞∑
k=0

ψ(x+pk) <+∞, ∀x >n0, (4.1)

then (1.8) has the stability in the sense of Ger.
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Proof. Condition (4.1) implies that
∏+∞
j=0(1±ψ(x+pj)) converges. Thus

∞∑
j=0

log
(
1−ψ(x+pj))>−∞,

∞∑
j=0

log
(
1+ψ(x+pj))<+∞, ∀x >n0, (4.2)

that is, (1.11) holds.

Remark that in Theorem 4.1 we do not require condition (1.9). This condition, re-

quired in [5, Theorem 3.2], is in fact unnecessary. In the proof of [5, Theorem 3.2]

the convergence in (1.11) guarantees that {logPn(x)} is a Cauchy sequence. Thus

L(x) := limn→∞ logPn(x) exists and so does limn→∞Pn(x). The restriction of a(x) is

given by the convergence in (1.11) and the range of ψ in (0,1) because it is required

that |f(x+p)/a(x)f(x)−1| ≤ψ(x).
Corollary 4.2. Suppose that the function ψ : (0,+∞) → (0,1) is continuous and

decreasing such that

lim
x→+∞x

ηψ(x)= l∈ [0,+∞) (4.3)

for some constant η > 1. Then (1.8) has the stability in the sense of Ger.

Proof. Obviously,

ψ
(
x+p(k−1)

)≥
∫ k
k−1
ψ(x+pt)dt ≥ψ(x+pk). (4.4)

Taking summation, we obtain

+∞∑
k=1

ψ
(
x+p(k−1)

)≥
∫ +∞

0
ψ(x+pt)dt ≥

+∞∑
k=1

ψ(x+pk). (4.5)

It follows that the series
∑+∞
k=1ψ(x+pk) and the integral

∫+∞
0 ψ(x+pt)dt converge

or diverge simultaneously. Clearly, (4.3) implies that the integral
∫+∞
0 ψ(x +pt)dt

converges and so does the series
∑∞
k=0ψ(x +pk). Consequently, the result can be

deduced from Theorem 4.1.

Example 4.3. Consider the Gamma equation (2.4) and the function f : (0,+∞)→
(0,+∞) satisfies the inequality

∣∣∣∣f(x+1)
xf(x)

−1
∣∣∣∣≤ δ

xs
, ∀x >max

{
n0,δ1/s}, (4.6)

where s > 1, n0 ≥ 0, and δ > 0. Clearly ψ(x) := δ/xs satisfies (4.3). Thus the gamma

equation (2.4) has the stability in the sense of Ger with such a ψ(x).

Example 4.4. Consider (2.7) as in Example 2.4 and the function f : (0,+∞) →
(0,+∞) satisfies the inequality

∣∣∣∣ f(x+1)
arctanxf(x)

−1
∣∣∣∣≤ rx, ∀x >n0, (4.7)
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where 0< r < 1 and n0 ≥ 0. Clearly, limx→+∞x2rx = 0. Hence (2.7) has the stability in

the sense of Ger with the ψ(x) := rx .
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