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Cumulative Sum (Cusum) Control Schemes are widely used in industry for process and
measurement control. Most Cusum applications have been in monitoring shifts in the
mean level of a process rather than process variability. In this paper, we study the use of
Markov chain approach in calculating the average run length (ARL) of a Cusum scheme
when controlling variability. Control statistics S and S2, where S is the standard deviation
of a normal process, are used. The optimal Cusum schemes to detect small and large
increases in the variability of a normal process are designed. The control statistic S2 is then
used to show that the Cusum scheme is superior to the exponentially weighted moving
average (EWMA) in terms of its ability to quickly detect any large or small increases in the
variability of a normal process. It is also shown that Cusum with control statistics sample
variance (S2) and sample standard deviation (S) perform uniformly better than those with
control statistic logS2. Fast initial response (FIR) Cusum properties are also presented.

2000 Mathematics Subject Classification: 62P30.

1. Introduction. Since the 1950s, the problem of designing optimal control schemes

has received considerable attention in the literature, see, for example, Rowlands et al.

[21], Gan [9], and Crowder and Hamilton [6].

It is well known that Cusum procedures give tighter process control than the classi-

cal quality control schemes, such as Shewhart schemes. Another effective alternative

to the Shewhart control chart is exponentially weighted moving average (EWMA) chart.

The above two alternatives are especially effective for detecting relatively small shifts.

Many authors have contributed to the theory of Cusum and EWMA; see, for example,

Page [16], Ewan and Kemp [8], Wortham and Ringer [23], Woodall [22], and Lucas and

Saccucci [12]. However, the design of procedures to monitor or control the process

variability appears to have attracted very little attention. Some exceptions are papers

by Page [17], Bauer and Hackl [2, 3], Hawkins [10], Ng and Case [15], Ramirez [18],

Domangue and Patch [7], Crowder and Hamilton [6], MacGregor and Harris [13], and

Chang and Gan [5].

One of the purposes of this paper is to investigate the efficiency of the Markov

chain approach in evaluating the ARL of a Cusum scheme designed to monitor the

variability of a process.

The ARL profile of any given scheme is obtained by plotting the ARL against the

percentage of increases in the variability. To confirm the efficiency of the Markov

chain approach in calculating the ARL of the Cusum procedure, 10,000 simulation

runs were carried out. The results of this comparisons together with the standard

deviation for the simulation are presented in Tables 1.1 and 1.2. The results show
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Table 1.1. Comparisons of the ARL profile of Cusum using Rowlands’
method (ROW), Markov chain approach (MC), and simulation (SIM) for sam-
ple size n = 2. The control statistics S and S2 are used. The in control ARL
is 200.

σ/σT 1.25 1.5 1.75 2.0

ROW

opt. h 3.00 2.05 2.25 2.00

opt. M 1.03 1.25 1.19 1.26

L1 31.13 13.37 8.16 5.68

S SIM

opt. h 3.00 2.05 2.25 2.00

opt. M 1.03 1.25 1.19 1.26

L1 31.18 13.38 8.02 5.66

σ 0.0740 0.0135 0.0042 0.0020

MC

opt. h 2.52 2.17 1.93 1.76

opt. M 1.11 1.21 1.29 1.36

L1 33.05 13.52 7.98 5.62

ROW

opt. h 11.20 9.17 8.18 7.52

opt. M 1.24 1.46 1.64 1.82

L1 28.64 12.71 7.63 5.51

S2 SIM

opt. h 11.20 9.17 8.18 7.52

opt. M 1.24 1.46 1.64 1.82

L1 28.70 12.61 7.71 5.52

σ 0.0540 0.0099 0.0038 0.0019

MC

opt. h 11.21 9.14 8.09 7.41

opt. M 1.24 1.46 1.66 1.85

L1 28.59 12.57 7.69 5.50

that the ARL profile of Cusum using the Markov chain approach lies very close to that

using Rowlands’ method and those obtained by simulation, see Tables 1.1 and 1.2.

The basic idea of Rowlands’ method is to utilize mean value theorem for integrals

to establish expressions for the operating characteristic p(0) and average sample

number N(0) of a single test and hence using the equation ARL(0)=N(0)/(1−p(0))
to calculate average run length of a single sided decision interval scheme. A complete

discussion of Rowlands’ method can be found in [1].

We also give direction on how to design an optimal Cusum chart for monitoring

process variability. The performance of the designed optimal Cusum chart is then

compared with the EWMA suggested by Crowder and Hamilton [6] and with the Cusum

and EWMA proposed by Chang and Gan [5], where statistic log(S2) is used. It is also

shown that the ARL profile of Cusum chart using control statistic S2 is uniformly

better than the ARL profile of the EWMA suggested by Crowder and Hamilton [6]. In

addition, it is shown that the ARL profile of Cusum chart obtained using the Markov

chain approach and control statistics S and S2 lies very closely to the ARL profile of

the Cusum proposed by Chang and Gan [5], where they used control statistic log(S2)
to monitor process variability.
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Table 1.2. Comparisons of the ARL profile of Cusum using Rowlands’
method (ROW), Markov chain approach (MC), and simulation (SIM) for sam-
ple size n = 3. The control statistics S and S2 are used. The in control ARL
is 200.

σ/σT 1.25 1.5 1.75 2.0

ROW

opt. h 3.13 2.13 1.90 1.80

opt. M 1.50 1.71 1.78 1.82

L1 20.14 8.18 5.04 3.55

S SIM

opt. h 3.13 2.13 1.90 1.80

opt. M 1.50 1.71 1.78 1.82

L1 20.08 8.22 4.84 3.47

σ 0.0262 0.0042 0.0013 0.0006

MC

opt. h 2.68 2.12 1.79 1.58

opt. M 1.57 1.71 1.82 1.92

L1 20.49 8.14 4.81 3.41

ROW

opt. h 13.59 10.50 9.13 9.13

opt. M 2.48 2.93 3.29 3.29

L1 18.75 7.83 4.74 3.39

S2 SIM

opt. h 13.59 10.50 9.13 9.13

opt. M 2.48 2.93 3.29 3.29

L1 19.02 7.97 4.75 3.42

σ 0.0206 0.0036 0.0012 0.0006

MC

opt. h 13.67 10.60 9.08 8.12

opt. M 2.48 2.92 3.32 3.70

L1 19.05 7.89 4.74 3.38

2. Proposed Cusum control procedure. Consider a single-sided decision interval

scheme where the lower and upper boundaries are placed at zero and h (h > 0),
respectively. We assume that the quality of produced items is described by the value

of a measurable characteristic x, where x ∼N(µ,σ 2) and σ 2 is a known constant. The

observed values of random variable x (i.e., xi, i= 1,2,3, . . . ) are assumed statistically

independent.

We wish to control the value of σ about its target value of σT . Samples of size n,

xj1,xj2, . . . ,xjn, are taken at regular time interval from the current production line

and the sample variance for the jth sample S2
j is defined by

S2
j =

n∑
i=1

(
xji− x̄j

)2

n−1
. (2.1)

For convenience, define the score by

Yj =
nS2

j

σ 2
T
. (2.2)
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For the in control situation Yj ∼ χ2
n−1, and for the out of control situation

nS2
j

σ 2
∼ χ2

n−1, (2.3)

that is,

Yj =
nS2

j

σ 2

σ 2

σ 2
T
∼ k2χ2

n−1, k= σ
σT
. (2.4)

Thus for out of control situations k > 1, while for in control situations k= 1. We only

consider the case where k > 1, since a deterioration in the performance level of the

process can only result in an increase in the variance.

In this paper, we use control statistics S and S2 as well as log(S2) to monitor the

variability of the process. Therefore, for simplicity we consider the score as

Vj =
(
k2Yj

)δ, (2.5)

where δ= 0.5 and 1.0 will represent control statistics S and S2.

Define the Cusum sequence by

ZN =max
(
0,ZN−1+

(
Vj−M

))
, (2.6)

whereM is the reference value. We consider the case where Z0 = 0 for Cusum without

fast initial response (FIR) feature and the case where Z0 > 0 for Cusum with FIR. If

ZN ≥ h for the first time, then the out of control signal will be given, where N refers

to the run length of the scheme.

3. Average run length calculation. Following the basic principle proposed by

Brook and Evans [4], the interval between 0 and h is divided into t-subintervals, where

each subinterval has length w = 2h/(2t−1). This arrangement will create t+1 states

of the Markov chain, namely, E0,E1, . . . ,Et , where Et refers to the state in which the

out of control signal is given, that is, the absorbing state of the chain. This transition

matrix R is a t×t matrix and can easily be found using the method presented by Brook

and Evans [4].

Let pij denote the probability of moving from state i to state j, then

pij =
∫ b
a
f (λ)dλ, (3.1)

where λi = Vj −M , a = (j − i)w − 0.5w, b = (j − i)w + 0.5w, and f(λ) probability

density function for the variable λ. Considering the fact that nS2/σ 2 ∼ χ2
n−1 and

applying the transformation rule, (3.1) can be written as

pij =
∫ (b+M)(1/δ)/k
(a+M)(1/δ)/k

f (u)du, (3.2)
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where

f(u)= 1
Γ
(
(n−1)/2

)
2(n−1)/2u

(n−1)/2−1 exp
(−u)

2
(3.3)

(see the appendix).

The average run length and its other moments are calculated using the matrix R in

the expressions given by Brook and Evans [4].

vm =m{(I−R)−1R
}
v(m−1). (3.4)

Setting m= 1 reduces (3.4) to

v= (I−R)−11, (3.5)

where I is a t× t identity matrix, 1 is a column vector of ones, R is a t× t transition

matrix, and v is a t elements columns vector.

The ARL, given that the Cusum is initially in the ith state, is the ith element of ARL

vector v. The first element of vector v presents the ARL for the Cusum chart starting

from zero. For FIR features where the Cusum chart neither start from zero nor always

exactly start from the middle of a state we followed the idea of Lucas and Crosier [11]

and used quadratic interpolation among the ARL’s at three states closest to the state

that contains S0, that is, the starting point of the scheme.

4. Determination of parametersM ,h, and Z0. There are many schemes which have

common in control ARL(L0), yet they have different values of h andM ; therefore, they

have different out of control ARL(L1). This situation raises the question how to select

the optimal h and M , that is, the values of h and M which lead to the minimum out

of control ARL for a given in control ARL. It is well known that for monitoring of the

mean, the optimal reference value is ∆/2, where ∆ is the shift desired to be detected,

however for controlling the variability there is no common practice to choose the

reference value of the scheme. Moustakides [14] has proved that the reference value

of the sequential probability ratio test (SPRT) for a particular distribution is optimal.

Unfortunately, the distribution of the control statistics cannot always be specified;

see, for example, Chang and Gan [5] who applied a particular algorithm to numerically

find the optimal value of the reference value when considering log(S2) as the control

statistic, however, they applied SPRT method when S2 is used as the control statistic.

Regula [19] proposed the following method for obtaining the optimal reference

value for any Cusum schemes: let f(y ;θ) denote the probability density function of

the scores, θ being the parameter to be controlled. If θ = θ0 represents the in control

value and θ = θ1 is the value of which the process is to be judged out of control, then

the optimal reference value is obtained by solving the equation

f
(
y ;θ0

)
f
(
y ;θ1

) = 1, (4.1)

that is, the value of y which makes the ratio of the two densities equal to unity.

Regula [19] only considered Gamma family distribution and could only prove his

result for the special case of the exponential distribution when the decision interval

h was smaller than the reference value M .
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Table 4.3. Comparisons of the ARL profile of optimal Cusum chart obtained
using Regula’s procedure and optimal Cusum designed by Chang and Gan
(C-G) when statistic logS2, n= 5, and Z0 = 0 are used.

σ/σT

C-G∗ Cusum C-G∗ Cusum C-G∗ Cusum

M = 0.309 M = 0.2509 M = 0.391 M = 0.3177 M = 0.451 M = 0.3782

h= 1.210 h= 1.3797 h= 1.014 h= 1.1867 h= 0.896 h= 1.0418

σopt = 1.30 σopt = 1.30 σopt = 1.40 σopt = 1.40 σopt = 1.50 σopt = 1.50

1.00 100 100 100 100 100 100

1.01 86.6 86.3420 86.9 86.6181 87.3 86.8932

1.02 75.4 74.9781 76.1 75.4548 76.5 75.9179

1.03 66.0 65.5196 66.8 66.1135 67.5 66.6903

1.04 58.2 57.5988 59.0 58.2523 59.7 58.8905

1.05 51.5 50.9267 52.4 51.6004 53.2 52.2637

1.10 30.2 29.7283 30.9 30.2574 31.6 30.7987

1.20 13.8 13.6729 14.1 13.8201 14.4 14.0251

1.30 8.15 8.1760 8.20 8.1513 8.31 8.1881

1.40 5.63 5.7164 5.59 5.6233 5.61 5.5887

1.50 4.29 4.3994 4.21 4.2801 4.19 4.2155

2.00 2.11 2.2104 2.01 2.0967 1.97 2.0248

∗The numbers are from Chang and Gan [5].

By intensive numerical work, Abdollahian [1] showed that for control of the vari-

ability as well as control of mean, the optimal reference value obtained by applying an

optimization procedure similar to Chang and Gan [5] fully supports Regula’s proposal

without any condition on the value of h. Abdollahian [1] considered control statistics

S, S1.5, S2, S3, and S4. In this paper, we used Regula’s proposal to obtain the optimal

reference value for the Cusum scheme compatible with the one proposed by Chang

and Gan [5], where they used a lengthy optimization procedure to obtain the optimal

reference value. The results indicate that the optimal Cusum designed using Regula’s

procedure has ARL profile very close to those obtained by Chang and Gan [5], yet it is

simpler to design, see Table 4.3.

It is worth mentioning that using S2 as the control statistic, Regula’s method is

identical to SPRT, since S2 follows the chi-squared distribution, on the other hand,

since S has no specific distribution, Regula’s method is a simple reliable method to

obtain the optimal reference value.

In this paper, we also investigate the performance of the Cusum schemes with FIR

feature. Following the original idea of Lucas and Crosier [11] where they used Z0 = h/2
as the head start when controlling the mean, we use Z0 = h/2 when monitoring the

variability.

5. Accuracy and related results. To determine the ARL of a one-sided Cusum chart

using a Markov chain approach, most authors apply the least squares approximation,

that is,

ARL(t)=Asymptotic ARL + B
t
+ C
t2

(5.1)
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or

ARL(t)=Asymptotic ARL + B
t2
+ C
t4
. (5.2)

Reynolds et al. [20] used the Markov chain approach to monitor the mean and ob-

served several inconsistencies when applying the least squares approximation, spe-

cially for moderate value of t. Lucas and Crosier [11] concluded that “although there

would be some unexpected results when applying the least squares procedure, in all

cases the difference between the asymptotic ARL and the ARL obtained by using in-

tegral equation approach is less than 3% when controlling the mean.” We observed

similar phenomenon when the Markov chain approach was used to monitor the vari-

ability.

To overcome this problem we used Markov chain procedure with 100 transient

states (t = 100) to calculate the ARL rather than applying the least squares procedure.

The results for the control of variability indicate a precision similar to that given by

Lucas and Crosier [11].

6. Numerical results and comparison. The performance of the schemes in this

paper are assessed based on their ARL. For a given in control ARL, the scheme with

the minimum out of control ARL is called the optimal scheme.

Chang and Gan [5] provided extensive tables of comparison among schemes. They

proposed a Cusum scheme using control statistic logS2 and found that their proposal

is superior to the Cusum scheme using control statistic S2 when monitoring process

variability. One of the advantages of Cusum using logS2 is that it is possible to con-

struct control schemes for the high sided as well as the low sided (two sided scheme).

Hence, we can also monitor the possibility of quality improvement in any process in-

dustry. They also showed that their scheme performs nearly better than the EWMA

proposed by Crowder and Hamilton [6]. However, if S2 is used, we can only construct

the high sided scheme.

In order to calculate ARL for Cusum when monitoring process variability, we can use

both S2 and logS2. The computed ARLs are very similar for a given shift in variability.

However, if it is desired to detect small shifts in process variability when sample

size is small (n = 2 and n = 3), Chang and Gun [5] discovered that, numerically is

impossible to use logS2 especially when in control ARL is large. On the other hand, if

we use control statistic S2, then it is possible to calculate the ARL in such condition

by increasing the number of transient states in the Markov chain, however, this will

increase the computation time substantially, thus it is not practical.

If the sample size is moderately large (more than 5), the ARL can be calculated

using Markov chain approximation for any required shift. To overcome the problem of

calculating ARL when sample size is small, we have considered monitoring variability

using Cusum scheme with control statistic S. The complete comparisons of Cusum of

S2 and Cusum of S together with Cusum of logS2 proposed by Chang and Gan [5] are

given in Tables 5.4, 5.5, and 5.6.

From these tables, clearly we can see that Cusum using control statistic S performs

as good as Cusum using control statistic log(S2), while Cusum using control statistic

S2 performs significantly better than the other two schemes.
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As was mentioned earlier, we would experience numerical problems in detecting

small shifts by using the control statistic S2, when only small samples are available.

These problems do not exist when we consider control statistic S. Thus, Cusum with

control statistic S is the appropriate alternative choice when it is desired to moni-

tor a small shifts using small sample (n = 2 or n = 3). To provide an assessment on

the performance of Cusum using control statistic S when monitoring small shifts in

process variability with small samples (n = 2 and n = 3), we have compared the ARL

profiles of the Cusum with the simulations results based on 10,000 simulated runs.

The results of the simulations together with the standard deviation for the simula-

tions are presented in Tables 7.7 and 7.8. The results show that the ARL profile of

the proposed Cusum lies very closely to the ARL profile produced by the simulation,

confirming the effectiveness of the control statistic S for monitoring small shifts in

process variability when small sample is available.

7. Conclusions. In this paper, a one sided Cusum procedure for monitoring pro-

cess variability is presented. The ARL is obtained using Markov chain approximation.

It is shown that Markov chain procedure is comparable with other procedures; such

as, Integral equation approach and Simulation when calculating the ARL for Cusum

scheme designed to monitor variability of a process. Therefore, Markov chain ap-

proach is used throughout the paper to calculate ARL of the Cusum scheme. It is

proposed to use Regula’s method to obtain the optimal reference value for Cusum,

when monitoring process variability. It is shown that ARL profile of optimal Cusum

obtained using Regula’s method lies very closely to those suggested by Chang and

Gan [5] and yet is simpler to design.

The paper also investigates the effectiveness of control statistics S, S2, and log(S2)
for monitoring process variability. It is shown that control statistic S2 outperforms

the other two control statistics.

Finally we have designed optimal Cusum and FIR Cusum by using Regula’s method

to obtain optimal reference value and Markov chain approximation to calculate their

ARLs. The control statistics used are S and S2. The ARL profile for the two schemes

using control statistics S and S2 are compared with those given by Chang and Gan [5]

where they have used control statistic log(S2) to monitor variability and optimization

procedure to obtain optimal reference value. The results confirm the fact that our

proposed optimal Cusum and FIR Cusum charts outperform the optimal Cusum and

EWMA charts suggested by Chang and Gan [5]. The results also indicate that Cusum

chart performs better than EWMA chart when monitoring process variability regard-

less of the control statistics used.

To overcome the problem of detecting small shifts in process variability with small

sample sizes, it is proposed to use Cusum and FIR Cusum using control statistic S.

Then the ARL for the latter schemes are obtained using Markov chain approach. The

numerical results show that both Cusum and FIR Cusum produce ARL profiles that

lie very closely to simulation results indicating that it is possible to design Cusum

schemes aimed to monitor small process variability when only small sample size is

available, if Markov chain approach is used to calculate the ARLs.
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Appendix

We evaluate ∫ b
a
f (λ)dλ, (A.1)

where λi = Vj−M , a= (j−1)w−0.5w, and b = (j−1)w+0.5w.

By definition Y = nS2/σ 2 and V = (k2Y)δ. Therefore, λ = (k2Y)δ−M , where Y =
nS2/σ 2 ∼X2

n−1, that is,

f(y)= 1
Γ
(
(n−1)/2

)
2(n−1)/2y

(n−1)/2−1 exp−y/2, 0≤y ≤∞. (A.2)

Substituting y = (λ+M)1/δ/k2 into (A.2), and using the transformation formula for

the probability density function of y , we have

∫ b
a
f (λ)dλ=




∫ d
c

1
Γ
(
(n−1)/2

)
2(n−1)/2

{
(λ+M)1/δ

k2

}(n−1)/2−1

×exp

{
−1
2
(λ+M)1/δ

k

}
1
k2δ

{
k2(λ+M)1/δ

k2

}(1−δ)
dλ, if −M ≤ λ≤∞,

0, otherwise.
(A.3)

Defining

u= (λ+M)
1/δ

k2
. (A.4)

Then (A.3) reduces to

∫ b
a
f (λ)dλ=

∫ d
c

1
Γ
(
(n−1)/2

)
2(n−1)/2u

(n−1)/2−1 exp
(−u

2

)
du=

∫ d
c
f (u)du, (A.5)

where

c = (a+M)
1/δ

k2
, d= (b+M)

1/δ

k2
, u∼ χ2

(n−1). (A.6)
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