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1. Introduction. For a group G, the non-abelian tensor square G⊗G of a group G
is generated by the symbols g⊗h, g,h∈G, subject to the relations

gg′ ⊗h= (gg′ ⊗gh)(g⊗h), g⊗hh′ = (g⊗h)(hg⊗hh′), (1.1)

for all g,g′,h,h′ ∈G, where gg′ = gg′g−1. The non-abelian tensor square is a special

case of the non-abelian tensor product which has its origins in homotopy theory and

was introduced by Brown and Loday in [4, 5].

In [3], Brown et al. started the investigation of non-abelian tensor squares as group

theoretical objects. One of their main goals is the explicit computation of non-abelian

tensor squares. The topic of this paper is the classification of infinite 2-generator

groups of nilpotency class two and the determination of their non-abelian tensor

squares. In [1, 7], this was done for 2-generator p-groups of class two, for p an

odd prime or p= 2, respectively. Thus this paper completes the classification of 2-

generator groups of class two and determination of their non-abelian tensor squares.

For an overview of non-abelian tensor squares which have been determined, we re-

fer to [6] and also to [2], where infinite metacyclic groups were classified and their

non-abelian tensor squares determined.

2. The classification. In this section, we classify the infinite 2-generator groups of

nilpotency class two up to isomorphism. As a preliminary step, we classify the above

groups which are split extensions of a p-group by an infinite cyclic group.

Proposition 2.1. Let G = 〈a,b〉 be a 2-generator group of nilpotency class less

than or equal to 2 of the form G = P � 〈b〉, where 〈b〉 is an infinite cyclic group, and

P = 〈[a,b]〉〈a〉 is a p-group. Then G is isomorphic to exactly one group of the following

types:

G � (〈a〉×〈c〉)�〈b〉, (2.1)

where [a,b]= c, [a,c]= [b,c]= 1, |a| = pα, |c| = pγ , α≥ γ ≥ 1;

G � 〈a〉�〈b〉, (2.2)
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where [a,b]= apα−γ , |a| = pα, α≥ 2γ ≥ 2;

G � (〈a〉×〈c〉)�〈b〉, (2.3)

where [a,b]= apα−γ c, [c,b]= a−p2(α−γ)c−pα−γ , |a| = pα, |c| = pσ , γ > σ ≥ 1, α+σ ≥
2γ;

G � 〈a〉×〈b〉, (2.4)

where [a,b]= 1, |a| = pα.

The groups in the above list have nilpotency class two precisely for (2.1), (2.2), and

(2.3), and are abelian for (2.4).

Proof. Let G be a group as in the hypothesis. Since G is nilpotent of class less

than or equal to 2, P is abelian. Suppose first [a,b]= 1. Obviously, G is of type (2.4).

Now, let [a,b] ≠ 1. First, let 〈[a,b]〉 ∩ 〈a〉 = 〈1〉. Set [a,b] = c. This implies that

P = 〈c〉×〈a〉. ThusG is the group of type (2.1). Next, let 〈[a,b]〉∩〈a〉≠ 〈1〉. If 〈[a,b]〉 ⊆
〈a〉, then evidently, G is the group of type (2.2). Finally, suppose that 〈[a,b]〉∩〈a〉
is a proper subgroup of 〈[a,b]〉. We have 1 = [a,b]pγ = [a,bpγ ]. This implies that

bpγ ∈ Z(G), thus 〈bpγ 〉�G. Therefore,G/〈bpγ 〉 is isomorphic toH = (〈u〉×〈v〉)�〈w〉
where [v,w]= vpα−γu, [u,w]= v−p2(α−γ) ·u−pα−γ , |v| = pα, |w| = pβ, |[v,w]| = pγ ,

α,β,γ,σ ∈ N, γ > σ ≥ 1, α+σ ≥ 2γ, β ≥ γ, as follows from [1, Theorem 2.4] for p
odd and [7, Theorem 2.5] for p = 2, respectively.

It is easy to show that the nilpotency class of each group of type (2.1), (2.2), and

(2.3) is two and they are all pairwise nonisomorphic.

Now, we are ready to state and prove the main theorem of this section. Note that

F2/γ3(F2) is the free group of rank 2 and class 2, and is denoted by �, known as the

Heisenberg group.

Theorem 2.2. LetG be an infinite non-abelian 2-generator group of nilpotency class

two. Then G is isomorphic to exactly one group of the following types:

G � (〈a〉×〈c〉)�〈b〉, (2.5)

where [a,b]= c, [a,c]= [b,c]= 1, |a| =∞, |b| =∞, |c| ≤∞;

G � (P1×P2×···×Pi×···×Pn
)
�〈b〉, n≥ 1, (2.6)

where, for i = 1, . . . ,n, the component Pi is a pi-group, pi ≠ pj for i ≠ j, |b| = ∞, and

Pi�〈b〉 is of type (2.1), (2.2), (2.3), and (2.4) of Proposition 2.1.

Proof. Let G be an infinite non-abelian 2-generator group of nilpotency class two.

Then, G = A〈b〉 where A = 〈c〉〈a〉, c = [a,b], A is abelian and normal in G, and G =
〈a,b〉. Furthermore, G′ = 〈[a,b]〉. Consider G/Z(G). Then either G/Z(G) is torsion

free or G/Z(G) has a nontrivial element of finite order. In case G/Z(G) is torsion free,

we can show that |G′| =∞. So G �� and is of type (2.5) with |c| =∞.

Now, supposeG/Z(G) has a nontrivial element of finite order. It follows thatG/Z(G)
is finite which implies |G′| < ∞. Then either G/G′ is torsion free or not. In the first
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case, G/G′ � Z×Z and G is a group of type (2.5) with |c|<∞, and in the second case,

G/G′ � Zm×Z. Without loss of generality, assume that |〈b〉| = ∞ and |〈a〉| <∞, oth-

erwise, relabel the generators so that G = 〈a,b〉, with |b| =∞ and A= 〈a,c〉, |A|<∞.

Then |b| =∞ implies that A ∩ 〈b〉 = 〈1〉, and we have G =A�〈b〉.
Now, since A= 〈c,a〉 is a finite abelian group, A= P1×···×Pi×···×Pn, where Pi is

a Sylowpi-subgroup ofA. Let 〈a〉 = 〈a1〉×···×〈ai〉×···×〈an〉, 〈c〉 = 〈c1〉×···×〈cn〉,
with ai,ci ∈ Pi and ci = [ai,b]. We have Pi = 〈ai,ci〉 and Pi is normal in G. Thus, there

are subgroups Hi = Pi�〈b〉 of G such that Hi = 〈ai,b〉. If Hi is an abelian group, then

it follows that Pi = 〈ai〉, |ai| = pαi , and Hi = Pi×〈b〉. If Hi is a non-abelian group,

then Hi is one of the groups of type (2.1), (2.2), and (2.3) of Proposition 2.1. Thus, G
is the group of type (2.6).

3. The tensor squares of groups of class two. In [1, Proposition 3.3], it was shown

that the tensor square for a group of class two is abelian. This fact helps us in using the

concept of crossed pairing in our computations. We define it here in the case relevant

for non-abelian tensor squares.

Definition 3.1. Let G and L be groups. A functionφ :G×G→ L is called a crossed

pairing if

φ(gg′,h)=φ(gg′,gh)φ(g,h),
φ(g,hh′)=φ(g,h)φ(hg,hh′), (3.1)

for all g,g′,h,h′ ∈G.

Crossed pairings allow us to determine homomorphic images of G⊗G as follows.

Proposition 3.2 [3]. A crossed pairing φ : G×G → L determines a unique homo-

morphism of groups φ� :G⊗G→ L such that φ�(g⊗h)=φ(g,h) for all g,h∈G.

In this section, we also include two results that will be used in the next section. First,

suppose we are given groups H, G, K, and L, where G and L are homomorphic images

ofH andK, respectively. The following proposition enables us to find a crossed pairing

from G×G to L given a crossed pairing from H×H to K, provided certain conditions

are met.

Proposition 3.3 [7]. Let G, H, K, and L be groups with π :H →G an epimorphism,

ϕ : K → L a homomorphism, and Γ : H×H → K a crossed pairing. If Γ(kerπ,H) and

Γ(H,kerπ) are contained in kerϕ, then there exists a crossed pairing ∆ :G×G→ L for

which the following diagram commutes:

H×H
(π,π)

Γ
K

ϕ

G×G ∆
L

(3.2)

The second result is a lemma on finitely generated abelian groups. The proof is easy

and thus omitted here. Observe that we say that a nontrivial element in an infinite

cyclic group has order zero.



618 NOR HANIZA SARMIN

Lemma 3.4. Let A = 〈a1, . . . ,an〉 be a finitely generated abelian group, and let B =
〈b1〉×···×〈bn〉 be a direct sum of n cyclic groups, such that the order of ai divides

the order of bi for i = 1, . . . ,n. If φ : A→ B is a homomorphism such that φ(ai) = bi,
then φ is an isomorphism.

4. Computation of the tensor squares. In this section, we determine the tensor

squares of the groups classified in Section 2 beginning with the squares of groups of

type (2.5).

Theorem 4.1. Let G be a group of type (2.5). Then

G⊗G �

Z

6, for |c| =∞,
Z4×Z2

k, for |c| = k. (4.1)

Proof. Let G be a group of type (2.5). If |c| =∞, then G ��, and the result follows

from [1, Corollary 3.8].

If |c| = k, then by [1, Proposition 3.5] it follows that G⊗G is generated by a⊗a,

b⊗b, a⊗b, b⊗a, a⊗c, and b⊗c.
We now establish order bounds for some of the generators of G⊗G. Observing that

c ∈ Z(G), we have 1⊗ = (a⊗c)k, and 1⊗ = (b⊗c)k. Since |a| = |b| = ∞, the first four

generators of G⊗G do not necessarily have finite order, and indeed, it will be shown

that they have an infinite order.

Let g,h∈G with g = ambncl and h= am′bn′cl′ , wherem,m′,n,n′ ∈ Z and l, l′ are

integers modulo k. Let L = Z4×Z2
k, and denote with z1, z2, z3, z4 the components of

the four factors of the form Z, and with z5, z6 the components of the two factors of

the form Zk. Define the mapping θ :G×G→ L componentwise by

θ(g,h)= (z1(g,h),z2(g,h),z3(g,h),z4(g,h),z5(g,h),z6(g,h)
)
, (4.2)

where

z1(g,h)=mm′, z2(g,h)=nn′, z3(g,h)=mn′, z4(g,h)=nm′,

z5(g,h)≡n′
(
m
2

)
−n

(
m′

2

)
+(n′ −n)mm′ +ml′ −m′lmodk,

z6(g,h)≡m
(
n′

2

)
−m′

(
n
2

)
+nl′ −n′lmodk.

(4.3)

Since m,m′,n,n′ are unique integers and l, l′ are unique modulo k, it follows that

θ is well defined. As in [1], θ is a crossed pairing. By Proposition 3.2, the mapping θ
defined above lifts to a homomorphism θ� of G⊗G onto L such that θ�(g⊗ h) =
θ(g,h). In particular, θ�(a⊗a) = (1,0,0,0,0,0), θ�(b⊗b) = (0,1,0,0,0,0), θ�(a⊗
b) = (0,0,1,0,0,0), θ�(b⊗a) = (0,0,0,1,0,0), θ�(a⊗c) = (0,0,0,0,1,0), and θ�(b⊗
c)= (0,0,0,0,0,1). Thus the generators of G⊗G map to the generators of L. Further-

more, by the order estimates previously established, the order of a generator of G⊗G
divides the order of the corresponding generator of L. Thus, by Lemma 3.4, θ� is an

isomorphism and it follows that G⊗G � Z4×Z2
k as claimed.
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In order to determine the tensor squares of groups of type (2.6), we first determine

the tensor squares of the groups in Proposition 2.1. We start with the groups of type

(2.1), dealing with the case p odd and p = 2 in two separate propositions.

Proposition 4.2. Let G be a group of type (2.1) with p ≠ 2. Then

G⊗G � Z3
pα×Z2

pγ ×Z. (4.4)

Proof. Let G be a group of type (2.1) with p prime, p ≠ 2. It follows that G⊗G is

generated by a⊗a, b⊗b, a⊗b, b⊗a, a⊗c, and b⊗c. We give now order estimates for

5 of the 6 generators of G⊗G. Using [1, Lemma 3.4], we obtain 1⊗ = (a⊗c)pγ , 1⊗ =
b⊗cpγ = (b⊗c)pγ , 1⊗ = a⊗apα = (a⊗a)pα , and 1⊗ = apα⊗b = (a⊗b)pα(a⊗c)(

pα
2 ).

Since p ≠ 2 and α ≥ γ, we have pγ |
(
pα
2

)
. Thus (a⊗ c)(p

α
2 ) = 1⊗. We conclude that

1⊗ = (a⊗b)pα . Similarly, it follows that 1⊗ = (b⊗a)pα . Since |b| = ∞, b⊗b is not

necessarily finite.

Let g,h ∈ G with g = ambncl and h = am′bn′cl′ , where n,n′ ∈ Z, m,m′ are in-

tegers modulo pα, and l, l′ are integers modulo pγ . Let L = Zpα ×Z×Z2
pα ×Z2

pγ , and

denote with z1, z3, z4 the components of the three factors of the form Zpα , with z2

the component of Z, and with z5, z6 the components of the two factors of the form

Zpγ .

Define the mapping θ :G×G→ L componentwise by

θ(g,h)= (z1(g,h),z2(g,h),z3(g,h),z4(g,h),z5(g,h),z6(g,h)
)
, (4.5)

where

z1(g,h)≡mm′modpα, z2(g,h)=nn′,
z3(g,h)≡mn′modpα, z4(g,h)≡nm′modpα,

z5(g,h)≡n′
(
m
2

)
−n

(
m′

2

)
+(n′ −n)mm′ +ml′ −m′lmodpγ,

z6(g,h)≡m
(
n′

2

)
−m′

(
n
2

)
+nl′ −n′lmodpγ.

(4.6)

Since m,m′ are unique modulo pα, n,n′ are unique integers, and l, l′ are unique

modulo pγ , and in addition α≥ γ ≥ 1, it follows that θ is well defined.

Next, we show that the mapping θ is a crossed pairing. By [1, Proposition 3.7], the

mapping ψ : �×� → Z6, defined as θ, but m,n,l,m′,n′, l′ just being integers, is a

crossed pairing. Now, equations (3.1) hold componentwise for ψ as identities in inte-

gers. It follows that they hold as congruences modulo any integer. Since, at the same

time, the modules given for z1, z3, z4, z5, and z6 are the largest for which θ is well de-

fined, we conclude that θ is a crossed pairing. By Proposition 3.2, the mapping defined

above lifts to a unique homomorphism θ� : G⊗G→ L such that θ�(g⊗h) = θ(g,h),
where the generators of G⊗G, as given above, map to the corresponding genera-

tors of L. Furthermore, by the order estimates established before, the order of a

generator of G⊗G divides the order of the corresponding generator of L. Thus, by

Lemma 3.4, it follows that θ� is an isomorphism and G⊗G � Z3
pα×Z2

pγ ×Z as claimed.
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Proposition 4.3. Let G be a group of type (2.1) with p = 2. Then

G⊗G �


Z3

2α×Z2
2γ ×Z, if α> γ,

Z3
2γ ×Z2γ+1×Z2γ−1×Z, if α= γ.

(4.7)

Proof. Let G be a group of type (2.1) with p = 2. We have two cases, namely, α> γ
and α= γ. The first case follows from the proof of Proposition 4.2, setting p = 2 and

observing α> γ. So we omit the details.

Now, let α= γ. From [1, Proposition 3.5], it follows that G⊗G can be generated by

a⊗a, b⊗b, a⊗b, (a⊗b)(b⊗a), (a⊗b)2(a⊗c), and (a⊗b)2(b⊗c).
We now establish order bounds for the generators of G⊗G with the exception of

b⊗b. First, notice that the expansion formula as before yields 1⊗ = (a⊗ c)2γ and

1⊗ = (b⊗c)2γ . Furthermore, 1⊗ = (a⊗a)2γ , 1⊗ = (a2γ ⊗b)2 = (a⊗b)2γ+1(a⊗c)2γ =
(a⊗b)2γ+1

, 1⊗ = (a2γ⊗b)(b⊗a2γ )= ((a⊗b)(b⊗a))2γ , 1⊗ = ((a⊗b)2(a⊗c))2γ−1
, and

1⊗ = (a2γ ⊗b)2(b⊗ c2γ ) = (a⊗b)2γ+1(b⊗ c)2γ = ((a⊗b)2(b⊗ c))2γ . Let � = 〈x,y〉.
Define π : � → G by π(h) = ambncl for h ∈ �, where h = xmynzl, m,n,l ∈ Z, z =
[x,y]. It follows thatπ is a homomorphism ontoG. Next, set L= Z2α×Z×Z2γ+1×Z2γ×
Z2α−1×Z2γ and Z6 = 〈x1〉×···×〈x6〉. Defineϕ : Z6 → L byϕ = µ◦λ, where λ : Z6 → Z6

is given by λ(xi)= xi for i= 1,2,4,5,6, λ(x3)= x3x−1
4 x

−2
5 x

−2
6 , and µ : Z6 → L reduces

the generators of Z6 modulo the appropriate powers. Clearly, λ is an automorphism

and µ is a homomorphism, so ϕ is a homomorphism with ϕ(xi) = εi, i = 1, . . . ,6,

where ε1 = (1,0,0,0,0,0), . . . , ε6 = (0,0,0,0,0,1)∈ L.

Now, let Γ = ψ be the crossed pairing of [1, Proposition 3.7] with ψ : �×� → Z6,

and π the epimorphism of � onto G. By Proposition 3.3, there exists a crossed pairing

∆ :G×G→ L for which the diagram commutes, provided

ϕ
(
ψ(kerπ,�)

)=ϕ(ψ(�,kerπ)
)= 1. (4.8)

To establish (4.8), let l= (l1, . . . , l6)∈ L andh,h′ ∈� withh= xmynzl,h′ = xm′yn′zl′ ,
where m,m′,n,n′, l, l′ ∈ Z. By [1, Proposition 3.7] and the definition of ϕ, we obtain

ϕ ◦ ψ(h,h′) = ϕ(x1(h,h′), . . . ,x6(h,h′)) = (ϕ(x1(h,h′)), . . . ,ϕ(x6(h,h′))) =
(l1(h,h′), . . . , l6(h,h′)), where

l1(h,h′)≡mm′mod2γ, l2(h,h′)=nn′, l4(h,h′)≡nm′mod2γ,

l3(h,h′)≡mn′ −m′n−2

(
n′
(
m
2

)
−n

(
m′

2

)
+(n′ −n)mm′ +ml′ −m′l

)

−2

(
m
(
n′

2

)
−m′

(
n
2

)
+nl′ −n′l

)
mod2γ+1,

l5(h,h′)≡n′
(
m
2

)
−n

(
m′

2

)
+(n′ −n)mm′ +ml′ −m′lmod2γ−1,

l6(h,h′)≡m
(
n′

2

)
−m′

(
n
2

)
+nl′ −n′lmod2γ.

(4.9)
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Suppose now that h∈ kerπ , thenm≡ l≡ 0mod2γ and n= 0. Thus l1, l2, l4, l5, and

l6 are obviously trivial in L. As for l3, the terms of the right side can be rearranged as

l3(h,h′)≡ 2m(m′n−m′n′ −l′)+2n
((
m′ +1

2

)
−l
)

+2l(m′ +n′)−m2n′ +nn2m′mod2γ+1.

(4.10)

Since α = γ, we have m ≡ l ≡ 0mod2γ and n = 0. Therefore, 2m ≡ 2l ≡ 0mod2γ+1,

2n= 0, andm2 ≡ 0mod2γ+1. Thus l3 is trivial in L. Soϕ(ψ(kerπ,�))= 1. In a similar

manner ϕ(ψ(�,kerπ))= 1, hence, (4.8) is established.

Since the diagram of Proposition 3.3 commutes for∆ andϕ◦ψ is onto, we conclude

that ∆ is onto. Thus, by Proposition 3.2, ∆ lifts to a homomorphism ∆� of G⊗G onto

L, where the generators of G⊗G map to the generators of L. Furthermore, by the

order estimates established before, the order of a generator of G⊗G divides the order

of the corresponding generator of L. Thus, by Lemma 3.4, it follows that ∆� is an

isomorphism and G⊗G � Z3
2γ ×Z2γ+1×Z2γ−1×Z as claimed.

The metacyclic groups of type (2.2) can be viewed as a special case of groups of type

(2.3), for which σ = 0, that is, the torsion subgroup has rank one. Thus, the tensor

squares of groups of type (2.2) are obtained together with those of type (2.3). Now, we

determine the tensor square for a group of type (2.3) and (2.2), dealing with the cases

p ≠ 2 and p = 2 in two separate propositions.

Proposition 4.4. Let G be a group of type (2.3) or (2.2) with p ≠ 2. Then

G⊗G � Z2
pα−γ+σ ×Zpα×Z2

pσ ×Z. (4.11)

Proof. Let G be a group of type (2.3) or (2.2) with p ≠ 2. Set z = [a,b]. By [1,

Lemma 3.5], it follows that G⊗G can be generated by a⊗a, b⊗b, a⊗b, (a⊗b)(b⊗a),
(a⊗a)pα−γ (a⊗z), and (a⊗b)pα−γ (b⊗z). Now, we establish order bounds for some

of the generators of G⊗G. If we set z = [a,b], then c = za−pα−γ by (2.3). To obtain an

order bound for (a⊗a)pα−γ (a⊗z), expand cpσ ⊗a to obtain

1⊗ = cpσ ⊗a= (a⊗a)−pα−γ+σ (z⊗a)pσ =
(
(a⊗a)pα−γ (z⊗a)−1)−pσ , (4.12)

thus ((a⊗a)pα−γ (a⊗z))pσ = 1⊗. Similarly,

1⊗ = cpσ ⊗b = (a⊗b)−pα−γ+σ (a⊗z)(
−pα−γ+σ

2 )(b⊗z)−pσ . (4.13)

Since α + σ ≥ 2γ and p ≠ 2, this implies that (a ⊗ z)(−p
α−γ+σ

2 ) = 1⊗. Therefore,

((a⊗b)pα−γ (b⊗z))pσ = 1⊗.

Turning now to (a⊗b)(b⊗a), expansion of b⊗cpσ leads to

1⊗ = (b⊗a)−pα−γ+σ (a⊗z)(
−pα−γ+σ

2 )(b⊗z)2σ . (4.14)

Multiplying (4.13) and (4.12) yields ((a⊗b)(b⊗a))pα−γ+σ = 1⊗.
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Next, we establish an estimate for the order of a⊗b. By observing α > γ and ex-

panding apα⊗b, we obtain 1⊗ = (a⊗b)pα(a⊗z)(
pα
2 ) = (a⊗b)pα .

Finally, we turn to the estimate for the order of a⊗a. Here we have

1⊗ = a⊗cpσ = (a⊗a)−pα−γ+σ (a⊗z)pσ . (4.15)

Equating (4.12) and (4.15) yields

(a⊗z)pσ = (a⊗z)−pσ . (4.16)

Obviously, 1⊗ = apα ⊗z = (a⊗z)pα , so a⊗z has p-power order. Hence, we obtain

(a⊗z)pσ = 1⊗ by (4.16). This, together with (4.12), implies (a⊗a)pα−γ+σ = 1⊗. Let �=
〈x,y〉. Define π : �→G by π(h)= am1bm2cl, where h= xm1ym2vl with m1,m2, l∈
Z, v = x−pα−γ [x,y], and a,b,c ∈ G as in the proposition. It follows that π is an

epimorphism. Next, let L= Zpα−γ+σ ×Z×Zpα×Zpα−γ+σ ×Z2
pσ , and Z6 = 〈x1〉×···×〈x6〉.

Define ϕ : Z6 → L by ϕ = µ ◦λ, where λ : Z6 → Z6 is given by λ(xi) = xi for i = 2,4,6,

λ(x1) = x1x
−pα−γ
5 ·x−p2(α−γ)−1

6 , λ(x3) = x3x−1
4 x

−pα−γ
6 , and λ(x5) = x5x

pα−γ−1

6 , while

µ : Z6 → L reduces the generators λ(xi)modulo the appropriatep-powers. Specifically,

ϕ(xi)= εi, i= 1, . . . ,6, where ε1 = (1,0,0,0,0,0), . . . , ε6 = (0,0,0,0,0,1)∈ L. It follows

that λ is an automorphism of Z6 and µ is a homomorphism of Z6 onto L.

Let h,h′ ∈ � with h = xm1ym2vl and h′ = xm′
1ym

′
2vl′ , where v = x−pα−γ [x,y]

as before. Setting u = [x,y], we obtain alternative presentations for h and h′ as

h= xmynuk and h′ = xm′yn′uk′ , wherem=m1−lpα−γ ,m′ =m′
1−l′pα−γ , n=m2,

n′ = m′
2, k = l, and k′ = l′. By [1, Proposition 3.7], there exists a crossed pairing

ψ : �×�→ Z6, where, in terms of the original presentation,

x1(h,h′)=
(
m1−lpα−γ

)(
m′

1−l′pα−γ
)
, x2(h,h′)=m2m′

2,

x3(h,h′)=
(
m1−lpα−γ

)
m′

2, x4(h,h′)=
(
m′

1−l′pα−γ
)
m2,

x5(h,h′)=m′
2

(
m1−lpα−γ

2

)
−m2

(
m′

1−l′pα−γ
2

)
+(m1−lpα−γ

)
l′

−(m′
1−l′pα−γ

)
l+(m′

2−m2
)(
m1−lpα−γ

)(
m′

1−l′pα−γ
)
,

x6(h,h′)=
(
m1−lpα−γ

)(m′
2

2

)
−(m′

1−l′pα−γ
)(m2

2

)
+m2l′ −m′

2l.

(4.17)

We apply now Proposition 3.3 with G as given in (2.3), H =�, K = Z6, and L as de-

fined above. For the mappings, letϕ = µ◦λ and Γ =ψ, all as given above, and π : �→
G. By Proposition 3.3, there exists a crossed pairing ∆ : G×G → L such that the dia-

gram (3.2) commutes, provided ϕ(ψ(kerπ,�)) = ϕ(ψ(�,kerπ))= 1. Next, we show

that this is the case. Suppose h,h′ ∈ � where h = xm1ym2vl and h′ = xm′
1ym

′
2vl′ .

Writingϕ◦ψ : �×�→ L componentwise asϕ◦ψ(h,h′)= (l1(h,h′), . . . , l6(h,h′)), we
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obtain li(h,h′) in terms of xi(h,h′) as given above,

l1(h,h′)≡ x1(h,h′)−pα−γx5(h,h′)−p2(α−γ)−1x6(h,h′)modpα−γ+σ ;

l2(h,h′)= x2(h,h′);

l3(h,h′)≡ x3(h,h′)−x4(h,h′)−pα−γx6(h,h′)modpα;

l4(h,h′)≡ x4(h,h′)modpα−γ+σ ;

l5(h,h′)≡ x5(h,h′)+pα−γ−1x6(h,h′)modpσ ;

l6(h,h′)≡ x6(h,h′)modpσ .

(4.18)

If h∈ kerπ , thenm1 ≡ 0modpα,m2 = 0 and l≡ 0modpσ . It follows directly from

the definition of xi(h,h′) that li(h,h′) = 0 for i = 1, . . . ,6. Thus ϕ(ψ(kerπ,�)) = 1,

as claimed. Similarly, it can be shown that ϕ(ψ(�,kerπ)) = 1. Thus ∆ is a crossed

pairing.

Since the diagram of Proposition 3.3 commutes for∆ andψ◦ϕ is onto, we conclude

that∆ is onto. Thus, by Proposition 3.2,∆ lifts to a homomorphism∆� ofG⊗G onto L,

where the generators ofG⊗Gmap to the corresponding generators of L. Furthermore,

by the order estimates established before, the order of a generator of G⊗G divides

the order of the corresponding generator of L. Thus, by Lemma 3.4, it follows that ∆�

is an isomorphism and G⊗G � Z2
pα−γ+σ ×Zpα×Z2

pσ ×Z as claimed.

Proposition 4.5. Let G be a group of type (2.3) or (2.2) with p = 2. Then

G⊗G � Z2α−γ+σ+1×Z2α−γ+σ ×Z2α×Z2
2σ ×Z. (4.19)

Proof. Let G be a group of type (2.3) or (2.2) with p = 2. Set z = [a,b]. By [1,

Proposition 3.5], it follows that G⊗G can be generated by a⊗a, b⊗b, a⊗b, (a⊗
b)(b⊗a), (a⊗a)2α−γ (a⊗z), and (a⊗b)2α−γ (a⊗z)−2α−γ−1(b⊗z).

Now, we establish order bounds for some of the generators of G⊗G. Notice that

c = za−2α−γ by (2.3). Following along the lines of the proof of Proposition 4.4, we get

1⊗ = c2σ ⊗a= (a⊗a)−2α−γ+σ (a⊗z)−2σ , (4.20)

which gives ((a⊗a)2α−γ (a⊗z))2σ = 1⊗. Similarly,

1⊗ = c2σ ⊗b = (a⊗b)−2α−γ+σ (a⊗z)2α−γ+σ−1
(b⊗z)−2σ . (4.21)

Thus ((a⊗b)2α−γ (a⊗z)−2α−γ−1(b⊗z))2σ = 1⊗. Expansion of b⊗c2σ leads to

1⊗ = (b⊗a)−2α−γ+σ (a⊗z)−2α−γ+σ−1
(b⊗z)2σ . (4.22)

Multiplying (4.21) and (4.22) yields ((a⊗b)(b⊗a))2α−γ+σ = 1⊗.

Next, we give an estimate for the order of a⊗b. Since α > γ, expansion of a2α ⊗b
yields 1⊗ = (a⊗b)2α(a⊗z)2α−1 = (a⊗b)2α .

Finally, we estimate the order of a⊗a. We obtain

1⊗ = a⊗c2σ = (a⊗a)−2α−γ+σ (a⊗z)2σ . (4.23)
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Equating (4.21) and (4.23) yields (a⊗z)2σ+1 = 1⊗. Thus, squaring (4.20) leads to (a⊗
a)2α−γ+σ+1 = 1⊗.

The rest of the proof follows directly from the proof of Proposition 4.4, with p
replaced by 2 and taking li(h,h′) modulo the appropriate powers of 2. Thus

G⊗G � Z2α−γ+σ+1×Z2α−γ+σ ×Z2α×Z2
2σ ×Z, (4.24)

as claimed.

For easier reference, we list the tensor squares of groups of type (2.2), the case

σ = 0, of Propositions 4.4 and 4.5 in the next corollary.

Corollary 4.6. Let G be a group of type (2.2). Then

G⊗G �


Z2
pα−γ ×Zpα×Z, if p ≠ 2,

Z2α−γ+1×Z2α−γ ×Z2α×Z, if p = 2.
(4.25)

Our concluding theorem (Theorem 4.7) determines the tensor square of a group of

type (2.6). To that end, we mention again that the non-abelian tensor square of an

abelian group is just the standard abelian tensor. Thus, for groups of type (2.4), we

have G⊗G �G⊗ZG.

Theorem 4.7. Let G be a group of type (2.6), that is,

G = (P1×P2×···×Pn
)
�〈b〉, n≥ 1, (4.26)

where, for i = 1, . . . ,n, the component Pi is a pi-group, pi ≠ pj for i ≠ j, |b| = ∞, and

Gi = Pi�〈b〉 is of type (2.1), (2.2), (2.3), and (2.4) of Proposition 2.1. Then

G⊗G � T(G1⊗G1
)×···×T(Gn⊗Gn)×Z, (4.27)

where T(Gi⊗Gi) is the torsion subgroup of Gi⊗Gi.
Proof. Let G be a group of type (2.6). Observe that T(G)= P1×···×Pn is abelian,

and if (|g|,|h|)= 1, then g⊗h= 1⊗.

We prove our claim by induction on n, the number of Sylow p-subgroups of T(G).
If n= 1, then G = P1�〈b〉 and G⊗G � T(G⊗G)×Z by Propositions 4.2, 4.3, 4.4, and

4.5.

Suppose n ≥ 2. Then G = (P ×Q)�〈b〉 with P = P1 and Q = P2×···×Pn. Set U =
P �〈b〉 and W =Q�〈b〉. Then, for any g,h ∈ G, there exist u,u′ ∈ P ⊆ U , w,w′ ∈W
such that g =uw and h=u′w′. By expanding g⊗h,

g⊗h=uw⊗u′w′ =X(g,h)·(w⊗w′), (4.28)

where

X(g,h)= (u⊗u′)(u⊗w′)(w⊗u′)([u,w]⊗u′)([u,w]⊗w′)(w⊗[u,w′]
)
. (4.29)

For w,w′ ∈ W , there exist v,v′ ∈ Q and integers s,t such that w = vbs and

w′ = v′bt . We substitute w = vbs and w′ = v′bt into (4.29), expand, observing that
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elements in T(G) commute and g⊗h= 1⊗ for g,h∈ T(G) with (|g|,|h|)= 1. We then

arrive at

X(g,h)= (u⊗u′)(u⊗b)t(b⊗[u,b])(t2)(b⊗u′)s(b⊗[b,u])(s2)([u,b]⊗u′)s
·([u,b]⊗b)st(b⊗[u,b])t . (4.30)

We observe X(g,h)∈ T(U⊗U), hence 〈X(g,h) | g,h∈G〉 ≤ T(U⊗U). On the other

hand, T(U⊗U)≤ 〈u1⊗u2,u3⊗b, b⊗u4 |u1,u2,u3,u4 ∈ T(U)〉. However, for suitable

choices of g and h, observe that all the above generators are in {X(g,h); g,h ∈ G}.
We conclude that T(U ⊗U) = 〈X(g,h) | g,h ∈ G〉. The above, together with (4.28),

implies G⊗G = 〈T(U⊗U),W ⊗W〉. Observing (|T(U⊗U)|,|T(W ⊗W)|)= 1, it follows

that G⊗G = T(U ⊗U)× (W ⊗W). Since |Q| = |T(W)| has only n−1 distinct prime

divisors, the claim follows by induction on n.
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