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A NEW PROOF OF SOME IDENTITIES OF BRESSOUD
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We provide a new proof of the following two identities due to Bressoud:
∑N
m=0qm

2[N
m
]=∑∞

m=−∞(−1)mqm(5m+1)/2[ 2N
N+2m

]
,
∑N
m=0qm

2+m[N
m
] = (1/(1 − qN+1))

∑∞
m=−∞(−1)m ×

qm(5m+3)/2[ 2N+2
N+2m+2

]
, which can be considered as finite versions of the Rogers-Ramanujan

identities.

2000 Mathematics Subject Classification: 05A19.

In [1], Bressoud proves the following theorem, from which the Rogers-Ramanujan

identities follow on letting N →∞.

Theorem 1. For each integer N ≥ 0,

N∑
m=0

qm
2

[
N
m

]
=

∞∑
m=−∞

(−1)mqm(5m+1)/2

[
2N

N+2m

]
,

N∑
m=0

qm
2+m

[
N
m

]
= 1

1−qN+1

∞∑
m=−∞

(−1)mqm(5m+3)/2

[
2N+2

N+2m+2

]
.

(1)

Here,

[
N
m

]
=



(q)N
(q)m(q)N−m

if 0≤m≤N;

0 otherwise
(2)

denotes a Gaussian binomial coefficient, where we adopt the standard q-series nota-

tion

(q)n =
n∏
j=1

(
1−qj). (3)

We give an alternative proof of Theorem 1 by showing that the left and right sides

of (1) satisfy the same recurrence relations.

Define, for integers a and N ≥ 0,

Sa(N)=
N∑
n=0

qn
2+an

[
N
n

]
. (4)

Lemma 2. For each integer N ≥ 1 and each a,

Sa(N)= Sa(N−1)+qN+aSa+1(N−1), (5)

Sa(N)= Sa+1(N−1)+qa+1Sa+2(N−1). (6)
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Proof. Using the identity

[
N
n

]
= qN−n

[
N−1

n−1

]
+
[
N−1

n

]
(7)

gives

Sa(N)= qN
N∑
n=1

qn
2+(a−1)n

[
N−1

n−1

]
+
N−1∑
n=0

qn
2+an

[
N−1

n

]

= qN
N−1∑
n=0

q(n+1)2+(a−1)(n+1)

[
N−1

n

]
+Sa(N−1)

= qN+aSa+1(N−1)+Sa(N−1).

(8)

On the other hand, using the identity

[
N
n

]
=
[
N−1

n−1

]
+qn

[
N−1

n

]
(9)

gives

Sa(N)=
N∑
n=1

qn
2+an

[
N−1

n−1

]
+
N−1∑
n=0

qn
2+(a+1)n

[
N−1

n

]

=
N−1∑
n=0

q(n+1)2+a(n+1)

[
N−1

n

]
+Sa+1(N−1)

= qa+1Sa+2(N−1)+Sa+1(N−1).

(10)

We now equate (5) and (6).

Lemma 3. For integers N ≥ 0 and each a,

Sa(N)+
(
qN+a+1−1

)
Sa+1(N)−qa+1Sa+2(N)= 0. (11)

Proof. Equating (5) and (6) gives

Sa(N−1)+(qN+a−1
)
Sa+1(N−1)−qa+1Sa+2(N−1)= 0 (12)

for N ≥ 1. Replacing N by N+1 gives

Sa(N)+
(
qN+a+1−1

)
Sa+1(N)−qa+1Sa+2(N)= 0. (13)

We will use the a= 0 case of Lemma 3 which is

S0(N)+
(
qN+1−1

)
S1(N)−qS2(N)= 0. (14)

Clearly, Sa(0)= 1 for all a. Also, for N > 0, (5) gives

S0(N)= S0(N−1)+qNS1(N−1) (15)
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and, together with (14), gives

S1(N)= S1(N−1)+qN+1S2(N−1)

= S1(N−1)+qN[S0(N−1)+(qN−1
)
S1(N−1)

]
= qNS0(N−1)+(q2N−qN+1

)
S1(N−1).

(16)

Together with the initial conditions S0(0)= S1(0)= 1, (15) and (16) completely define

S0(N) and S1(N) for N ≥ 0.

We now gather some consequences of these recurrences which will be used later.

Lemma 4. For N ≥ 2,

S0(N)=
(
1+q2N−1)S0(N−1)+qN(1−qN)S1(N−2); (17)

and for N ≥ 1,

S1(N)= qNS0(N)+
(
1−qN)S1(N−1). (18)

Proof. First of all, from (15) and (16), we have

S1(N)−qNS0(N)=
(
1−qN)S1(N−1) (19)

and so, for N ≥ 2,

S1(N−1)−qN−1S0(N−1)= (1−qN−1)S1(N−1). (20)

Hence, by (15) again,

S0(N)= S0(N−1)+qNS1(N−1)

= S0(N−1)+qN[qN−1S0(N−1)+(1−qN)S1(N−2)
]

= (1+q2N−1)S0(N−1)+qN(1−qN)S1(N−2),

(21)

and also by using (16),

S1(N)= qNS0(N−1)+(1−qN+q2N)S1(N−1)

= qN[S0(N)−qNS1(N−1)
]+(1−qN+q2N)S1(N−1)

= qNS0(N)+
(
1−qN)S1(N−1).

(22)

The recurrences (17) and (18) with the initial conditions S0(0)= S1(0)= 1, S0(1)=
1+q define S0(N) and S1(N) uniquely for N ≥ 0.

Let

B0(N)=
∑
m
(−1)mqm(5m+1)/2

[
2N

N+2m

]
,

B1(N)=
∑
m
(−1)mqm(5m+3)/2

[
2N+2

N+2m+2

] (23)
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denote the sums appearing on the right sides of the identities in Theorem 1. Setting

r =N+2m in the definition of B0(N) gives

B0(N)=
∑

r≡N (4)
q(5/8)(r−N)

2+(1/4)(r−N)
[

2N
r

]
−

∑
r≡N+2 (4)

q(5/8)(r−N)
2+(1/4)(r−N)

[
2N
r

]

= q−1/40

[ ∑
r≡N (4)

q(5/8)(r−N+1/5)2
[

2N
r

]
−

∑
r≡N+2 (4)

q(5/8)(r−N+1/5)2
[

2N
r

]]
.

(24)

This suggests the notation

A(M,k,b)=
∑

2r≡M+k (8)
q(5/8)(r−M/2+b)

2

[
M
r

]
(25)

so that

q1/40B0(N)=A
(

2N,0,
1
5

)
−A

(
2N,4,

1
5

)
. (26)

Of course, A(M,k,b)= 0 if M+k is odd, and A(M,k,b) depends only on M,b and the

congruence class of k modulo 8. A similar computation yields

q9/40B1(N)=A
(

2N+2,2,−2
5

)
−A

(
2N+2,−2,−2

5

)
. (27)

We aim at showing that B0(N) and (1−qN+1)B1(N) satisfy the same system of recur-

rences as S0(N) and S1(N).

Lemma 5. The following holds

A(M,k,b)=A(M,−k,−b) (28)

for each M,k, and b.

Proof. Replacing r by M−r in the sum for A(M,k,b) yields

A(M,k,b)=
∑

2M−2r≡M+k (8)
q(5/8)(M/2−r+b)

2

[
M

M−r

]

=
∑

2r≡M−k (8)
q(5/8)(r−M/2−b)

2

[
M
r

]

=A(M,−k,−b).

(29)

We now wish to produce recurrences for the A(M,k,b).

Lemma 6. The following holds

A(M+1,k,b)=A
(
M,k−1,b+ 1

2

)
+qM/2+1/10−bA

(
M,k+1,b+ 3

10

)
,

A(M+1,k,b)=A
(
M,k+1,b− 1

2

)
+qM/2+1/10+bA

(
M,k−1,b− 3

10

) (30)

for each M,k, and b.
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Proof. Using the formula

[
M+1

r

]
=
[
M
r −1

]
+qr

[
M
r

]
(31)

in the definition of A(M+1,k,b) gives A(M+1,k,b)= S1+S2, where

S1 =
∑

2r≡M+k+1 (8)
q(5/8)(r−M/2−1/2+b)2

[
M
r −1

]

=
∑

2s≡M+k−1 (8)
q(5/8)(s−M/2+1/2+b)2

[
M
s

]

=A
(
M,k−1,b+ 1

2

)
,

S2 =
∑

2r≡M+k+1 (8)
qr+(5/8)(r−M/2−1/2+b)2

[
M
r

]
.

(32)

But

r + 5(r −M/2−1/2+b)2
8

= 5(r −M/2+3/10+b)2
8

+M
2
+ 1

10
−b. (33)

Hence,

A(M+1,k,b)=A
(
M,k−1,b+ 1

2

)
+qM/2+1/10−bA

(
M,k+1,b+ 3

10

)
. (34)

Consequently, by Lemma 5 also,

A(M+1,k,b)=A(M+1,−k,−b)

=A
(
M,−k−1,−b+ 1

2

)
+qM/2+1/10+bA

(
M,−k+1,−b+ 3

10

)

=A
(
M,k+1,b− 1

2

)
+qM/2+1/10+bA

(
M,k−1,b− 3

10

)
.

(35)

It is convenient to note that replacing M by M−1 in these identities gives

A(M,k,b)=A
(
M−1,k−1,b+ 1

2

)
+qM/2−2/5−bA

(
M−1,k+1,b+ 3

10

)

=A
(
M−1,k+1,b− 1

2

)
+qM/2−2/5+bA

(
M−1,k−1,b− 3

10

)
.

(36)

Lemma 7. The sums B0(N) and B1(N) obey the recurrences

B0(N)=
(
1+q2N−1)B0(N−1)+qNB1(N−2) (37)

for N ≥ 2 and

B1(N)=
(
1−qN+1)B1(N−1)+qN(1−qN+1)B0(N) (38)

for N ≥ 1.
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Proof. We compute

A
(

2N,k,
1
5

)
=A

(
2N−1,k+1,− 3

10

)
+qN−1/5A

(
2N−1,k−1,− 1

10

)

=A
(

2N−2,k,
1
5

)
+qN−3/5A(2N−2,k+2,0)

+qN−1/5A
(

2N−2,k−2,
2
5

)
+q2N−1A

(
2N−2,k,

1
5

)

= (1+q2N−1)A(2N−2,k,
1
5

)
+qN−3/5A(2N−2,k+2,0)

+qN−1/5A
(

2N−2,k−2,
2
5

)
.

(39)

In particular,

A
(

2N,0,
1
5

)
= (1+q2N−1)A(2N−2,0,

1
5

)

+qN−3/5A(2N−2,2,0)+qN−1/5A
(

2N−2,−2,
2
5

)
,

A
(

2N,4,
1
5

)
= (1+q2N−1)A(2N−2,4,

1
5

)

+qN−3/5A(2N−2,6,0)+qN−1/5A
(

2N−2,2,
2
5

)

+qN−3/5A(2N−2,−2,0)+qN−1/5A
(

2N−2,2,
2
5

)
.

(40)

Noting that

A(2N−2,2,0)=A(2N−2,−2,0),

A
(

2N−2,2,
2
5

)
=A

(
2N−2,−2,−2

5

)
,

(41)

subtracting gives

q1/40B0(N)=A
(

2N,0,
1
5

)
−A

(
2N,4,

1
5

)

= (1+q2N−1)[A(2N−2,0,
1
5

)
−A

(
2N−2,4,

1
5

)]

+qN−1/5
[
A
(

2N−2,2,−2
5

)
−A

(
2N−2,−2,−2

5

)]

= (1+q2N−1)q1/40B0(N−1)+qN−1/5q9/40B1(N−2)

(42)

and so

B0(N)=
(
1+q2N−1)B0(N−1)+qNB1(N−2). (43)
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Also,

A
(

2N+2,k,−2
5

)
=A

(
2N+1,k−1,

1
10

)
+qN+1A

(
2N+1,k+1,− 1

10

)

=A
(

2N,k,−2
5

)
+qN+1/5A

(
2N,k−2,−1

5

)

+qN+1A
(

2N,k,
2
5

)
+q2N+6/5A

(
2N,k+2,

1
5

)

=A
(

2N,k,−2
5

)
+qN+1A

(
2N,−k,−2

5

)

+qN+1/5A
(

2N,2−k, 1
5

)
+q2N+6/5A

(
2N,k+2,

1
5

)
.

(44)

Consequently,

q9/40B1(N)=A
(

2N+2,2,−2
5

)
−A

(
2N+2,−2,−2

5

)

=A
(

2N,2,−2
5

)
+qN+1A

(
2N,−2− 2

5

)

−A
(

2N,−2,−2
5

)
−qN+1A

(
2N,2,−2

5

)

+qN+1/5
[
A
(

2N,0,
1
5

)
−A

(
2N,4,

1
5

)]

+q2N+6/5
[
A
(

2N,4,
1
5

)
−A

(
2N,0,

1
5

)]

= (1−qN+1)[q9/40B1(N−1)+qN+1/5q1/40B0(N)
]

(45)

and so

B1(N)=
(
1−qN+1)B1(N−1)+qN(1−qN+1)B0(N). (46)

By Lemma 4, S0(N) and (1−qN+1)S1(N) satisfy the same recurrences as B0(N) and

B1(N). Also, S0(0)= 1= B0(0), S0(1)= 1+q = B0(1), and (1−q)S1(0)= 1−q = B1(0).
Consequently, we deduce Theorem 1: S0(N)= B0(N) and (1−qN+1)S1(N)= B1(N).
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