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We prove that the author’s powersum formula yields a nonzero expression for a partic-
ular linear ordinary differential equation, called a resolvent, associated with a univariate
polynomial whose coefficients lie in a differential field of characteristic zero provided the
distinct roots of the polynomial are differentially independent over constants. By defini-
tion, the terms of a resolvent lie in the differential field generated by the coefficients of the
polynomial, and each of the roots of the polynomial are solutions of the resolvent. One
example shows how the powersum formula works. Another example shows how the proof
that the formula is not zero works.
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1. Introduction. In 1993, the author began the study of polynomials of a single

variable whose coefficients lie in a differential field of characteristic zero and an as-

sociated nonzero linear ordinary differential equation (LODE), with the roots of the

polynomial as the dependent variable and one of the coefficients of the polynomial

as the independent variable. If all the terms of the LODE lie in the differential field

generated by the coefficients of the polynomial and are not all zero, then the LODE is

called a resolvent of the polynomial. The author’s original purpose for this line of re-

search was to discover ways of solving nonlinear ODEs by a sequence of Picard-Vessiot

extensions. The first linear differential resolvent of a polynomial had been discovered

by Cockle in 1860 [4]. Reading the work of Cockle, Harley gave Cockle’s newly discov-

ered LODE a name in 1862: differential resolvent [7]. Cockle [5] and other authors in

the 19th century had attempted to compute all the roots of a polynomial by solving

one of its resolvents. Since various explicit formulae for all the roots of a polynomial

in terms of the coefficients of the polynomial have since been discovered by Birke-

land [2] and Umemura [14], the resolvent is not needed for this purpose. However, the

author has continued to pursue explicit formulae for resolvents of any polynomial

for the original purpose of solving nonlinear ODEs. For example, the author recently

discovered [11] that a simple expression for a first-order inhomogeneous resolvent

of a quadratic polynomial can be used to solve the nonlinear first-order Riccati ODE.

Cormier et al. [6] have used the differential resolvent to compute the Galois group of

a polynomial.

In the 19th century, Cayley [3], Cockle [4], Harley [7], and Lachtin [9] and in the

early 20th century, Belardinelli [1] studied only trinomials (polynomials of the form

tn+A · tp+B = 0) with coefficients A and B in the field Q(x). Trinomials had been
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exclusively studied because polynomials of degree less than or equal to 5 can be

reduced by algebraic manipulations to trinomials zn+zp+C = 0 involving just one

root, z, and one other free parameter, C . These authors sought differential resolvents

whose terms are polynomials in x. The author has since generalized the definition of

Cockle’s and Harley’s resolvent to univariate polynomials over any differential field

of characteristic zero.

The powersum formula is a remarkably simple application of linear algebra to the

computation of a homogeneous LODE. It relies on the existence of an αth power resol-

vent for any polynomial with coefficients in a differential field of characteristic zero.

It also relies on our ability to specialize the indeterminate α to an integer q and leave

zq as a solution of the resolvent. Unfortunately, it has not yet been proven that this

formula does not simply yield zero, rather than a resolvent, which is by definition not

zero, for every possible polynomial. Worse, it is not known for which polynomials, if

any, the powersum formula yields zero. We must first overcome the obstacle of de-

termining the number of derivatives and the number of powers of α in an αth power

resolvent of the polynomial. This is necessary since the formula uses Cramer’s rule by

setting the unknown coefficients of α in the resolvent to the appropriate cofactor of

the matrix consisting of integer multiples of the derivatives of the powersums (hence

the formula’s name) of the roots. A resolvent of lowest possible order and with no

common power of α among its terms is called the Cohnian of the polynomial, after

the author’s dissertation advisor, Richard Cohn. No algorithm has yet been devised

that is guaranteed to determine the number of powers of α in the Cohnian for all

polynomials.

In some sense, all polynomials with coefficients in a differential field are differential

specializations of polynomials whose coefficients are differentially independent over

the integers, that is, there exist no algebraic relations over the integers of the coef-

ficients of the polynomial or of any of their derivatives. It was therefore considered

necessary first to prove that the powersum formula yields a nonzero resolvent for a

polynomial whose coefficients are differentially independent over integers. For such

polynomials, it is known [12, Theorem 40, page 71] that there exists an αth power

resolvent of order n. Furthermore, the exact powers of α appearing in the resolvent,

with no nontrivial factors, are known. Finally, it is known [12, Theorem 40, page 71]

that there exist no αth power resolvents of lower order or with fewer powers of α.

Therefore, it is possible to prove that the powersum formula yields a nonzero answer

if we can prove that it yields a nonzero answer for, at least, one coefficient of α in,

at least, one term of the resolvent. This paper will prove that the powersum formula

yields a nonzero value for the coefficient F1,0 of the first power of α in the zeroth

derivative term of the resolvent.

The author would like to make one point about terminology. It feels more natu-

ral to say a single object, like a root of a polynomial, is differentially transcendental

over some field rather than differentially independent. Indeed, without the preceding

adverb differentially, it makes no sense to refer to a single object being independent

over anything. However, it does make sense to say that a single object and all of its

derivatives are algebraically independent over a field, which is the definition of the

object being differentially transcendental over the field. Therefore, since the case of
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several objects being differentially independent covers the case of any one of them

being differentially transcendental, the author has adopted the terminology differen-

tially independent throughout this paper. However, in future papers, the author will

refer to a polynomial, considered to be a single object, as being differentially tran-

scendental (dt polynomial) if all its distinct roots are differentially independent over

constants.

2. Example: polynomial with relations on the roots. It is worth mentioning that

there exist polynomials whose coefficients are essentially the opposite of being differ-

entially independent over constants for which the powersum formula yields a nonzero

answer. The readers may be interested in verifying, for themselves, that the power-

sum formula works on the following polynomial which has many algebraic relations

among its coefficients and roots. This is [12, Example 99, page 166]. The cubic polyno-

mial P(t)≡ t3−x·(1+x+x2)·t2+x2·(1+x+x2)·t−x6 has roots z = {x,x2,x3} and

coefficients e1 = x ·(1+x+x2), e2 = x3 ·(1+x+x2), and e3 = x6. We can verify that

x = e1/e2 ·(e2+e3)/(1+e1). So, x lies in the coefficient fieldQ(e1,e2,e3) of P . This is a

particular case of [12, Lemma 100, page 167]. It has anαth power resolvent of the form

c0,3 ·x3 ·D3y+(c0,2+c1,2 ·α)·x2 ·D2y+(c0,1+c1,1 ·α+c2,1 ·α2)·Dy+c3,0 ·α3 ·y = 0,

where Dx = 1, y = zα, and all seven ci,m ≠ 0 and ci,m ∈ Z[x]. There clearly exists no

αth power resolvent of lower order with fewer powers of α. This is a particular case

of [12, Lemma 98, page 163] for which an αth power resolvent was computed for all

polynomials of the form P(t)=∏n
i=1(t−xi) without using the powersum formula.

Although we could specialize α to any set of integers we like, it is natural to spe-

cialize α to the set of integers from one to one less than the number of nonzero

coefficients, ci,m. It is this choice of integers that defines the powersum formula. So,

in the example above, if we specializeα to each of the integers q ∈ {1,2,3,4,5,6}, then

y is specialized to zq. If we sum the resulting equation over each of the three roots

z ∈ {x,x2,x3}, we obtain the following homogeneous linear system of six equations

in seven unknowns:




x3D3p1 x2D2p1 x2 ·1·D2p1 x ·Dp1 x ·1·Dp1 x ·12 ·Dp1 13 ·p1

x3D3p2 x2D2p2 x2 ·2·D2p2 x ·Dp2 x ·2·Dp2 x·22·Dp2 23 ·p2

x3D3p3 x2D2p3 x2·3·D2p3 x ·Dp3 x·3·Dp3 x·32·Dp3 33·p3

x3D3p4 x2D2p4 x2·4·D2p4 x·Dp4 x·4·Dp4 x·42·Dp4 43·p4

x3D3p5 x2D2p5 x2·5·D2p5 x·Dp5 x·5·Dp5 x ·52·Dp5 53·p5

x3D3p6 x2D2p6 x2·6·D2p6 x·Dp6 x·6·Dp6 x ·62·Dp6 63·p6



·




c0,3

c0,2

c1,2

c0,1

c1,1

c2,1

c3,0



=




0

0

0

0

0

0



.

(2.1)

Here,

p1 = x+x2+x3, p2 = x2+x4+x6, p3 = x3+x6+x9,

p4 = x4+x8+x12, p5 = x5+x10+x15, p6 = x6+x12+x18
(2.2)

are the first six powersums of the roots of P . We now set each ci,m equal to its cor-

responding 6×6 cofactor and divide these seven cofactors by their common factor
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ϑ = 34560·(x−1)7 ·x18 ·(x+1)·℘(x), where

℘(x)=−1+6x+5x2−40x3−21x4+158x5+242x6−282x7−1192x8

−1710x9−870x10+1698x11+2316x12+846x13+246x14

−594x15−375x16+324x17+9x18−54x19+9x20.

(2.3)

The final result is [c0,3,c0,2,c1,2,c0,1,c1,1,c2,1,c3,0]=[1,3,−6,1,−6,11,−6], which yields

the correct minimal resolvent x3 ·y ′′′ + (3−6 ·α) ·x2 ·y ′′ + (1−6 ·α+11 ·α2) ·x ·
y ′ −6·α3 ·y = 0.

3. Notation. We will use the symbols ∃ for there exists, � for such that, ∀ for for

all, and ≡ for is defined as. Let Z denote the ring of integers. Let N denote the set of

positive integers. Let N0 denote the set of nonnegative integers. LetQ denote the field

of rational numbers. Let S stand for either Z orQ. Let S# denote S with zero removed.

For any m∈N0, define [m]≡ {k∈N� 1≤ k≤m} and [m]0 ≡ {k∈N0 � 0≤ k≤m}.
For any m ∈ N and any variable or number ν , define (ν)m ≡

∏m
i=1(ν− i+1). Define

(ν)0 ≡ 1.

Let R be a differential domain of characteristic 0 with derivationD. Let kbe the sub-

field of constants of R with respect to the derivation D. It will cause almost no greater

difficulty to consider a polynomial with multiple roots than one with simple roots, pro-

vided the distinct roots themselves are differentially independent over constants. Let

P be a monic polynomial of a single variable t overR, P ∈R[t], of degreeN withn dis-

tinct roots z ≡ {zj}nj=1 with multiplicities {πj}nj=1, respectively. So, P =∏n
j=1(t−zj)πj ,

where N =∑n
j=1πj . We will write P in the form P(t) ≡∑N

i=0(−1)N−ieN−i · ti with co-

efficients eN−i ∈ R. The notation ej is used to denote the jth elementary symmetric

function of the z. Let e ≡ {ej}nj=1 denote the set of coefficients of P . For any q ∈ Z,

we denote and define the qth powersum of the roots of P by pq ≡
∑n
l=1πl ·zql . We call

q the weight of the powersum pq. By a very minor generalization of [12, Theorem 1,

page 23] to account for their multiplicities, the n distinct roots z are differentially

independent over Z if and only if the first n powersums {pq}nq=1 are differentially in-

dependent over Z. Hence, we may refer to either of these conditions interchangeably.

So, from now on, we will assume that the roots of P are differentially independent

over k. By some minor deductions made from the remarks of Kolchin immediately

following [8, Corollary 1, page 87] differential independence over some field of con-

stants k is the same as differential independence over any field of constants, such as

Q. So, from this point on, it is sufficient to assume that the roots of P are differentially

independent over Q.

It is important to keep in mind that only the n elementary symmetric functions

{ēj}nj=1 of then distinct roots z, not theN elementary symmetric functions e≡ {ej}Nj=1

of the N roots z including their multiplicities, are differentially independent over

constants if and only if the n distinct roots z are differentially independent over

constants. Independent of this fact, the powersum formula yields a resolvent whose

terms lie in Z{e}, the coefficient ring of the polynomial P . We will not consider {ēj}nj=1

in this paper again.
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We will use the Kolchin [8] notation for the adjunction of differential elements to

rings and fields. For any set of elements a ≡ {a1, . . . ,an}, lying in an ordinary dif-

ferential ring extension of S, let S[a], S{a}, S(a), and S〈a〉 denote, respectively, the

nondifferential ring, the differential ring, the nondifferential field, and the differential

field generated by S and a. For any m ∈ N0, let S{a}m and S〈a〉m denote, respec-

tively, the nondifferential ring and field generated by S, a, and the derivatives of a up

through mth order. Then, S{a}0 = S[a] and S〈a〉0 = S(a). By an easy generalization

of the material on [10, pages 19–25] to the differential case, we haveQ{p}m =Q{e}m,

Z{p}m ⊂ Z{e}m, andQ〈p〉m =Q〈e〉m for anym∈N0 andQ{p} =Q{e}, Z{p} ⊂ Z{e}.
Even though the powersum formula uses powersums pq, whose weights q are much

bigger than n, specifically up through weight n(n2−n+2)/2, it is worth mentioning

that Dmpq ∈ Z{e}m, ∀m ∈N0 and ∀q ∈N0. That is, every entry in the matrix of the

powersum formula lies in the differential ring Z{e}, generated by the coefficients e of

P over Z. Therefore, the determinant of this matrix lies in Z{e}.
Let α be transcendental over Z{e} with Dα = 0. For each root zj of P , let yj

denote a nonzero solution of the first-order logarithmic differential equation zj ·
Dyj −α ·yj ·Dzj = 0. Formally, we may think of y as the αth power of z up to

a constant multiple. By [12, Theorem 40, page 71], there exists a nonzero, nth or-

der, linear ordinary differential equation with coefficients θi,m ∈ Z{e}n of the form∑n
m=0

∑Ω−m
i=0 θi,m ·αi ·Dmy = 0, where Ω ≡ n(n− 1)/2+ 1, θ0,0 = 0, and all other

θi,m ≠ 0. This ordinary differential equation is called an αth power differential resol-

vent of P . We call the θi,m the coefficient functions of the resolvent. Define Φ ≡n·Ω+1.

Then, Φ = (n3−n2+2n+2)/2. There is a total of Φ nonzero coefficient functions θi,m
in this resolvent. Let �

�
denote the indices (i,m) of the nonzero coefficient functions

θi,m in this resolvent. Then,

�
�
= {(i,m)� i∈ [Ω−m]0, m∈ [n]0, (i,m)≠ (0,0)

}
. (3.1)

So, |�
�
| = Φ.

The choice of θi,m is not unique since we may multiply a resolvent of this form by an

element of Z{e} to get another resolvent of this form. Ideally, we seek a set of θi,m that

has no common factor over Z{e} except for the units ±1. Define Ψ ≡n·Ω. Then, Ψ =
Φ−1. Let Fi,m denote the particular choice of θi,m we get by applying the powersum

formula with the choice of integers q ∈ [Ψ]. That is,
∑
(i,m)∈�� Fi,m ·α

iDmy = 0, where

Fi,m ≡ (−1)sgn(i,m)∣∣qi′Dm′
pq
∣∣
q×(i,m). (3.2)

We call (3.2) the determinantal formula for Fi,m. Here, sgn(i,m) denotes the order

of the pair of indices (i,m) after ordering them in the set �
�

. In this formula, the

rows of the matrix [qi′Dm′pq] are labelled by q as q spans the set [Ψ], the columns

are labelled by (i′,m′) as (i′,m′) spans the set �
�
−{(i,m)}, and |qi′Dm′pq|q×(i,m)

denotes the determinant of [qi′Dm′pq]. We will assume these conditions and notation

henceforth. We refer to qiDmpq as a column of order m in the determinantal formula

for F1,0.
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From this point on, in the resolvent
∑
(i,m)∈�� θi,m ·α

i ·Dmy = 0, let θi,m denote the

coefficient functions which have no common factor over Z{e} except ±1. This resol-

vent, unique up to sign, is called the Cohnian of P . Currently, the Cohnian of poly-

nomials whose distinct roots are differentially independent over constants is known

only for the cases n= 2 and n= 3. It has been shown in [12, Lemma 66, page 121] that

either Fi,m = 0 ∀(i,m)∈�
�

or there exists some very large common factor ϑ ∈ Z{e}n,

such that Fi,m = ϑ·θi,m ∀(i,m)∈��. We will prove that Fi,m ≠ 0 ∀(i,m)∈�
�

when the

distinct roots of P are differentially independent overQ. We will not attempt to factor

Fi,m over the ring Z{e} in this paper. A general algorithm for completely factoring all

the Fi,m is unknown at this time, although a general algorithm for pulling out a large

factor from some of the Fi,m has been proven in [12, Theorem 62, page 114]. However,

we will make use of a trivial factorization of the term F1,0 in (5.2) to prove that F1,0 ≠ 0,

from which it follows that the powersum formula yields a (nonzero) resolvent.

4. Powersum nonvanishing theorem. The aim of this paper is to prove the follow-

ing theorem.

Theorem 4.1 (powersum nonvanishing theorem). Let the univariate polynomial

P(t) ≡ Πnj=1(t−zj)πj =
∑N
i=0(−1)N−ieN−i · ti have n distinct roots {zj}nj=1 which are

differentially independent over Q. Let �
�

be defined by the set of pairs of integers given

by (3.1). Define Φ ≡ (n3−n2+2n+2)/2 and assume all other definitions in Section 3.

Then, the powersum formula (3.2) yields a nonzero value for each of the Φ coefficient

functions Fi,m in the αth power differential resolvent
∑
(i,m)∈�� Fi,m ·α

i ·Dmy of P .

We will prove Theorem 4.1 in Section 9.

Define �≡ �
�
−{(1,0)}. Then, � is the set of pairs of nonnegative integers (i,m) such

that i ∈ [Ω−m]0, m ∈ [n]0, and (i,m) �∈ {(0,0),(1,0)}. The set � represents all the

terms αi ·Dmy , except α·y , that appear in the Cohnian of P . We will prove that the

coefficient of α ·y in the differential resolvent
∑n
m=0

∑Ω−m
i=0 Fi,m ·αi ·Dmy = 0, given

by F1,0 = (−1)sgn(1,0)·|qi′Dm′pq|q×(i′,m′) where (i′,m′) spans �, is not identically zero.

By the author’s minimal form theorem [12, Theorem 40, page 71], P can have no αth

power resolvent of order lower than n, and, among those resolvents of order n, none

can have fewer than Φ nonzero coefficient functions of α. Therefore, if the powersum

formula yields one nonzero coefficient, then the powersum formula for all the other

coefficients must be nonzero. Therefore, to prove Theorem 4.1, it will be sufficient to

prove F1,0 ≠ 0.

We will now give in Sections 5 through 9 the prerequisite material and theorems

for the proof of Theorem 4.1. From this point on, we assume that we have ordered

the pairs (i,m) such that (−1)sgn(1,0) = 1.

5. Factorization of the term F1,0 in the resolvent. Consider the differential ring

inclusion Z{p1, . . . ,pΨ} ⊂ Z{z1, . . . ,zn}, where the smaller ring is generated by the

first Ψ powersums of the roots z1, . . . ,zn. The powersum formula shows that F1,0 ∈
Z{p1, . . . ,pΨ}n⊂Z{p1, . . . ,pΨ}. Consider further the ordinary ring inclusion Z{z1, . . . ,zz}
⊂ Z{z1, . . . ,zn}[z−1

1 , . . . ,z−1
n ]. We will factor F1,0 as the product of an element of the
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ordinary ring Z[z1, . . . ,zn] and an element of the ring Z{z1, . . . ,zn}[z−1
1 , . . . ,z−1

n ]. The

element from Z{z1, . . . ,zn}[z−1
1 , . . . ,z−1

n ] will not depend upon the variable q.

We define a monomial in the derivatives of the roots to be formal products of the

form
∏n
i=1

∏
m≥0(Dmzi)υm,i , with νm,j ∈N0, without any integer coefficients.

We factor F1,0 in the following way. For each m ∈ [n], express the mth derivative

of pq in the following way:

Dmpq =
n∑
l=1

πl ·Dmzql

=
n∑
l=1

m∑
j=0

Bm,j
(
Dzl,D2zl, . . .

)·(q)jzq−jl

=
n∑
l=1

πl ·
m∑
j=0

Bm,j
{
zl
}· j∑

k=0

sjk ·qk ·zq−jl

=
n∑
l=1

πl ·zql ·
m∑
k=0

Am,l,kqk,

(5.1)

where Bm,j{zl} are the partial Bell polynomials in the derivatives of zl as defined on

[10, page 30], sjk are the Stirling numbers of the first kind as defined on [10, page

31] using the notation on [13, page 7], and Am,l,k ≡
∑m
j=k Bm,j{zl} · sjk · z−jl . Then,

Am,l,k ∈ Z{z1, . . . ,zn}[z−1
1 , . . . ,z−1

n ] and does not depend upon q. Later we will state

the definitions and properties of Bm,j{zl} and sjk that are necessary for the proofs.

Next, multiply Dmpq by qi to get qiDmpq =
∑n
l=1

∑m
k=0Am,l,k ·qi+k ·zql . Define t ≡

i+k. So, k = t− i, and, hereafter, we need consider only i ≤ t ≤ i+m. So qiDmpq =∑n
l=1πl ·

∑t=i+m
t=i Am,l,t−i · qt · zql . Since i+m ∈ [Ω], ∀(i,m) ∈ �, we have t ∈ [Ω],

∀(i,m)∈�. Thus, we may factor F1,0 as

F1,0 =
∣∣qiDmpq∣∣q×(i,m)

=
∣∣∣∣∣
n∑
l=1

πl ·
t=i+m∑
t=i

Am,l,t−i ·qt ·zql
∣∣∣∣∣
q×(i,m)

= ∣∣qt ·πl ·zql ∣∣q×(l,t) ·∣∣Am,l,t−i∣∣(l,t)×(i,m).
(5.2)

Thus, (l,t) labels the rows and (i,m) labels the columns in the first determinant on

the right. The pair (l,t) spans the Cartesian product [n]× [Ω] and the pair (i,m)
spans the set �. Define the matrix

A≡ [Am,l,t−i](l,t)×(i,m). (5.3)

Define ℵ ≡ [n]× [Ω]. Then, the rows of A are labelled by (l,t) ∈ ℵ and the columns

are labelled by (i,m)∈�.

6. First factor is nonzero

Theorem 6.1. The determinant |qt ·πl ·zql |q×(l,t) in the factorization of F1,0 is not

zero as the row index q spans [Ψ] and the column index (l,t) spans the Cartesian

product [n]×[Ω].
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Proof. The matrix [qt ·πl ·zql ]q×(l,t) is Ψ ×Ψ . To see that |qt ·πl ·zql |q×(l,t) ≠ 0,

pick out the highest powers of z1 first. These will come from the Ω×Ω block [qt ·π1 ·
zq1](Ψ−Ω+1≤q≤Ψ)×(t∈[Ω]) with determinant

∣∣qt ·π1 ·zq1
∣∣
(Ψ−Ω+1≤q≤Ψ)×(t∈[Ω]) =πΩ1 ·

(∏
q
zq1

)
·∣∣qt∣∣q×t

=πΩ1 ·
(
zβ1

1

)·χ1 ·
∏
q′′<q′

(q′′ −q′)≠ 0,
(6.1)

where β1 ≡
∑q=Ψ
q=Ψ−Ω+1q and χ1 ≡

∏q=Ψ
q=Ψ−Ω+1q. The highest power of z2 in the remain-

ing matrix comes from the Ω×Ω block [qt ·π2 · zq2](Ψ−2Ω+1≤q≤Ψ−Ω)×(t∈[Ω]) with de-

terminant |qt ·π2 ·zq2 |(Ψ−2Ω+1≤q≤Ψ−Ω)×(t∈[Ω]) = πΩ2 ·(
∏
q z

q
2) · |qt|q×t = πΩ2 ·(zβ2

2 ) ·χ2 ·∏
q′′<q′(q′′ −q′)≠ 0, where β2 ≡

∑q=Ψ−Ω
q=Ψ−2Ω+1q and χ2 ≡

∏q=Ψ−Ω
q=Ψ−2Ω+1q. By similar proce-

dures, we may continue and ultimately prove that det[qt ·πl·zql ](q∈[Ψ])×(l∈[n],t∈[Ω])≠0.

This concludes the proof of Theorem 6.1.

7. Properties of the second factor. As noted in [10, page 31], the Stirling number

of the first kind sjk is (−1)j−k times the (j−k)th elementary symmetric function of

the j−1 integers [j−1] when j > 0. Thus, sjk ≠ 0 ∀j ≥ k > 0, sj0 = 0 ∀j > 0 and s0
k = 0

∀j > 0. We define s0
0 ≡ 1.

We continue with the definitions and some of the notation in [10, page 1]. We must

use the letters i and m elsewhere in this paper; so, in place of these letters in Mac-

donald’s definitions, we will use the letters u and θ. For our purposes, a partition λ
is a finite decreasing sequence of positive integers λ1 ≥ λ2 ≥ ··· ≥ λ� called the parts

of λ. The number of parts � is the length of λ. To emphasize the particular partition,

we will sometimes write �(λ) for the length of λ. For our purposes in this paper, we

need to consider only partitions all of whose parts are ≤ n. For each u ∈ [n], define

θu ∈N0 to be the number of parts of λ equal to u. We call θu the multiplicity of u in λ.

Thus, θu = 0 for all u>n since all parts of λ are ≤n. We will no longer deal directly

with the individual parts λν of a partition λ but rather with these multiplicities and

write λ = (1θ12θ2 ···nθn). Hence, � = ∑n
u=1θu. We define |λ| to be the sum of the

parts of λ and call it the weight of λ. Hence, |λ| =∑n
u=1u·θu. We say λ is a partition

of the integer |λ|. The weight of λ is not to be confused with the weight q of the qth

powersum pq, although they are related.

From these definitions, it follows that 1≤ �(λ)≤m for all partitions λ of a positive

integer m. We need to consider only the case m ≤ n. We note the two extreme cases

on �(λ). There exists exactly one partition λ such that �(λ) = 1, namely, λ = (m1).
Thus, θm = 1 and θu = 0 for all u≠m. There exists exactly one partition λ such that

�(λ)=m, namely, λ= (1m). Thus, θm =m and θu = 0 for all u≠ 1.

Let us temporarily drop the subscript l on the root zl. According to [10, page 31],

Bm,j{z} =
∑
λ cλ ·

∏n
ν=1(Dνz)θν , where the sum is over all partitions λ = (1θ1 ···nθn)

of m of length j and cλ ≡m!/
∏n
u=1(θu!·(u!)θu). The constant cλ is always a positive

integer. This formula for Bm,j{z} implies the following three remarks. Firstly, for r ∈
[n], the inequality r ·θr ≤

∑m
u=1u·θu = |λ| =m implies that there exist no partitions

of m with θr > 0 if r > m. Secondly, if r ≤ m and j ∈ [m], there might exist no
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partitions of m of length j with θr > 0. This occurs in the case r <m and j = 1, for

which the only partition, namely, λ= (m1), has θr = 0 for r <m and θm = 1. Thirdly,

Bm,j{z} = 0 if j >m. When any of these three conditions occurs, we say that Drz does

not appear in Bm,j{z} and define the degree of Drz in Bm,j{z} to be 0.

Since all roots {zl}nl=1 are differentially independent over constants, any root z is

differentially transcendental over constants. Therefore, if λ = (1θ1 ···nθn) and λ′ =
(1θ

′
1 ···nθ′n) are two distinct partitions, even if they have the same length and weight,

the monomials
∏n
ν=1(Dνz)θν and

∏n
ν=1(Dνz)θ

′
ν cannot cancel. Therefore, the degree

ofDrz in Bm,j{z} equals the maximum θr over all partitions λ ofm of length j if they

exist. By the inequalities θr ≤
∑m
u=1θu = �(λ) = j and r ·θr ≤

∑m
u=1u ·θu = |λ| =m,

the degree of Drz in Bm,j{z} is ≤ j and ≤m/r . This includes the possibility that the

degree of Drz in Bm,j{z} is 0. Therefore, in the case m = r , the degree of Drz in

Br,j{z} is ≤m/r = r/r = 1, so it must equal 0 or 1.

If r > 1 and m = r , then the inequalities
∑r
u=1θu = j and

∑r
u=1u ·θu = r imply

(r −1) ·θr ≤
∑r
u=2(u−1) ·θu = (r −j). Thus, if j > 1, there exists no partition λ of

r of length j such that θr > 0. Therefore, Drzl does not appear in Br,j{zl} for j > 1.

If j = 1, then there exists exactly one partition of r of weight j, namely, λ = (r 1).
Therefore, Drzl appears in Br,1{zl} with nonzero coefficient cλ = c(r1) = 1. By the last

statement of the previous paragraph, the degree of Drzl in Br,1{zl} equals 1.

For reasons that will become apparent in the induction step of the proof of Theorem

6.1, we need to determine the degree of Drzl in Am,l,k ≡
∑j=m
j=k Bm,j{zl}·sjk ·z−jl only

for the case m = r and the degree of Dzl in Am,l,k for any m ∈ [n]. If k ∈ [r], since

sjk ≠ 0 ∀j ≥ k > 0, the degree of Drzl in Ar,l,k equals the maximum over k ≤ j ≤ r
of the degrees of Drzl in Br,j{zl}. This maximum is achieved when j = r with the

partition λ= (r 1), θr = 1. So, the degree of Drzl in Ar,l,k equals 1.

If r >m, Drzl does not appear in Am,l,k because Drzl does not appear in Bm,j{zl}
for any j. If r =m, since Ar,l,k involves only Br,j with j ≥ k, it follows that Drzl does

not appear in Ar,l,k for k > 1.

We define Bm,j for m = 0 and j = 0 so that the defining property of the Bell poly-

nomials, which in this paper is simply Dmzq = ∑m
j=0Bm,j · (q)j · zq−j , still holds.

We can easily see that Bm,0 = 0, for all m > 0, B0,j = 0 for all j > 0, and B0,0 = 1.

From the definition Am,l,k ≡
∑j=m
j=k Bm,j{zl} · sjk ·z−jl , it follows that A0,l,k = 0 for all

k > 0. Because both B0,j = 0 for all j > 0 and sj0 = 0 for all j > 0, it follows that

Am,l,0 =
∑j=m
j=0 Bm,j{zl}·sjk ·z−jl = Bm,0{zl}·s0

0 ·z−0
l = Bm,0{zl}. Thus, Am,l,0 = 0 for all

m > 0 and A0,l,0 = 1. Thus, it trivially follows that Drz does not appear in Am,l,k if

k·m= 0.

We must now summarize these results for the entries Am,l,t−i of the matrix A. We

have already mentioned that it is necessary that i≤ t ≤ i+m in order for Am,l,t−i ≠ 0.

And we just proved that it is necessary that m · (t− i) ≠ 0, excluding A0,l,0 = 1. For

a given monomial of the form Drzr for r ∈ [n], we must determine necessary con-

ditions on the indices (l,t) and (i,m) of the entry Am,l,t−i for the monomial Drzr to

appear in Am,l,t−i with nonzero coefficient. And, when these conditions are met, we

must determine the degree of Drzr in the entry Am,l,t−i. Since Am,l,t−i involves only

the lth root zl, it is necessary that l= r . Hence, the following properties hold.
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Property P. If r ∈ [n] with r > 1, l = r , t− i = 1, the degree of Drzr in Ar,l,t−i
equals 1. If r ∈ [n] with r > 1, but l ≠ r or t− i ≠ 1, then Drzr does not appear in

Ar,l,t−i.

Property Q. If r ∈ [n], the degree of Dzr in Am,l,t−i ism ifm∈ [n], r ≤m, l= r ,

and i < t ≤ i+m. If any of these conditions is not met, then Dzr does not appear in

Am,l,t−i.

Property R. The entry Am,l,t−i = 0 if t < i or t > i+m or m·(t−i)= 0, excluding

A0,l,0 = 1.

We include Property R for reference, even though we will not refer to it again. In

the preceding discussion, Property R has been used implicitly to derive Properties P

and Q.

8. Induction step. Define xr ≡ (r−2)(r−1)/2+1. Observe that the formula in this

definition is independent of n. Note also that xr = xr−1+r −2 and xn =Ω−n+1 so

xn−1 = Ω−n. Note that x1 = x2 = 1 and xr ∈ N ∀r ∈ N. Our next goal is to prove

the claim that the monomial

M ≡
( n∏
r=1

(
Drzr

)xr)·
( n∏
r=1

(
Dzr

)(Ω−xr )(r−1)
)
, (8.1)

made up of the smaller monomials (Drzr )xr and (Dzr )(Ω−xr )(r−1), appears with

nonzero coefficient in F1,0. Theorem 8.1 gives necessary conditions on the rows and

columns of the matrix A of (5.3) which can contribute to the monomial M in determi-

nant |A| = |Am,l,t−i|(l,t)×(i,m).
Theorem 8.1. Let n∈N with n≥ 3.

First half. For each r ∈ [n], the monomial (Drzr )xr in M can come only from the

product of the xr entries of A, with l= r , t ∈ [xr ], i= t−1, and m= r .

Second half. For each r ∈ [n] with r > 1, the monomial (Dzr )(Ω−xr )(r−1) in M can

come only from the product of the Ω−xr entries of A with l = r , t = i+r −1, xr−1 ≤
i≤Ω−r +1, and m= r −1.

Proof. We will prove Theorem 8.1 by downward induction on the index r in the

product defining M . Any term in the expansion of the determinant of a Ψ×Ψ matrix

such as A is the product of Ψ entries of A taken from exactly Ψ distinct rows, indexed

by (l,t) ∈ ℵ, and exactly Ψ distinct columns, indexed by (i,m) ∈ �, of A. From now

on, we will say “row” in place of “row of A” and “column” in place of “column of

A.” When we say that a particular monomial, (Drzr )xr for instance, “comes from” a

certain set of xr (resp., Ω−xr ) rows and xr (resp., Ω−xr ) columns, we mean that

the monomial appears with nonzero coefficient in the determinant of the xr ×xr
(resp., (Ω−xr )× (Ω−xr )) minor of A formed from these rows and columns. We

say that we have “used up” these rows and columns, suggesting that the remaining

monomials comprisingM must come from the determinant of the minor formed from

the remaining rows and columns of A not already considered in all the previous steps.
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We define the following subsets of the rows and columns of A. We include the
definitions of ℵ and � again for reference. We need to define ℵr ,


ℵr , �r , and

�r for

each r ∈ [n]:
ℵ ≡ [n]×[Ω].
ℵr ≡ {(l,t)∈ ℵ� l≤ r}. So, ℵn = ℵ.

ℵr ≡ (l,t)∈ ℵ such that l < r or l= r and xr +1≤ t ≤Ω.

�≡ {(i,m)�m∈ [n]0, i∈ [Ω−m]0} excluding {(0,0),(1,0)}.
�r ≡ (i,m)∈� such that m< r or m= r and i∈ [xr −1]0. Since xn−1=Ω−n,

�n =�.

�r ≡ {(i,m)∈��m< r}.

We say a column of A indexed by (i,m) has order m.

Induction hypothesis. Let r ′ ∈ [n].

First half. For each r ≥ r ′, (Drzr )xr can come only from rows in ℵr with l = r
and t ∈ [xr ] and columns in �r with i∈ [xr −1]0 and m= r paired up by t = i+1.

Second half. Let r ′ > 1. For each r ≥ r ′, (Dzr )(Ω−xr )(r−1) can come only from

rows in

ℵr with l= r and xr +1≤ t ≤Ω, and columns in


�r with xr−1 ≤ i≤Ω−(r−1)
and m= r −1 paired up by t = i+r −1.

Start of induction

First half. We begin the induction with r ′ =n. Then, (Drzr )xr = (Dnzn)xn . Since

the nth derivative is the highest derivative in the columns in �n = �, it follows that

the monomial (Dnzn)xn can come only from columns with m=n. By Property P, the

monomial (Dnzn)xn can come only from rows and columns with l = n and t− i = 1.

By Property P, the degree of Dnzn in Am,l,t−i for l= n, m = n, and t−i = 1 equals 1.

Therefore, the monomial (Dnzn)xn must come from xn columns and, therefore, from

xn rows. But there are only xn =Ω−n+1 columns (i,m) ∈ �n with m = n, namely,

(i,m) ∈ [xn−1]0×{n} ⊂ �n. So, all xn columns of order n in �n have been taken.

For each column i∈ [xn−1]0, there exists a corresponding row t subject to t−i= 1,

by Property P. Therefore, as i spans i ∈ [xn−1]0, t spans [xn]. Thus, we have used

up xn rows in ℵn with (l,t)∈ {n}×[xn]⊂ ℵn.

Removing {n}×[xn] from ℵn leaves

ℵn. Removing [xn−1]0×{n} from �n leaves


�n. Therefore, in the second half of this induction step, we may look for rows only in

ℵn and columns only in


�n.

Second half. The previous statement implies that the monomial (Dzn)(Ω−xn)(n−1)

must come from columns with m<n. By Property Q, the monomial (Dzn)(Ω−xn)(n−1)

can come only from rows with l=n, and, for each m ∈ [n−1], the degree of Dzn in

Am,n,t−i is m. Suppose that (Dzn)(Ω−xn)(n−1) came from a set of columns indexed by

some subset T ⊂ 
�n with m≤n−1 ∀(i,m)∈ T . The degree of Dzn, coming from the

columns of T , is ≤∑(i,m)∈T m and must equal the degree of Dzn in (Dzn)(Ω−xn)(n−1),

which is obviously (Ω−xn)(n−1). Hence, (Ω−xn)(n−1)≤∑(i,m)∈T m.

If some column (i,m) in T had m<n−1, then T would contain strictly more than

Ω−xn columns to make the inequality (Ω−xn)(n−1) ≤ ∑(i,m)∈T m hold. But this
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would imply that (Dzn)(Ω−xn)(n−1) comes from strictly more than Ω−xn columns in
�n and thus from strictly more than Ω−xn rows in

ℵn with l = n. This contradicts

the range of l and t in the indexing set

ℵn. Therefore, we must have m=n−1 for all

pairs (i,m) ∈ T ⊂ �. The only condition that (i,m) ∈ � places upon i and m is that

i∈ [Ω−m]0. Therefore, imust span some subset Υ ⊂ [Ω−(n−1)]0 with |Υ| =Ω−xn.

We will shortly prove that Υ = {i� xn−1 ≤ i≤Ω−(n−1)}.
Since we have used up xn rows in ℵn with l=n and t ∈ [xn] to get (Dnzn)xn , this

implies that (Dzn)(Ω−xn)(n−1) must come only from the Ω−xn rows in

ℵn with l= n

and t spanning the set xn+1≤ t ≤Ω.

So, we have now accounted for Ω rows with l=n and Ω columns such that

(i) (Dnzn)xn can come only from the xn rows in ℵn with l = n and t spanning

[xn], and the xn columns in �n with m=n and i spanning [xn−1]0, with the

rows and columns paired up by the relation t = i+1;

(ii) (Dzn)(Ω−xn)(n−1) can come only from the Ω−xn rows in

ℵn with l = n and

t spanning xn + 1 ≤ t ≤ Ω and Ω− xn columns in

�n with m = n− 1 and

i∈ [Ω−(n−1)]0, with the rows and columns subject to i < t ≤ i+n−1.

We will show that the three conditions on i and t in (ii) force i and t to be related

by t = i+n−1. We have t spanning xn+1≤ t ≤Ω, i∈ [Ω−(n−1)]0 and t ≤ i+n−1.

When t = Ω, the second two conditions force i = Ω− (n−1). This leaves t to span

xn+1 ≤ t ≤Ω−1, i∈ [Ω−(n−1)−1]0, and t ≤ i+n−1. When t =Ω−1, the second

two conditions force i=Ω−(n−1)−1. Continuing in this manner, we see that i and

t get paired up by t = i+n−1, forcing i to span the set Υ = {i � xn− (n−1)+1 ≤
i≤Ω−(n−1)} of size Ω−xn. Since xn−1 = xn−n+2, it follows that Υ = {i� xn−1 ≤
i≤Ω−(n−1)}.

Removing the Ω−xn rows withm=n−1 and xn−1 ≤ i≤Ω−(n−1) from

�n leaves

�n−1. Removing the Ω−xn columns with l = n and xn+1 ≤ t ≤ Ω from

ℵn leaves

ℵn−1.

General step of induction. We assume that the induction hypothesis is true

for r ′ > r > 1. This means that we may choose only from rows in ℵr and columns in

�r . We now wish to prove the induction hypothesis true for r ′ = r > 1.

First half. Since the r th derivative is the highest derivative in the columns in �r ,

it follows that the monomial (Drzr )xr can come only from columns with m = r . By

Property P, the monomial (Drzr )xr can come only from rows in ℵr and columns in �r
with l= r and subject to t−i= 1. By Property P, the degree ofDrzr inAm,l,t−i for l= r ,

m= r , and t−i= 1 equals 1. Therefore, the monomial (Drzr )xr must come from xr
columns and, therefore, from xr rows. But there are only xr columns (i,m)∈�r with

m= r , namely, (i,m)∈ [xr −1]0×{r} ⊂ �r . So, all xr columns in �r of order r have

been taken. By Property P, for each column i∈ [xr −1]0, there exists a corresponding

row t subject to t− i = 1. Therefore, as i spans i ∈ [xr −1]0, t spans [xr ]. Thus, we

have used up xr rows in ℵr with (l,t)∈ {r}×[xr ]⊂ ℵr .

Removing the rows {r}×[xr ] from ℵr leaves

ℵr . Removing the columns [xr −1]0×

{r} from �r leaves

�r . Therefore, in the second half of this induction step, we may

look for rows only in

ℵr and columns only in


�r .
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Second half. The previous statement implies that the monomial (Dzr )(Ω−xr )(r−1)

must come from columns with m< r . By Property Q, for each m∈ [r−1], the mono-

mial (Dzr )(Ω−xr )(r−1) can come only from rows in

ℵr with l=n and the degree of Dzr

inAm,n,t−i ism. Suppose that (Dzr )(Ω−xr )(r−1) came from a set of columns indexed by

some subset T ⊂ 
�r with m ≤ r −1 ∀(i,m)∈ T . The degree of Dzr coming from the

columns of T is ≤∑(i,m)∈T m and must equal the degree of Dzr in (Dzr )(Ω−xr )(r−1),

which is obviously (Ω−xr )(r −1). Hence, (Ω−xr )(r −1)≤∑(i,m)∈T m.

If some column (i,m) in T had m< r −1, then T would contain strictly more than

Ω−xr columns to make the inequality (Ω−xr )(r − 1) ≤ ∑
(i,m)∈T m hold. But this

would imply that (Dzr )(Ω−xr )(r−1) comes from strictly more than Ω−xr columns in

�r and thus from strictly more than Ω−xr rows in


ℵr with l = r . This contradicts

the range of l and t in the indexing set

ℵr . Therefore, we must have m= r −1 for all

pairs (i,m)∈ T ⊂ 
�r . The only condition that (i,m)∈ 
�r places upon i and m is that

i∈ [Ω−m]0. Therefore, imust span some subset Υ ⊂ [Ω−(r−1)]0 with |Υ| =Ω−xr .

We will shortly prove that Υ = {i� xr−1 ≤ i≤ xr}.
Since we have used up xr rows in ℵr with l = r and t ∈ [xr ] to get (Drzr )xr , this

implies (Dzr )(Ω−xr )(r−1) must come only from the Ω−xr rows in

ℵr with l= r and t

spanning the set xr +1≤ t ≤Ω.

So, we have now accounted for Ω rows with l= r and Ω columns such that

(i) (Drzr )xr can come only from xr rows in ℵr with l = r and t spanning [xr ],
and xr columns in �r with m = r and i spanning [xr −1]0, with the rows and

columns paired up by the relation t = i+1;

(ii) (Dzr )(Ω−xr )(r−1) can come only fromΩ−xr rows in

ℵr with l= r and t spanning

xr +1≤ t ≤Ω, and Ω−xr columns in

�r with m= r −1 and i∈ [Ω−(r −1)]0,

with the rows and columns subject to i < t ≤ i+r −1.

We will show that the three conditions on i and t in (ii) force i and t to be related by

t = i+r−1. We have t spanning xr+1≤ t ≤Ω, i∈ [Ω−(r−1)]0 and t ≤ i+r−1. When

t =Ω, the second two conditions force i=Ω−(r−1). This leaves t to span xr+1≤ t ≤
Ω−1, i∈ [Ω−(r−1)−1]0, and t ≤ i+r−1. When t =Ω−1, the second two conditions

force i=Ω−(r −1)−1. Continuing in this manner, we see that i and t get paired up

by t = i+r −1, forcing i to span the set Υ = {i � xr −(r −1)+1 ≤ i ≤Ω−(r −1)} of

size Ω−xr . Since xr−1 = xr −r +2, it follows that Υ = {i� xr−1 ≤ i≤Ω−(r −1)}.
Removing the Ω−xr rows with m= r−1 and xr−1 ≤ i≤Ω−(r−1) from


�r leaves

�r−1. Removing the Ω−xr columns with l= r and xr +1≤ t ≤Ω from

ℵr leaves ℵr−1.

This proves Theorem 8.1.

9. Termination of the induction

Theorem 9.1. A sufficient condition for |A|≠ 0 is that |Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)
≠ 0.

Proof. The first half of Theorem 8.1 is true for r ′ ≥ 1, and the second half is

true for r ′ ≥ 2. Therefore, after obtaining the monomial M , Theorem 8.1 leaves the

rows

ℵ1 = {(l,t) ∈ ℵ � l = 1, x1+1 ≤ t ≤ Ω} = {(1, t) � 2 ≤ t ≤ Ω}, and the columns


�1 = {(i,m) ∈ � � m < 1} = {(i,0) � 2 ≤ i ≤ Ω}. Therefore, M = ∏n
r=1(Drzr )xr ·∏n

r=2(Dzr )(Ω−xr )(r−1) must come from all the rows of A except

ℵ1 and all the columns
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of A except

�1. Let |Am,l,t−i|(ℵ−
ℵ1)×(�−


�1)
denote the determinant of the (Ψ−Ω+1)×

(Ψ −Ω+1) minor formed from all the rows of A except

ℵ1 and all the columns of A

except

�1. Let |Am,l,t−i|
ℵ1×


�1
denote the determinant of the (Ω−1)×(Ω−1) minor of

A formed from the rows

ℵ1 and the columns


�1. Then, |A| = |Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)
·

|Am,l,t−i|
ℵ1×

�1
+ X where X denotes terms which cannot cancel with M , and we

have proven in Theorem 8.1 that, if M appears in |A|, then it must appear in

|Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)

. Since |Am,l,t−i|
ℵ1×

�1
= |A0,1,t−i|2≤t≤Ω, 2≤i≤Ω, A0,1,t−i = 0 if t ≠ i

and A0,1,t−i = 1 if t = i, we have |A0,1,t−i|2≤t≤Ω, 2≤i≤Ω = 1. Therefore, |A| =
|Am,l,t−i|(ℵ−
ℵ1)×(�−


�1)
+X. Therefore, if |Am,l,t−i|(ℵ−
ℵ1)×(�−


�1)
≠ 0, then |A|≠ 0.

We will now prove |Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)
≠ 0.

10. Interpretation of Theorem 8.1. So far we have shown that if the monomial M
is to appear in the determinant of A, it necessarily comes only from the following

entries of A= [Am,l,t−i](l,t)×(i,m): l= r , t ∈ [xr ], i∈ [xr −1]0, m = r and t = i+1 for

r ∈ [n], and l= r , xr +1≤ t ≤Ω, xr−1 ≤ i≤Ω−(r−1), m= r−1 and t = i+r−1 for

r ∈ [n] and r > 1.

In other words, in the expansion of the determinant of the minor [Am,l,t−i](ℵ−
ℵ1)×(�−

�1)

,

M can appear only in the product

P ≡
( n∏
r=1

xr∏
t=1

Ar,r ,1

)
·
( n∏
r=2

Ω∏
t=xr+1

Ar−1,r ,r−1

)
. (10.1)

Thus, in the expansion of |Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)

, M cannot cancel with terms not

in P . Thus, Theorem 8.1 is equivalent to the statement that if M appears in P with

nonzero coefficient, then |Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)
≠ 0.

Now, we must prove that M appears in P with nonzero coefficient.

Theorem 10.1. The monomial M appears in the expansion of the determinant of

the minor |Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)

in the product (10.1) with nonzero coefficient.

We wish to compute the product
∏n
r=1

∏xr
t=1Ar,r ,1 first.

The conditions l= r , t ∈ [xr ], i∈ [xr −1]0, m= r , and t = i+1 imply

Am,l,t−i =Ar,r ,1 =
j=r∑
j=1

Br,j
{
zr
}·sj1 ·z−jr

= Br,1
{
zr
}·s1

1 ·z−1
r +X = D

rzr
zr

+X,
n∏
r=1

xr∏
t=1

Ar,r ,1 =
n∏
r=1

(
Ar,r ,1

)xr = n∏
r=1

(
Drzr
zr

+X
)xr

=
n∏
r=1

(
Drzr
zr

)xr
+X.

(10.2)

Next, we wish to compute the product
∏n
r=2

∏Ω
t=xr+1Ar−1,r ,r−1.
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The conditions l= r ,xr+1≤ t ≤Ω,xr−1 ≤ i≤Ω−(r−1),m= r−1, and t = i+r−1

imply

Am,l,t−i =Ar−1,r ,r−1 =
r−1∑
j=r−1

Br−1,j
{
zr
}·sjr−1 ·z−jr

= Br−1,r−1
{
zr
}·sr−1

r−1 ·z−(r−1)
r =

(
Dzr
zr

)r−1

,

n∏
r=2

Ω∏
t=xr+1

Ar−1,r ,r−1 =
n∏
r=2

(
Ar−1,r ,r−1

)Ω−xr = n∏
r=2

(
Dzr
zr

)(Ω−xr )(r−1)
.

(10.3)

In other words, P =M ·∏n
r=1z

−xr−(Ω−xr )·(r−1)
r +X where the X stands for terms that

cannot cancel with M . Since
∏n
r=1z

−xr−(Ω−xr )·(r−1)
r ≠ 0, M appears in P with nonzero

coefficient.

We may now prove Theorem 4.1.

Proof of Theorem 4.1. By Theorem 10.1, M appears in P with nonzero coeffi-

cient. Therefore, by Theorem 8.1, |Am,l,t−i|(ℵ−
ℵ1)×(�−

�1)
≠ 0. Therefore, by Theorem 9.1,

|A| ≠ 0. Therefore, F1,0 = |qtzql |q×(l∈[n], t∈[Ω]) · |A| ≠ 0 from the factorization (5.2).

Therefore, the resolvent
∑
(i,m)∈�� Fi,m ·α

i ·Dmy = 0, obtained by the powersum for-

mula, is not identically zero. By remarks made in Section 4, all the terms Fi,m of this

resolvent are not zero. this completes the proof of Theorem 4.1.

11. Cubic example. We would now like to demonstrate the idea behind the proof of

Theorem 4.1 on the smallest possible nontrivial example. Even on this small example,

the 12×12 matrix in the powersum formula will be too large to show. Therefore, we

will instead reason as the author had originally formulated the proof of [12, Theorem

1]. Since the author has already provided one example using the powersum formula,

we will not explain how it works in the following example.

Let P(t) ≡ (t−u)(t−ν)(t−w) be a monic cubic polynomial whose roots z1 =w,

z2 = ν , and z3 = u are differentially independent over Z. Since n = 3, we have Ω =
n·(n−1)/2+1= 4, Ψ =n·Ω= 12. Therefore, the homogeneous α-power Cohnian of

P has the form
(
θ0,3+θ1,3 ·α

)·D3y

+(θ0,2+θ1,2 ·α+θ2,2 ·α2)·D2y

+(θ0,1+θ1,1 ·α+θ2,1 ·α2+θ3,1 ·α3)·Dy
+(θ1,0 ·α+θ2,0 ·α2+θ3,0 ·α3+θ4,0 ·α4)·y = 0,

(11.1)

where all θi,m ≠ 0 by [12, Theorem 40, page 71]. To obtain θ1,0, first compute F1,0 by

the powersum formula, which sets F1,0 equal to the 12× 12 cofactor of the matrix

[qi ·Dmpq]q×(i,m) where q spans [12] and (i,m) spans � = {(0,3),(1,3),(0,2),(1,2),
(2,2),(0,1),(1,1),(2,1),(3,1),(2,0),(3,0),(4,0)}. We show that the powersum for-

mula yields a nonzero value for F1,0. We expand out the rows of [qi ·Dmpq]q×(i,m)
for easier reference. To shorten the notation we may drop pq and indicate the (i,m)



736 JOHN MICHAEL NAHAY

column simply by qi ·Dm, so

[
qi ·Dmpq

]
q×(i,m) =

[
D3,q ·D3,D2,q ·D2,q2D2,D,q ·D,q2D,q3D,q2,q3,q4]. (11.2)

Denote the terms in each powersum pq and their derivatives in the following way:

pq ∼ zq,
Dpq ∼ (q)1 ·zq−1 ·Dz,
D2pq ∼ (q)2 ·zq−2(Dz)2+(q)1 ·zq−1 ·D2z,

D3pq ∼ (q)3 ·zq−3(Dz)3+3·(q)2 ·zq−2(Dz ·D2z
)+(q)1 ·zq−1D3z.

(11.3)

The givenDmpq equals the expression following the∼mark if we sum that expression

over the three roots. For instance, the column q·D2pq of the matrix [qi ·Dmpq]q×(i,m)
can be expressed as the sum of the six columns q · (q)2 · zq−2(Dz)2 and q · (q)1 ·
zq−1 ·D2z, one for each of the three roots z, with each column involving exactly one

root and exactly one monomial of the form
∏
r>0(Drz)νr . Thus, the determinant of

[qi ·Dmpq]q×(i,m) can be expressed as the sum of the determinants of the six matrices

formed by replacing q ·D2pq with each of these six columns.

We have x1 = 1, x2 = 1, and x3 = (r −2)(r −1)/2+1|r=3 = 2. So, (Ω−x3)(3−1) =
2·2= 4 and (Ω−x2)(2−1)= 3·1= 3. So,

M ≡
n∏
r=1

(
Drzr

)xr · n∏
r=1

(
Dzr

)(Ω−xr )(r−1) = (D3u
)2(D2ν

)1(Dw)1(Du)4(Dν)3. (11.4)

We determine the coefficient of M = (D3u)2(Du)4(D2ν)1(Dν)3(Dw)1 in the expan-

sion of the determinant of [qi ·Dmpq]q×(i,m).
The monomial (D3u)2 can come only from the D3pq and q ·D3pq columns since

they are the only columns of third order. SinceD3u·Du does not appear in eitherD3pq
or q ·D3pq, the monomial (Du)4 must come only from the columns of second and

first order. Furthermore, since u appears in D2pq only in the form (q)2 ·uq−2(Du)2+
(q)1 ·uq−1 ·D2u, it follows that the three columns of second orderD2pq, q·D2pq, and

q2D2pq will contribute at least two powers of Du. Therefore, (Du)4 must come from

either two columns of second order, one column of second order and two columns of

first order, or four columns of first order.

If (Du)4 came from one column of second order and two columns of first order,

or four columns of first order, then, at least, two columns of second order would

remain. These two columns of second order would contribute (D2ν)2 or (D2ν)1(Dw)2

or (D2ν)1(Dν)2. Since (D2ν)2 and (D2ν)1(Dw)2 do not appear in M , it follows that

the other two columns of second order contribute (D2ν)1(Dν)2 toM . Then, one more

power of Dν would come from the columns of first order. Then, (Dw)2 would come

from the remaining two columns of first order. But (Dw)2 does not appear in M .

Therefore, (Du)4 must come from two columns of second order. We have D2pq
contributing (q)2 ·uq−2 · (Du)2 (degree 2 in q), q ·D2pq contributing q · (q)2 ·uq−2 ·
(Du)2 (degree 3 in q), and q2 ·D2pq contributing q2 ·(q)2 ·uq−2 ·(Du)2 (degree 4 in

q). Since (D3u)2 comes from D3pq, which contributes (q)1 ·uq−1D3u (degree 1 in q),

q ·D3pq, which contributes q · (q)1 ·uq−1D3u (degree 2 in q), and since the column
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(q)2 ·uq−2 ·(Du)2 (from D2pq) is a linear combination of the columns (q)1 ·uq−1D3u
(from D3pq) and q · (q)1 ·uq−1D3u (from q ·D3pq), it follows that the column D2pq
would contribute nothing to (D3u)2 ·(Du)4 in the determinant of [qi ·Dmpq]q×(i,m).

Therefore, (Du)4 must come from the columns q ·D2pq and q2D2pq. Then, D2ν
must come from the D2pq column. Therefore, (Dν)3 must come from three of the

four columns of first order, Dpq, q ·Dpq, q2Dpq, or q3Dpq. Since D2pq contributes

(q)1·νq−1·D2ν (degree 1 in q),Dpq contributes (q)1·νq−1·Dν (degree 1 in q), and the

columns (q)1 ·νq−1 ·D2ν and (q)1 ·νq−1 ·Dν are multiples of one another, it follows

that the column D2pq would contribute nothing to (D2ν)·(Dν)3 in the determinant

of [qi ·Dmpq]q×(i,m).
Therefore, (Dν)3 must come only from the q ·Dpq, q2Dpq, and q3Dpq columns.

Therefore, (Dw)1 must come only from the Dpq column. The remaining columns

q2 ·wq, q3 ·wq, and q4 ·wq must come from the columns q2 ·pq, q3 ·pq, and q4 ·pq,

respectively.

Putting this all together, the coefficient ofM in the determinant of [qi·Dmpq]q×(i,m)
equals the determinant of[

q ·uq−1,q2 ·uq−1,q ·νq−1,q3 ·uq−1,q4 ·uq−1,q ·wq−1,

q2 ·νq−1,q3 ·νq−1,q4 ·νq−1,q2 ·wq−1,q3 ·wq−1,q4 ·wq−1], (11.5)

where we have reordered the columns as [D3,q·D3,q·D2,q2D2,D2,q·D,q2D,q3D,D,
q2,q3,q4] to demonstrate that each of the n = 3 roots occupies Ω = 4 columns and

has a coefficient of qi for each i∈ [Ω]. By Theorem 6.1, |ql·ztl |q×(l,t) ≠ 0, soM appears

in F1,0 with nonzero coefficient.

To obtain the Cohnian coefficient function θ1,0, we must divide F1,0 by the greatest

common divisor of all the Fi,m in the ring Z{e1,e2,e3}.

12. Conclusions. In [12], the author has factored some terms of a resolvent, given

by the powersum formula, of a polynomial whose roots are differentially independent

over constants using some partial differential resolvents of the polynomial. These par-

tial differential resolvents are the A-hypergeometric relations of Gel’fand and Sturm-

fels. But much more algebraic factorization remains to be done to make the powersum

formula implementable on a computer for polynomials of degree larger than 3.

Furthermore, much work remains to prove that the powersum formula works on

polynomials with differential and algebraic relations among their roots.
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