
IJMMS 32:2 (2002) 81–92
PII. S0161171202109136

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

SPACES WHOSE ONLY FINITE-SHEETED COVERS
ARE THEMSELVES. PART I

MATHEW TIMM

Received 15 September 2001

This is a survey of results and open questions related to the topology of spaces that have
no nontrivial finite-sheeted covers.

2000 Mathematics Subject Classification: 57M10, 54C10, 54H25, 20E34.

1. Introduction. This paper focuses on those connected topological spaces that

have the property that all of their finite-sheeted connected covering spaces have total

space homeomorphic to the base space. Note that there are two ways that a space M
can satisfy this property: either (1) M has no nontrivial finite-sheeted covers or (2) M
has a k-fold connected cover p : X →M for some k ≥ 2, and the total space of every

connected finite-sheeted cover p : X → M is such that X is homeomorphic to M . In

this paper, we consider those spaces that satisfy the first condition, that is, those that

have no nontrivial finite-sheeted covers. In the sequel we will survey items related to

spaces satisfying the second condition. A reader with a current interest in the second

type of space can consult [34, 39].

Section 2 of this paper presents basic terminology and some elementary examples.

Section 3 presents what is known about such metric continua. Section 4 presents what

is known in the context of spaces with more structure such as low-dimensional man-

ifolds and cell complexes. The development includes: examples, means to construct

additional examples, and statements of interesting problems that, to the knowledge

of the author, are unsolved as of this date. It is of interest to note that spaces with

no nontrivial finite-sheeted covers are related to two problems of significant histori-

cal interest: the question of whether every nonseparating planar continuum has the

fixed point property and the question of whether every compact 3-manifold can be

decomposed into finitely many geometric pieces. See Scott [35].

It has been attempted to make the paper as self-contained as possible. Unfortu-

nately, omissions have no doubt occurred. For more complete treatments of the gen-

eral topology, including the topology of inverse limit spaces, consult Engelking [8]. A

good reference for the algebraic topology is Spanier [36]. The books by Hempel [16]

and Jaco [21] and the survey paper by Scott [35] are good references on 3-manifold

topology. For the more specialized group theory, refer to the books by Robinson [33]

and Magnus et al. [27] while the more elementary group theory can be found in Hunger-

ford [20]. Also refer to Kirby [25] for the most recent version of his problem list. Kirby’s

paper, (which contains an extensive bibliography) can also be thought of as a crash

course in the topology of low-dimensional manifolds.
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2. Terminology and elementary examples. In this paper, a space M is a metric

space in the metric topology, perhaps with additional structure imposed on it. Usu-

ally M is compact. Unless it is specified to the contrary, it is assumed that all spaces

are connected. That is, we usually assume that M is a metric continuum, a compact

connected metric space. A neighborhood of x ∈M is an open subset U(x) of M con-

taining x. A map f : X → M between the (connected) metric spaces X and M is a

continuous function from X to M . If S ⊂ X, the restriction of f to S is denoted by

(f | S).
Let the space M be given. A space X, or more precisely, a pair (X,p), is a covering

space of M if the map p : X →M is a surjective map, such that for each y ∈M , there

is a neighborhood V(y) about y and a collection of pairwise disjoint neighborhoods

{U(x) : x ∈ p−1(y)}, such that for all x ∈ p−1(y) the restriction (p | U(x)) : U(x)→
V(y) is a homeomorphism of U(x) onto V(y). The map p of the covering space

(X,p) is called a covering projection. The covering space (X,p) is a k-sheeted, k-fold,

or k-to-1 covering space of M if for all y ∈ M , |p−1(y)| = k. In this case we write

|p| = k. The covering space (X,p) of M is trivial if p : X → M is a homeomorphism

onto M , that is, if |p| = 1. A self-homeomorphism h : X → X is a deck transformation

of the covering space (X,p) over M if p ◦h = p. The set of all deck transformations

AutM(X,p) of X over M is a group under function composition. We usually suppress

the base point in a pointed space (X,x0) and denote the fundamental group of X
by π1(X). A covering space (X,p) of M is a regular covering space if for every y ∈
M and every x1,x2 ∈ p−1(y), there is an h ∈ AutM(X,p) such that h(x1) = x2. A

regular covering p : X → M is an Abelian cover if AutM(X,p) is an Abelian group. A

regular cover (X,p) ofM is a cyclic cover if AutM(X,p) is a cyclic group. Note that, for

manifolds and cell complexes, the last three conditions are equivalent to, respectively,

the conditions that p∗(π1(X)) is a normal subgroup of π1(M), π1(M)/p∗(π1(X)) is

an Abelian group, and π1(M)/p∗(π1(X)) is a cyclic group.

Recall that ifM is connected, locally path connected, and semi-locally 1-connected,

for example, M is a compact-connected manifold or finite-connected complex, then

there is, in essence, a one-to-one correspondence between the subgroups of π1(M)
and covering spaces of M . Much of what follows exploits this correspondence and

accordingly much of what follows is stated in group theoretic terms.

An inverse sequence is a triple �= (Xn,fn,N) where for each n∈N, Xn is a metric

space and fn : Xn+1 → Xn is a continuous map. The maps are called bonding maps

and we typically assumed that all bonding maps are surjective. The inverse limit of

the inverse sequence, denoted either by X∞ or lim←����������������������������������� �, is the subspace of the infinite

product
∏∞
n=1Xn defined by (xn)∞n=1 ∈X∞ if and only if xn = fn(xn+1). A continuum

which is an inverse limit of an inverse sequence of finite trees, that is, finite-connected

graphs, is said to be tree-like.

In the literature, groups that have no nontrivial finite quotients are said to be pro-

finitely trivial. We dualize this notion to obtain a name for the sorts of spaces in which

we are interested.

Definition 2.1. Let M be a connected metric space. Then M is co-finitely self-

similar if whenever p : X →M is a finite-to-one connected covering space, it follows
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that X is homeomorphic to M ; M is co-finitely trivial if and only if it has no nontrivial

finite-sheeted covers.

Interest in spaces whose only finite-sheeted covers are themselves was initially

prompted after reading Jungck [22]. One of the things done in Jungck’s paper is the

development, in the context of spaces that lack the structure to do classical algebraic

topology, of analogs of some of the classical covering space theory. While the next

section contains more of these results, one that is of interest in this introductory

section is that we may recognize finite-sheeted covers of a space M , via some purely

point-set topology. A map p : X → M is proper if for every compact K ⊂ M , p−1(K)
is compact. As a corollary of Jungck [22, Theorem 2.1, Corollary 2.7], we have the

following theorem.

Theorem 2.2. Any proper local homeomorphism p : X → M of a metric space X
onto the connected metric space M is a k-to-1 cover for some k <∞. (M is not assumed

to be compact and X is not assumed to be connected.)

Co-finitely trivial spaces are also called trivially h-connected spaces and H-con-

nected spaces in the literature. Note that this “h-connected” terminology is used to

emphasize that these notions are generalizations of simple connectivity that are de-

pendent on the existence of some homeomorphism. In the context of this paper, we

are going to focus on the fact that the spaces in question have no nontrivial finite-

sheeted covers and are not so concerned with the fact that this is a generalization of

simple connectivity.

Example 2.3. Note that, co-finitely trivial spaces abound since any simply con-

nected space has this property. There are other interesting examples. By Jungck

[22, Corollary 3.9], the topologist’s sine curve

S = {(x,sin(x)
)

: x ∈ (0,1]}∪{(0,y) :y ∈ [−1,1]
}

(2.1)

has no nontrivial finite-sheeted covers. In fact, by Lau [26, 3.5] any continuum that is

either tree-like or a nonseparating planar continuum is co-finitely trivial since such

spaces possess no nontrivial finite- or infinite-sheeted covers. The spaces constructed

in Griffiths [10] of spaces X with nontrivial π1(X), are examples of co-finitely trivial

spaces. They are also interesting because they are examples of spaces for which the

correspondence between subgroups of the fundamental group and covering spaces is

broken. The most well known of these “Griffiths type” examples is probably the join

of the cone on a pair of Hawaiian Earrings given in Spanier [36, Example 2.5.18].

There are also examples of nicer nonsimply connected spaces, for example, finite-

cell complexes, with nontrivial fundamental group that are co-finitely trivial. In these

examples, the correspondence between subgroups of the fundamental group and cov-

ering spaces of the space is maintained, and so, the fundamental groups of these

spaces must have no finite index subgroups of index greater than 1. Specifically, let

G ≠ 1 be a finitely presented group that has no proper finite index subgroups. We

could, for example, choose a finitely presented infinite simple groups, see Higman [19],

or Higman’s [18] group G = 〈a0, . . . ,a3 : a−2
i+1a

−1
i ai+1ai〉 (the addition in the subscripts
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is mod4). BuildM , a compact manifold or cell complex with π1(M)�G, see for exam-

ple [38]. ThenM is co-finitely trivial sinceπ1(M) has no proper finite index subgroups.

3. Constructing co-finitely trivial spaces. Given a collection of metric continua

with no nontrivial finite-sheeted covers, one may construct additional co-finitely trivial

spaces by applying the “calculus” of H-connectedness (or calculus of noncovering)

developed in Jungck [22, Section 3]. Specifically, we have the following results. Recall

that if X is metric and An ⊂X, then limsup(An) is defined to be

{
x ∈X :∀ε > 0 there is N such that if n≥N, then B(x,ε)∩An ≠∅

}
. (3.1)

Theorem 3.1 (A calculus of noncovering). (a) If M1 and M2 are co-finitely trivial

spaces and are closed subsets of a larger metric space M , such that M = M1 ∪M2,

M1∩M2 ≠∅, and M1∩M2 is connected, then M has no nontrivial finite-sheeted covers.

(b) If M and N are metric spaces with no nontrivial finite-sheeted covers, at least one

of which is compact, then M ×N has no nontrivial finite-sheeted covers. (c) Assume

that M = A∪C is a metric continuum such that A and C have no nontrivial finite-

sheeted covers, A∩C =∅, A is open, C is closed, and for each n∈N, An is a connected

subset ofM such that A−An is connected. If limsup(An)⊂ C , thenM has no nontrivial

finite-sheeted covers. (d) If Y = ⋃∞n=1An, An ⊂ Int(An+1), and An has no nontrivial

finite-sheeted covers, then Y has no nontrivial finite-sheeted covers.

This calculus allows us to easily see that some of the examples above have no non-

trivial finite-sheeted covers. For example, if M is the join of the cones on the pair of

Hawaiian Earrings and C1 and C2 are the two cones in M , then the fact that M has no

nontrivial finite-sheeted covers follows from Theorem 3.1(a). The fact that the topol-

ogist sine curve has no nontrivial finite-sheeted covers follows from Theorem 3.1(c).

Group theoretic applications of the above are also possible. For example, let G and

H be finitely presented groups that have no proper finite index subgroups. Construct

compact 2-complexes M and N whose fundamental groups are, respectively, G and

H. By Theorem 3.1(a) and (b) the one point joint M ∨N (formed by picking x ∈ M
and y ∈ N and identifying x and y) and the product M×N both have no nontrivial

finite-sheeted covers. So, by some basic algebraic topology, in particular, from the

correspondence of subgroups of π1(M ∨N) � G∗H and π1(M ×N) � G×H with,

respectively, covering spaces ofM∨N andM×N, it follows that G∗H and G×H have

no proper finite index subgroups.

One may add to Jungck’s calculus the main result of Lau [26, Theorem 2]. A metric

space (M,d) is d-compressible if there is an x0 ∈M and a map G :M×I →M such that

G(x,1)= x, G(x,0)= x0 for all x ∈M , G(x0, t)= x0 for all t ∈ I, and for all x,y ∈M
and all t ∈ I, d(G(x,t),G(y,t))≤ d(x,y).

Theorem 3.2 [26, Theorem 2]. If p : X → M is a surjective local homeomorphism

and M is the inverse limit of the inverse sequence (Mn,fn,N) in which the bonding

maps fn :Mn+1→Mn are onto and the Mn are d-compressible metric continua, then p
is a homeomorphism.
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Lau’s result, with its hypothesis of d-compressibility on the Mn, is requiring that

the spaces in the inverse sequence be contractible and, since the connected spacesMn
can be homotoped to a point, they must satisfy a limited local connectivity hypothesis

at least at one point. The next result is a generalization of Lau’s theorem that removes

both of these requirements for the case where the bonding maps are assumed to be

open. It is also a recent addition to Jungck’s calculus and has an interesting corollary.

Note that in the sense that the notion of inverse limit generalizes that of product, it,

its corollary, and Lau’s result are all generalizations of Theorem 3.1(b).

Theorem 3.3 (Jungck and Timm [24, Theorem 3.1]). IfM∞ is the inverse limit of the

inverse sequence (Mn,fn,N) of compact co-finitely trivial metric spacesMn in which the

bonding maps fn :Mn+1→Mn are open surjective maps, then M∞ is co-finitely trivial.

Corollary 3.4. If X is a countable product of co-finitely trivial metric compacta,

then X is co-finitely trivial.

The proof of Theorem 3.3 given in [24] makes explicit use of the openness of the

bonding maps in the inverse sequence (Mn,fn,N). We do not have an example showing

that the openness of the fn is necessary, though it seems likely that this is the case.

Also, Lau’s result does not contain this requirement. In particular, when the Mn are

finite trees, an application of Lau’s result shows that the analog of Theorem 3.3 is true

without the openness hypothesis. This prompts the following question.

Question 3.5. If M∞ is the inverse limit of the inverse sequence (Mn,fn,N) of co-

finitely trivial compact metric spaces Mn and the bonding maps fn :Mn+1 →Mn are

surjective maps, mustM∞ be co-finitely trivial? What if the index set in the inverse limit

defining M∞ is allowed to be an arbitrary partially ordered set? Note the observations

after Theorem 3.6, below, for further refinement of this question.

There are two other situations relating inverse limits to co-finitely trivial spaces

in the context of continua with fairly little addition structure. We first explore their

relationship to spaces that have the fixed point property. Consider the following result

of Tominaga [41]. Recall that a space X has the fixed point property if every self-map

f :X →X has a fixed point, that is, a point x ∈X such that f(x)= x. The space X has

the fixed point property for homeomorphisms if every self-homeomorphism of X has

a fixed point.

Theorem 3.6. Let X and M be metric continua and f : X →M a local homeomor-

phism. If X is the inverse limit of an inverse sequence with onto bonding maps of con-

nected, simply connected, locally connected metric continua and X has the fixed point

property for homeomorphisms, then f is a homeomorphism.

While Tominaga’s result is a condition on domains of local homeomorphisms, it

can be combined with Lau’s result in [24] to give another test that can be used to

determine that a metric continuum is co-finitely trivial. To see this, suppose M is a

compact metric continuum and there exist a pair (X,f ) satisfying the hypotheses of

Theorem 3.6. In addition, assume that the spaces in the inverse limit that give X are
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either d-compressible or that the bonding maps in the inverse sequence are open.

Then let p :X →M be a finite-sheeted covering. By Theorem 3.6, M is homeomorphic

to X and so there is an |p|-fold covering p′ : Y → X. But, as X is either the inverse

limit of d-compressible spaces or the inverse limit of an inverse sequence in which

the bonding maps are open, it is, by Lau [26] or [24], respectively, a space that has no

nontrivial finite-sheeted covers. Therefore, M is co-finitely trivial.

Tominaga’s result provides another test for the nonexistence of finite-sheeted cov-

ers and is dependent upon the space X having the fixed point property. Also, it is easy

to see that a space X cannot be a nontrivial regular covering space of any space M , if

X has the fixed point property. These observations provide motivation for further in-

vestigation of the exact relationship between the two concepts. A little thought shows

some restriction on, or change in, the problem is necessary because the n-sphere,

n≥ 2, being simply connected, has no nontrivial covers and yet the antipodal map on

the n-sphere, n≥ 2, has no fixed point.

One line of investigation is suggested by restricting to 1-dimensional or planar con-

tinua. There are a couple of reasons why this line of investigation is interesting. First,

the question of which continua, or more specifically, which nonseparating planar con-

tinua have the fixed point property has been of interest for 70 years or so. Also,

Hagopian [13] has recently shown that every simply connected planar continuum has

the fixed point property and the idea that a space is co-finitely trivial is a general-

ization of simple connectivity. Second, by a result of Jungck and Timm [23], a planar

continuum is separating if and only if it is co-finitely trivial. Also contained in [23] are

additional results relating the notion of co-finite triviality and Theorem 3.1(c) above

to the fixed point property. In particular, every nonseparating planar continuum has

the fixed point property if and only if every co-finitely trivial planar continuum has

the fixed point property. This allows the translation of the this classical fixed point

problem into a problem about the existence or nonexistence of finite-sheeted cover-

ing spaces of planar continua. If one attempts to exploit this logical equivalence and

then attempts to prove that every co-finitely trivial planar continuum has the fixed

point property via a proof by contradiction we are lead to the following interesting

question.

Question 3.7. LetM be a continuum. Suppose that the self-map f :M →M has no
fixed point. Is there a way to use f to construct a space X and define a map f̃ :X →M
such that X is connected and (X,f̃ ) is a covering space of M? For a warm-up, try this

with M = S1 and assume that f is the standard 2-fold covering map.

For a fairly current summary of what is known about the fixed point property for

planar continua, refer to Hagopian [13].

For higher-dimensional situations or even just the nonplanar situation the correct

version of the problem seems to be more difficult to formulate. First, as suggested

by case of the n-sphere and its antipodal map or Bellamy’s example [1] of a tree-like

continuum with no fixed point, it appears that the correct version of the problem is to

wonder if every self-map of a co-finitely trivial continuum must have a periodic point.

Unfortunately, there is Minc’s example [29] of a tree-like continuum with a self-map

that has no periodic point.
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Finally, note that the next example, see also [9, 24], shows that in certain instances

the basic structure of an inverse sequence can force the nonexistence of certain finite-

sheeted covers in the inverse limit.

Example 3.8. Let f ,g : X → X be self-covers of the connected compact metric

space X, such that f ◦g = g◦f . Consider the inverse sequence �= (Xn =X,fn = f ,N)
given by

X
f←������������������������������������������ X f←������������������������������������������ X f←������������������������������������������ ··· f←������������������������������������������ X f←������������������������������������������ ··· (3.2)

and consider the generalized solenoid X∞ = lim←����������������������������������� (Xn =X,fn = f ,N). Perhaps the most

obvious way to hope to obtain a nontrivial covering of X∞ is to consider the limit map

λ∞ :X∞ →X∞ of the self-map λ= (id,λn = g) : �→� of the inverse system � given by

λn = g : Xn → Xn. While it is the case that the limit map is always a finite-to-1 cover,

it is interesting that it is not always the case that λ∞ is a nontrivial self cover. For

example, when λn = g = f , the limit map λ∞ is a homeomorphism that is in essence a

coordinate shift. Actually, one may prove the following stronger result. The proof is

a nice exercise.

Fact 3.9. Assume that �= (X,fn,N) is an inverse sequence of metric continua with

each fn : Xn = X → Xn−1 = X an mn-fold covering projection. Assume that f : X → X
is finite-to-one cover and λ= (id,λn,N) : �→� is a self-map of the sequence such that

for all n∈N, λn = f . Assume there is a subsequence (nk)k∈N such that fnk = λnk = f .

Then λ∞ :X∞ →X∞ is a homeomorphism.

Example 3.10. Let �= (S1,fn,N) be an inverse sequence of circles such that each

fn : S1 → S1 is a prime order covering projection of order pk. Assume that for each

prime p there are infinitely many k ∈ N for which pk = p. Fact 3.9 implies that for

each prime p and p-fold covering projection fp : S1 → S1 the limit map λ∞ :X∞ →X∞
induced by the self-map λ : �→ � of the inverse sequence that is defined by λn = fp
must be a homeomorphism. By a result of Mardešić and Matijević [28], these sorts

of maps are the only possible finite-sheeted covers of the solenoid X∞. Hence X∞ is

co-finitely trivial.

These observations prompt a more general version of Question 3.5.

Problem 3.11. Determine conditions on the inverse system � = (Xα,f βα ,A) such

that the limit space X∞ = lim←����������������������������������� � has no nontrivial finite-sheeted covers.

Before closing this section and turning to the situation of spaces with additional

structure, we note that asking when a space has no nontrivial finite-sheeted covers is

a version of the problem of determining when a local homeomorphism on a space is a

global homeomorphism. This is the point of view that motivated Jungck’s use of the

term H-connected and his version of its definition. Thought of this way, the problem

is almost a hundred year old with the first reference to it that this author is aware of

appearing in Hadamard [11, 12] in 1906. Refer to Jungck [22] and the papers in its

bibliography for some of the history of this problem in the intervening years. Also refer
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to the survey papers by Heath [14, 15]. They are good sources of information on what

is known about the general question of when a continuum can be either the domain

or range of an exactly k-to-1 function (that has up to finitely many discontinuities).

They also contain lists of interesting open problems. The bibliography in [14] is quite

extensive.

4. Manifolds with no nontrivial finite-sheeted covers. For spaces with additional

structure, in particular, manifolds, there are several situations that are related to the

question of existence or nonexistence of finite-sheeted self-covers. The first of these

treated here involves some work of Daverman.

Recall that an n-manifoldM is closed if it is compact and ∂M =∅. One of the prob-

lems that is of current interest in the topology of manifolds is that of determining

when a closed n-manifold is a codimension k approximate fibrator. While one should

consult Daverman [4, 5, 6, 7] for the precise definitions and additional background,

the idea is that a closed n-manifold N is a codimension k fibrator if given any (n+k)-

manifoldM , a k-manifold B, and a proper surjective map p :M → B such that for each

b ∈ B, p−1(b) has the homotopy type of N, it then follows that the map p : M → B
has the approximate homotopy lifting property. The benefit of knowing that for a

particular N, the map p : M → B has the approximate homotopy lifting property is

that we may then apply results of Coram and Duval [2, 3] that give an exact sequence

relating the homotopy groups of N, M , and B and do algebraic topology. By results

of Daverman, a necessary condition for such an N to be a codimension k fibrator is

that N not regularly cyclically cover itself. As no compact connected manifold can be

an infinite cover of any manifold, a closed co-finitely trivial n-manifold is a reason-

able candidate to be codimension k fibrators. We wonder if there is a more intimate

connection between the two concepts.

That such a relationship may exist is suggested by the following. A finitely pre-

sented group G is said to be hyperhopfian if every homomorphism ψ : G → G with

ψ(G) normal andG/ψ(G) cyclic is necessarily an automorphism ofG. For a spaceN as

in the preceding paragraph, having a hyperhopfian fundamental group is a sufficient

(though not necessary) condition for obtaining the fibrator condition. Any (closed)

manifold N that has no nontrivial finite-sheeted covers has a fundamental group

G = π1(N) with no proper finite index subgroups and so such a group almost sat-

isfies the hyperhopfian condition: what remains to show is that G is hopfian, that is

we must show that if G is a finitely presented group with no proper finite index sub-

groups and ψ : G → G is an epimorphism, then ψ is an isomorphism. There is some

hope that this is true. For example, ifπ1(N) is a finitely presented infinite simple group

then it has no proper finite index subgroups and so is hopfian. Thus, we wonder if

all finitely presented groups that have no proper finite-index subgroups are hopfian.

For those co-finitely trivial n-manifolds N that are hopfian and aspherical it follows,

by Daverman [7, Corollary 5.5], that N is a codimension 2-fibrator. (In order to apply

Daverman’s result note that a co-finitely trivial n-manifold is necessarily orientable

since a nonorientable n-manifold has a 2-fold connected cover.)

There is a very large volume of work that shows that the groups that can be a 3-

manifold group, that is, the fundamental group of a 3-manifold, must satisfy quite
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restrictive criteria. Three such interesting criteria and appropriate terminology relat-

ing to the discussion at hand follow.

Theorem 4.1 (The Scott-Shalen Theorem [2, Corollary V.16]). If G is a finitely gen-

erated group that is a 3-manifold group then G is finitely presented.

Theorem 4.2 [21, Example V.8]. If G is a finitely generated Abelian 3-manifold

group, then G is isomorphic to one of 1, Z , Z ×Z , Z ×Z ×Z , Z ×Z2, or Zp for some

p ≥ 2.

The connect sum M#N of two 3-manifolds is obtained by deleting the interiors of

two 3-balls B3 ⊂M andD3 ⊂N (with bi-collared boundaries) and then gluing the result-

ing 3-manifolds together via a homeomorphism ϕ : ∂B3 → ∂D3. A closed 3-manifold

X is prime if whenever X = M#N then either M or N is homeomorphic to S3. A 3-

manifold M is irreducible if every S2 ⊂ M bounds a 3-ball in M . With the exception

of S3 and S1 × S2, a closed orientable 3-manifold is prime if and only if it is irre-

ducible. A surface T properly embedded in a 3-manifold M is compressible in M if

either T = S2 and T bounds a 3-cell in M or T ≠ S2 and there is a disk D ⊂ M such

that D∩T is a curve that cannot be contracted in T . Otherwise, T is incompressible.

A 3-manifold is sufficiently large if it contains a 2-sided incompressible surface. A

3-manifold is a Haken manifold if it is a compact orientable, irreducible manifold that

contains a 2-sided incompressible surface. A 3-manifold is virtually Haken if it has a

finite-sheeted covering space that is a Haken manifold. A group G is residually finite

if ∩{H :H <G and |G :H|<∞}= 1.

Theorem 4.3 [17, Theorem 1.2]. If G is the fundamental group of a compact 3-

manifold whose prime factors are either virtually Haken or have infinite cyclic funda-

mental group, then G is residually finite.

As mentioned above, given any finitely presented group G, there are standard con-

structions that yield higher dimensional manifolds Mn, n > 3, with π1(M) � G. If G
has no finite index subgroups thenMn is a co-finitely trivial manifold. Thus, there are

an abundance of high dimensional co-finitely trivial compact manifolds. This does not

appear to be the case for dimension 3. It is conjectured, Thurston [37], Hempel [17],

and Kirby [25, Problem 3.5], that all compact 3-manifolds can be written as a con-

nect sum in which the prime factors are as stated in Theorem 4.3. As a consequence

of this conjecture and Hempel’s result, a reasonable conjecture is that all compact 3-

manifolds have residually finite fundamental group. Therefore, since the fundamental

group of a co-finitely trivial n-manifold has no proper finite index subgroups, a co-

finitely trivial manifold M can have residually finite fundamental group if and only

if π1(M) = 1. Thus, for 3-manifolds, the most interesting question about co-finitely

trivial spaces is the existence problem. In the light of the preceding, and in conjunc-

tion with the above conjecture and the Poincare conjecture, we state this problem as

a conjecture.

Conjecture 4.4. (a) There do not exist any nonsimply connected co-finitely trivial

compact 3-manifolds. (b) The only compact co-finitely trivial 3-manifolds are the closed

3-ball, S2×I, and S3.
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The topological dual to the notion of a co-finitely trivial space should be a space

that cannot non-trivially cover any space. This situation and variants of it have been

analyzed by a number of people. For results relating to general metric continua that

cannot be the domain of any finite-to-one map other than a homeomorphism, the

reader should consult the survey by Heath [15]. As a consequence of Tominaga [41]

and Jungck and Timm [23] nonseparating-planar continua cannot be the domain of

any nontrivial covering projection and are co-finitely trivial. Also, it is easy to see that

co-finitely trivial spaces, like the join of the cone on the pair of Hawaiian Earrings,

that have a unique point with especially bad local topology cannot be the domain

of a nontrivial-covering projection. For 3-manifolds, Myers [30] has recently given

a method that provides specific examples of open simply connected 3-dimensional

Whitehead manifolds that cannot cover compact 3-manifolds. Other papers, for ex-

ample, Myers [30, 31, 32], Wright [42], Tinsley and Wright [40], also investigate the

topology of these sorts of spaces. However S3 is co-finitely trivial and yet finitely cov-

ers infinitely many different spaces. This collection of observations prompts our last

question.

Question 4.5. Which co-finitely trivial spaces cannot be the domain of a nontrivial

covering projection?
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