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The Newman-Penrose-Perjes formalism is applied to Sasakian 3-manifolds and the local
form of the metric and contact structure is presented. The local moduli space can be
parameterised by a single function of two variables and it is shown that, given any smooth
function of two variables, there exists locally a Sasakian structure with scalar curvature
equal to this function. The case where the scalar curvature is constant (η-Einstein Sasakian
metrics) is completely solved locally. The resulting Sasakian manifolds include S3, Nil, and
S̃L2(R), as well as the Berger spheres. It is also shown that a conformally flat Sasakian
3-manifold is Einstein of positive scalar curvature.
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1. Introduction. Sasakian geometry consists of a Riemannian metric and a con-

tact structure adapted to the metric in a certain sense. First introduced in 1960 [8],

Sasakian geometry is the odd-dimensional equivalent of Kähler geometry. (See Boyer

and Galicki [2, 3].)

Geiges [4] has classified the topology of all closed Sasakian 3-manifolds.

Theorem 1.1. A closed 3-manifold admits a Sasakian structure if and only if it is

diffeomorphic to one of the following:

(a) S3,

(b) S̃L2(R),
(c) Nil,

or a quotient by a discrete subgroup of the appropriate isometry group acting freely.

The proof of this theorem rests on the fact that ifM is a closed Sasakian 3-manifold,

then M×R is a locally conformally Kähler manifold with parallel Lee form. In addi-

tion, Belgun [1] has classified the CR structures associated with closed nonspherical

Sasakian 3-manifolds. It has also been shown that any Sasakian-Einstein structure on

R3 is diffeomorphic to the standard Sasakian structure on an open subset of S3 [6].

The purpose of this paper is to complete the local classification of Sasakian struc-

tures. Our main theorem is the following theorem.

Theorem 1.2. The local space of smooth Sasakian structures is given by a real

function of two variables.

In essence, the structure theorem says that locally, all Sasakian structures arise as a

Kaluza-Klein construction on a line bundle over an open set U ⊂R2, the real function

mentioned above being the conformal factor of the Riemann metric onU , when written

in isothermal coordinates. The Sasakian structures are in one-to-one correspondence
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with the Riemann structures on U . In addition, all Sasakian η-Einstein structures are

found. These include S3, Nil, and S̃L2(R), as well as the Berger spheres. Many of these

are examples of Sasakian 3-manifolds with negative scalar curvature.

The main tool used here is the Newman-Penrose-Perjes spin coefficient formalism,

details of which can be found in [6]. This technique is also used to show that there

are no non-Einstein conformally flat Sasakian 3-manifolds, a theorem first proved by

Tanno [9].

This paper is organized as follows: in Section 2, the Newman-Penrose-Perjes for-

malism for Riemannian 3-manifolds is outlined. In Section 3, Sasakian structures are

introduced and are characterized in terms of the divergence, shear, and twist of the

associated geodesic foliation. The main theorem for the moduli space of Sasakian

structures is also proven. In Section 4, Sasakian η-Einstein metrics are addressed and

it is found that there are three families, each with examples of (constant) negative

curvature. In Section 5, we give a short proof of the fact that the only conformally flat

Sasakian 3-manifolds are of constant curvature.

2. The Newman-Penrose-Perjes formalism. Let (M,g) be a Riemannian 3-manifold

and consider an orthonormal frame {e0,e1,e2}, and dual basis of 1-forms {θ0,θ1,θ2}.
Introduce a complex frame {e0,e+,e−} by

e+ = 1√
2

(
e1−ie2

)
, e− = 1√

2

(
e1+ie2

)
, (2.1)

with dual basis of 1-forms {θ0,θ+,θ−}.
We define the complex spin coefficients by

γmnp =∇jemi einejp, (2.2)

where ∇ is the covariant derivative associated with g and the indices m, n, p range

over 0, +, −. Thus

γmnp =−γnmp. (2.3)

We break covariance and introduce the complex optical scalars

γ+0− = ρ, γ+0+ = σ, γ+−− = τ, γ+00 = κ, γ+−0 = ε. (2.4)

Geometrically, κ = 0 if and only if ei0 is tangent to a geodesic congruence in M . The

real part of ρ measures the divergence, the imaginary part of ρ measures the twist,

and |σ | measures the shear of the congruence of geodesics.

We introduce the differential operators

D = ei0
∂
∂xi

, δ= ei+
∂
∂xi

, δ̄= ei−
∂
∂xi

, (2.5)

and if f is any function, the commutators of these operators work out to be

(Dδ−δD)f = [(ρ̄+ε)δ+σδ̄+κD]f ,(
δδ̄− δ̄δ)f = [τ̄ δ̄−τδ+(ρ̄−ρ)D]f . (2.6)
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The components of the Ricci tensor in terms of the spin coefficients are

R00 =Dρ+Dρ̄− δ̄κ−δκ̄+τκ+ τ̄ κ̄−2κκ̄−2σσ̄ −ρ2− ρ̄2,

R++ = −δκ+Dσ −2εσ − τ̄κ−κ2−σρ̄−ρσ,
R0+ = −δ̄σ +δρ+2τσ +κρ−κρ̄,
R0− = −δ̄ε+Dτ+κσ̄ −ρκ̄+ετ−εκ̄+ τ̄ σ̄ −τρ,
R+− = −δ̄κ+Dρ+δτ+ δ̄τ̄+ερ−ερ̄−κκ̄+κτ−ρρ̄−ρ2−2ττ̄,

(2.7)

while the scalar curvature is

1
2
R =−2δκ̄+2Dρ̄+δτ+ δ̄τ̄−2κκ̄+2κ̄ τ̄−2ρ̄2−σσ̄ +ερ−ερ̄−ρρ̄−2ττ̄. (2.8)

In addition, we have the following identities from the symmetries of the curvature

tensor:

Dρ− δ̄κ+κτ−ρ2 =Dρ̄−δκ̄+ κ̄ τ̄− ρ̄2, (2.9)

δσ̄ − δ̄ ρ̄− τ̄ σ̄ − κ̄ ρ̄ = δ̄ε−Dτ−κσ̄ −ετ+εκ̄+τρ, (2.10)

and the Bianchi identities

DE00+ δ̄E0++δE0−+(ρ+ ρ̄)
(
E+−−E00

)
+(2κ̄−τ)E0++(2κ− τ̄)E0−+ σ̄E+++σE−− = 0,

(2.11)

DE0++ δ̄E+++δE+−+κ
(
E+−−E00

)
−(ε+2ρ+ ρ̄)E0+−σE0−+(κ̄−2τ)E++ = 0,

(2.12)

where the energy momentum tensor is defined by Eij = Rij−(1/2)Rgij .

3. Sasakian structures. In 1960 Sasaki introduced a type of metric-contact struc-

ture which can be thought of as the odd-dimensional version of Kähler geometry.

There are many equivalent ways of defining such a structure, and we will adopt the

following way: a Riemannian manifold (M,g) is Sasakian if there exists a unit length

Killing vector field e0 on M so that the Riemannian curvature satisfies the condition

R
(
X,e0

)
Y = g(e0,Y

)
X−g(X,Y)e0, (3.1)

for any vector fields X and Y on M .

We connect this with the spin coefficients by adapting the frame to the Killing vector

in the following proposition.

Proposition 3.1. A unit length vector e0 is a Killing vector on a Riemannian 3-

manifold if and only if it is tangent to a divergencefree, shearfree congruence. In addi-

tion, such a congruence is geodesic.

Proof. Suppose that e0 is a unit Killing vector. That is,

e0iei0 = 1, ∇(ie0j) = 0. (3.2)
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The contraction of the second of (3.2) indicates that e0 is tangent to a divergence-

free congruence. From the definition of the shear, it is clear that the congruence is

shearfree.

Conversely, suppose that the congruence is divergencefree and shearfree. Then,

from the definition of the shear we have

0=∇(ie0j)∇(ie0
j). (3.3)

Since g is positive definite, we can conclude that e0 is a Killing vector field. Finally,

0= ej0∇(je0i) = ej0∇je0i+ej0∇ie0j = ej0∇je0i, (3.4)

since e0 has constant length. Thus the congruence is geodesic.

Theorem 3.2. A Riemannian 3-manifold (M,g) is Sasakian if and only if there exists

a geodesic congruence which

(i) is divergence-free,

(ii) is shear-free,

(iii) has twist equal to one.

Proof. In the spin coefficient notation adapted to the Killing vector field, a Sasakian

3-manifold has κ = σ = 0, ρ =−ρ̄ and, by a choice of frame, ε= 0. By the identity (2.9),

Dρ = 0 and projecting the curvature condition (3.1) onto the orthonormal frame, we

find that it reduces to the single condition ρ2 =−1.

Thus (M,g) is Sasakian if and only if it admits a divergencefree, shearfree geodesic

of constant twist.

In such a case, writing ρ = i, we have that

R00 = 2, R0− =Dτ−τi, R+− = δτ+ δ̄τ̄−2ττ̄, R++ = R0+ = 0, (3.5)

1
2
R = δτ+ δ̄τ̄−2ττ̄+1, (3.6)

and the Bianchi identity (2.11) reduces to

D
(
δτ+ δ̄τ̄−2ττ̄

)= 0. (3.7)

Thus we conclude that DR = 0, that is, the scalar curvature is constant along the

geodesic congruences.

The equations then to be solved are

Dτ = τi, (3.8)

δτ+ δ̄τ̄ = 2ττ̄−1+ 1
2
R, (3.9)

DΩ=−iΩ, Dξa =−iξa, (3.10)

δΩ̄− δ̄Ω = τ̄Ω̄−τΩ−2i, δξ̄a− δ̄ξa = τ̄ξ̄a−τξa. (3.11)
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The solutions to (3.8) and (3.10) are

τ = τ0eir , Ω =Ω0e−ir , ξa = ξa0 e−ir , (3.12)

where a subscript 0 indicates independance from r .

We can choose coordinates (x2,x3) so that

ξa0 = P0
(
δa2 +iδa3

)
, (3.13)

and a frame so that P0 is a real nonzero function of (x2,x3). The remaining equations

(3.9) and (3.11) become

2P0

[
∂τ0

∂z̄
+ ∂τ̄0

∂z

]
+(Ω0τ0−Ω̄0τ̄0

)
i= 2τ0τ̄0−1+ 1

2
R, (3.14)

2P0

[
∂Ω̄0

∂z̄
− ∂Ω0

∂z

]
+2Ω0Ω̄0i= τ̄0Ω̄0−τ0Ω0−2i, (3.15)

2
∂P0

∂z̄
= τ̄0−Ω0i, (3.16)

where we have introduced the complex coordinates z = x2+ix3 and z̄ = x2−ix3 and

∂
∂z
= 1

2

(
∂
∂x2

−i ∂
∂x3

)
,

∂
∂z̄
= 1

2

(
∂
∂x2

+i ∂
∂x3

)
. (3.17)

Now, differentiating (3.16) and using (3.14) and (3.15) yields

8P2
0
∂2 lnP0

∂z∂z̄
= 1+ 1

2
R. (3.18)

A relabelling of the rays r → r ′ = r +f(x2,x3) allows to set the imaginary part of

Ω0 to zero. The final equation to be solved (equation (3.15)) is

P2
0

[
∂
∂z̄

(
Ω0

P0

)
− ∂
∂z

(
Ω0

P0

)]
=−i (3.19)

or, if (x2 =u,x3 = v)

P2
0
∂
∂v

(
Ω0

P0

)
=−1. (3.20)

Thus we have the following local moduli theorem for Sasakian structures.

Theorem 3.3. For any Sasakian structure on R3 there exists local coordinates

(r ,u,v) such that the Killing vector is ∂/∂r and the metric is

ds2 =
[
dr +

∫
1

P2
0

dv ·du
]2

+ 1

2P2
0

[
du2+dv2], (3.21)
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where P0 is an arbitrary nowhere zero function of u and v . The arbitrary function of

integration can be removed by a relabelling of r .

The question of uniqueness is dealt with by the following theorem.

Theorem 3.4. Two Sasakian structures given by

ds2 =
[
dr +

∫
1

P2
0

dv ·du
]2

+ 1

2P2
0

[
du2+dv2],

ds̃2 =
[
dr̃ +

∫
1

P̃2
0

dṽ ·dũ
]2

+ 1

2P̃2
0

[
dũ2+dṽ2], (3.22)

are contact isometric if and only if

P̃2
0

(
dz
dw

)(
dz
dw

)
= P2

0 , (3.23)

where z =u+iv is an analytic function of w = ũ+iṽ .

Proof. Here, two smooth Riemannian manifolds (M1,g1) and (M2,g2) with con-

tact structures given by contact 1-forms α1 and α2, respectively, are contact isometric

if there exists a diffeomorphism φ :M1 →M2 such that φ∗g2 = g1 and φ∗α2 =α1.

Suppose, then, that the two Sasakian structures are contact isometric. Then,

dr +
∫

1

P2
0

dv ·du= dr̃ +
∫

1

P̃2
0

dṽ ·dũ,
1

P2
0

[
du2+dv2]= 1

P̃2
0

[
dũ2+dṽ2]. (3.24)

From these we see that

r = r̃ +f (ũ, ṽ), u=u(ũ, ṽ), v = v(ũ, ṽ). (3.25)

Moreover, we must have z = z(w) where z = u+ iv is an analytic function of w =
ũ+iṽ , and P0 and P̃0 are related by (3.23), as required.

Conversely, suppose (3.23) holds. Then by Theorem 3.3 there must be a relabelling

of the rays r = r̃ +f(w,w̄) such that the transformation

r = r̃ +f (w,w̄), z = z(w), z̄ = z(w) (3.26)

takes the first Sasakian structure to the second.

In addition, we have the following corollary.

Corollary 3.5. Given any smooth function R of u and v , there exists a Sasakian

structure on R3 such that R is the scalar curvature of the associated metric.

Proof. By a theorem of Kazdan and Warner [7], (3.18) has a nonzero solution P0 for

a given smooth function R(u,v). Then, integrating (3.20) gives the required Sasakian

structure.
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4. Sasakian η-Einstein structures. A Sasakian structure is said to be η-Einstein if

there exist constants a and b such that

Rij = agij+bηiηj, (4.1)

where η is the 1-form associated with the unit Killing vector. For such a structure on

a 3-manifold the scalar curvature is constant

R = 3a+b. (4.2)

Indeed, it is not hard to see that a constant scalar curvature Sasakian 3-manifold must

be η-Einstein. Projecting (4.1) onto the Killing vector direction, using (3.5), we find that

a+b = 2, and so R = 2(a+1).
The Tanaka-Webster curvature of a Sasakian structure on a 3-manifold is given by

(see [6])

W = 1
4
(R+2), (4.3)

and so a constant scalar curvature Sasakian 3-manifold has constant Tanaka-Webster

curvature. For a Sasakian η-Einstein manifold this simplifies to

W = 1
2
(a+2). (4.4)

In order to find all such structures we start with (3.18),

4P2
0
∂2 lnP0

∂z∂z̄
=W. (4.5)

To solve this, we need to consider the cases W > 0, W = 0, and W < 0 separately.

4.1. Sasakian structures with constant W > 0. In an appropriate coordinate sys-

tem, the solution to (4.5) is

P0 = 1
2

√
W
(
1+zz̄), (4.6)

while (3.20) yields

Ω0 =− 1√
W

[
v

1+u2
+
(
1+u2+v2

)(
1+u2

)3/2 tan−1
(

v√
1+u2

)]
. (4.7)

In fact, the metric can be much simplified by the transformation (r ,u,v)→ (ρ,θ,φ)
to Euler coordinates given by

r = ρ+φ
W

− 2cosφtan(θ/2)

W
√

1+cos2φtan2(θ/2)
tan−1

 sinφtan(θ/2)√
1+cos2φtan2(θ/2)

,
u= cosφtan

(
θ
2

)
, v = sinφtan

(
θ
2

)
.

(4.8)
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The metric reduces to the form

ds2 = 1
2W

[
dθ2+sin2θdφ2+ 2

W
(dρ+cosθdφ)2

]
, (4.9)

and the contact 1-form becomes

α= 1
W
(dρ+cosθdφ). (4.10)

The special case W = 2 gives the standard Sasakian structure associated with the

round metric on S3 (see [6]), while for W ≠ 2 the metric is not Einstein. Remarkably,

for 0 < W < 2 the metric is homothetic to the Berger sphere [10]. This metric can be

obtained from the round metric on S3 by deforming the metric along the fibres of the

Hopf fibering, which form the shearfree geodesic congruences. This is an Einstein-

Weyl space and the Weyl 1-form is just a constant multiple of the contact 1-form α.

4.2. Sasakian structures with W = 0. In this case, the solution to (4.5) can be set

to

P0 = 1√
2
, (4.11)

while (3.20) yields

Ω0 =−
√

2v. (4.12)

Thus the metric is

ds2 = [dr +2vdu]2+du2+dv2 (4.13)

which has negative scalar curvature R = −2. This is homothetic to the standard

Sasakian structure on the 3-manifold Nil.

4.3. Sasakian structures with constant W < 0. An appropriate choice of coordi-

nate gives the solution to (4.5) as

P0 = 1
2

√−W(1−zz̄), (4.14)

while (3.20) now yields

Ω0 =− 1√−W

[
v

1−u2
+
(
1−u2−v2

)(
1−u2

)3/2 tanh−1
(

v√
1−u2

)]
. (4.15)

The metric can be much simplified by the transformation (r ,u,v) → (ρ,θ,φ) given

by

r = ρ+φ
W

+ 2cosφtanh(θ/2)

W
√

1−cos2φtanh2(θ/2)tanh−1
[

sinφtanh(θ/2)/
√

1−cos2φtanh2(θ/2)
] ,

u= cosφtanh
(
θ
2

)
, v = sinφtanh

(
θ
2

)
.

(4.16)
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The metric reduces to the form

ds2 =− 1
2W

[
dθ2+sinh2θdφ2− 2

W
(dρ+coshθdφ)2

]
, (4.17)

and the contact 1-form becomes

α= 1
W
(dρ+coshθdφ). (4.18)

For W =−2 this is the locally homogeneous metric on S̃L2(R).

5. Conformally flat Sasakian structures. In this section, we prove the following

theorem.

Theorem 5.1. A conformally flat Sasakian 3-manifold is covered by S3 with the

standard structure.

Proof. A metric is conformally flat in three dimensions if and only if the Weyl-

Schouten tensor vanishes

∇[iCj]k = 0, (5.1)

where

Cij = Rij− 1
4
Rgij. (5.2)

For a Sasakian structure the nonzero components of Cij are

C00 =−1
2

(
δτ+ δ̄τ̄−2ττ̄−3

)
, C+− = 1

2

(
δτ+ δ̄τ̄−2ττ̄−1

)
. (5.3)

Projecting (5.1) onto the frame adapted to the Sasakian structure, we find that

δC00 = 0, C00−C+− = 0, DC+−+2i
(
C00−C+−

)= 0, δC+− = 0. (5.4)

From these we conclude that C00 = C+− = 1/2, R = 6 and finally

Rij = 1
3
Rgij. (5.5)

Thus, the metric is Einstein. Geiges [4] has shown that if the manifold is closed then

it is diffeomorphic to S3/Γ . If it is open it has been shown [6] that it is locally covered

by S3.

6. Remarks. Consider a closed 3-manifold M with a regular Sasakian structure,

that is, the integral curves of the Killing vector e0 are generated by a free S1 action on

M . Then M fibres over a Riemann surface Σ. Since e0 is Killing, the metric on Σ is just

the induced metric fromM , while the contact form θ0 is a connection in the principal

bundleM → Σ. The curvature of the Σ is the Tanaka-Webster curvatureW , so the Euler

characteristic of Σ is

χ = 1
2π

∫
Σ
W dA. (6.1)
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Table 6.1

Euler Characteristic x > 0 x = 0 x < 0

Manifold S3 Nil S̃L2(R)

Table 6.2. Sasakian η-Einstein 3-manifolds.

R > 0 R = 0 R < 0

W > 0 W > 1/2 W = 1/2 0<W < 1/2
W = 0 None None All

W < 0 None None All

On the other hand, the Euler number of the bundle can be defined in terms of the

curvature of the connection θ0

e=
∫
Σ
F =

∫
Σ
dθ0 = λ

∫
Σ
θ1∧θ2 ≠ 0. (6.2)

Amongst the eight locally homogenous geometries, the ones that can admit Sasakian

structures are Seifert fibred spaces with e≠ 0, which turn out to be as in Table 6.1.

Theorems 3.3 and 3.4 essentially indicate that, locally, all Sasakian structures come

from a line bundle over a Riemann surface (a Kaluza-Klein construction) and that the

moduli space of such structures corresponds to the Riemann structure on the surface.

When W is constant we have found the complete set of Sasakian structures which

includes the three locally homogenous geometries as listed in Table 6.1. In addition,

we have found many examples of Sasakian structures with negative scalar curvature

(see Table 6.2).

Finally, the function P0 is related to the recently discovered [5] Sasakian potential

K by

1

P2
0

= 4
∂K
∂z∂z̄

, (6.3)

although we have used different coordinate conditions for the description of the con-

tact 1-form.
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