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We show a simple method to discretize Pardoux-Peng’s nonlinear backward stochastic
differential equation. This discretization scheme also gives a numerical method to solve a
class of semi-linear PDEs.
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1. Introduction. Given a probability space (Q,F,P). Let W; be a standard Brownian
motion with (F;) C F as its natural filtration. Given any positive constant T < co and
arandom variable & € Fr. A backward stochastic differential equation is the equation
[9]

T T
Y = E—L f(YS,ZS,S)dS—L Z;dWs, (1.1)

where (Y¢, Z;) are unknown predictable processes. We will assume that f is a Lipschitz
function with respect to its arguments throughout this paper. Since this equation has
its important applications into control theory and mathematical finance, many math-
ematicians are not satisfied merely by descriptive existence theorems. They are also
interested in constructing the numerical solutions. In order to make real construction,
Antonelli [1] solved in short time the coupled forward-backward stochastic differen-
tial equations, in which it is assumed that & = g(V) where {V;}; is the solution to a
forward stochastic differential equation

t t
Vt:x—J b(VS,YS,ZS)ds—J o (Vs, Ys, Zs) AWs. (1.2)
0 0

Later, Hu and Peng [4] and Yong [11] proved the long time existence of the coupled
forward-backward stochastic differential equations. Moreover, a four step scheme was
suggested by Ma et al. in [7] to solve (1.1) and (1.2) jointly. However, their scheme is
related to solving a high dimensional semi-linear partial differential system, which is
nontrivial and numerically difficult as noticed by Zhang [12]. Bally [2] has a random
time discretization scheme, which requires to approximate integrals of dimension as
high as the partition size. Chevance [3] has a scheme under higher regularity condition
(C*). Ma et al. have a quite general numerical method which converge weakly to the
true solution [6].
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Zhang [12] studied a numerical scheme to solve a coupled forward-backward sto-
chastic differential equations, which converge strongly to the real solution. His ap-
proach is still quite different than ours. The main difference is that Zhang’s finite
difference equation is a little less natural than ours (3.4), but certainly his condition
is more general.

The purpose of this paper is to develop the idea appeared in [7] and to give a
simpler numerical scheme to solve (1.1) completely. Our method also gives a numerical
probability scheme to solve a semi-linear partial differential equation related to a
backward stochastic differential equation [10]

0 1 ,
ﬂu: EAXu—h(u,ux,t), vi>B (1.3)

u(B,x) = p(x), (1.4)

where we assume that h is Lipschitz with respect to its arguments, ¢ € Hy., and
¢P(x) = 0(|x| — o). It is well known [5, page 306] that (1.3) has a unique solution u €
H,.  and it is easy to see (e.g., using Feyman-Kac formula) that u(x,t) — 0 (|x| — o).

For simplifying our notation, we only consider the one-dimensional case. However,
it is easy to see that our argument is still valid for multidimensional case as well.

2. A PDE approach. It is well known [8] that the solution to (1.1) is stable when we
perturb the given value . Given & € o (W, for all s < T) and € > 0, we can always find
an integer N and a compact supported smooth function g(xi,...,x) with bounded
partial derivatives up to the third order such that

ElgWiy,.... Wy, ) —E|° <€, (2.1)

where 0 < t; <--- <ty =T.Wewill take g(W;,,..., W, ) as the given value &, the error
caused by this replacement of the given value is controlled by Ma et al. [8, Chapter 1,
Theorem 4.4].

Set now h(-,-,t) = f(-,-,T—t) in (1.3). Taking ¢(x) = g(»¥1,...,Ym-1,Xx) with (1,
...,¥m-1) fixed as parameters, we know from the assumptions imposed on ¢ that (1.3)
has its solution (see the introduction) on the time interval (0, T — ty_1) and it is de-
noted as u(t,y1,..., Ym-1,Xx).Itis easy to check that u(T —tp-1,¥1,..., YM-2,X,X),as a
function of x, is stillin Hy; o and u(T —ty—1, V1,..., YMm-2,X,X) — 0 (|x| — 0). Next, we
use ¢p(x) =u(T —ty-1,¥1,.--,YMm-2,X,x) as the initial value to solve (1.3) on the time
interval (T —tpy -1, T —ty-2) and denote the solution as u(t, y1,...,Ym-2,X). The term
u(T —ty-1,Y1,---,¥YMm-3,X,x) as a function of x is still in Ho,« and u(T —ty—1,V1,-..,
Ym-2,X,x) — 0 (|x] — 0). Iteratedly, we get the final equation

0 1
SpU = pdu— e T=t), T-t<t<T, 2.2)

u(T—ty,x) =u(T-1t,x,x).
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Denote

Yt:u(Tft,Wt],...,Wthl,Wt) Viy_1 <t <T;
Yt:M(T*t,th,...,WtMiz,Wt) Viy_o <t <ty_1;

Yt:u(T*t,Wt) Vit <t,
(2.3)
Zt=u;(T—t,th,...,Wthl,Wt) Vi1 =t=<T;

Z = u;(T—t,th,...,Wthz,Wt) Vin o <t <itn_1;

Zt=u;(T—t,Wt) Vit <t.

Then it is easy to see that through Ito’s formula (see [13] for details) (Y;, Z;) satisfy
(1.1).

3. Discretization. In this section, we consider the problem of discretization. From
the above discussion, it is sufficient to discuss the case where & = g(Wr). The more
general case that & = g(Wy,,..., Wr) follows from the fact that we can patch the pieces
corresponding to different intervals (t;,t;;1) together as in Section 2. Since there is
no closed form solution to (1.3), our first goal is to solve it numerically by a discrete
probabilistic approach.

Denote by P; the standard semigroup of Gaussian operators, that is,

_ 2
Ptg(x)—JJ%exp{—(x Zty) }g(y)dy- (3.1)

Given an integer N > 0. We first consider the following backward equation on discrete
time {kT/N}k-o1,.N- Set X}N) = g(Wr) and define X,((I}IZN inductively by the following
equation:

Xir/n (Wiryn) = PrynXaery /v (Wiryn)

J(kaN (3.2)

0
f(XkT/N (Wkr/N), aPT/NX(kH)T/N(WkT/N),S) ds,

KT /N
where we used the fact that X((,](\QDT/N is a function and still denoted as Xf,IQQDT/N of
Wk+1)1/N, SO PtX((,ﬁ)DT/N is defined as the result of P; operating on X<(1]<V+)1)T/N- The
same type of notation will be carried out through this paper. Since f is Lipschitz, by
implicit function theorem, when N is large enough, (3.2) has a unique solution X,(f}];N
as a function of Wir,n.

Next, define

N 0 N
Ql(cT)/N = &PT/NX((k-:I)T/N(WkT/N)' (3.3)
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Finally, we consider the forward equation

(N N) 1 N)
X(kll)T/N Y;cT/N Nf( l(<T/N’QkT/N' _) +QkT/N(W(k+1)T/N—WkT/N) (3.4)

with the initial condition that Y = x|,
Consider several useful facts. We may also get XN through the following equation:

(k+1)T/N (k+1)T/N

X<N) X J f X(N) JE (Z(N) W, , S dsfj (Z(N)dW
kT/N — (k+1 T/N KTIN ( kT/N [ s | kT/N] ) KT/N s s
(3.5)

with the initial condition X(N) = g(Wr). In fact, since (0/0s)Pr-s = —(1/2)APr_g, we
easily have, from Ito’s formula, that

a PT sg(Ws)dWs (3-6)

T
Pring (Win=1)T/N) =9(WT)—J 3
(N-1)T/N 0X

Define Qs = (0/0x)Pr_sg(W;) (for all s > (N—1)T/N) and take conditional expecta-
tion with respect to W(y_1)r,~ on both sides of (3.5),

Pring(Win-1)T/N)

T
0
= X(n- +J (X _ ,E[fp_ W) | Win- ],s)ds
(N-1)T/N (N_l)T/Nf w-n1NE| S Pr s9(Ws) [Win-1yrin (3.7)
T
:X(N—I)T/N+J S X018y Pringx, ) Win-ny1/n) ds,
(N-DT/N

where we used the exchangeability between P;_; and 0/0x. Then we get the solution
to (3.5) for k = N — 1. Repeating this procedure, we get the solution to (3.5) for all k
by mathematical induction.

It is also easy to check that

N) 0 N)
QkT/N = aPT/NX(kH)T/N(Wk/N)

(k+1)T/N a N)
=NE LT/N EPWH)T/N—sX(kH)T/N(Ws)dS\Wk/N (3.8)

(k+1)T/N
:NE|:J gN)dS|Wk/N:|.
kT/N

We will show in Section 5 the rate of convergence of XV) towards Y and in Section
6 the rate of convergence of Q™ towards Z. Moreover, we will show in Section 6 that
Z is Holder continuous. Thus we may compare two forward stochastic differential
equations, (3.4) and (3.5), and easily see that YN — X — 0. Hence Y™ — Y and
Q(N) -7
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4. Stability of difference equation. Let X;r,y and XiT/N be two solutions to (3.5),
that is,

(k+1)T/N (k+1)T/N
XkT/N :X(k+1)T/N_J f(XkT/N,E[Qs\WkT/N],S)dS—J QsdWs,
kT/N kT/N
4.1)
y ) (k+DT/N y (k+DT/N _
XkT/N =X(k+1)T/N*J S (Xer)n, E[Qs|Wirn],8) ds — Qs dWs,
KT/N KT/N

with the initial condition that X7 = g(Wr) and X7 = §(Wyr). Then we have the following
stability result, which is the discretized version of Pardoux-Peng’s remarkable result

[9].

THEOREM 4.1. Suppose that | f(x,y,t)— f(X,9,8)| <L(Ix—X|+|y—y|+I|t—s]).
Then there is a constant C such that wheni+k <N,

(G+DTIN . } }
E[I (Qs- Qs)zds} +E(Xirn — Xirn)© < CE{(X(j+k)T/N _X(j+k)T/N)2}-

JTIN
4.2)
PROOF. We have
(XGrvrn —XGenrn) — (Xjrn = XjmN)
(G+DTIN : )
= LT/N {f(XjT/N:E[QS|WjT/N],5) _f(XJ'T/NyE[QS|WjT/N]a5)} s 43

(+DTIN )
+J (Qs —Oy) dWs.

JTIN
The two parts on the right-hand side are orthogonal,

5 - 2
E[|(XGnmn = Xgorw) = (X —Xrw) | ]

(j+1)T/N . -
ZE[ J {f (XN, E[QsIWirN ], s) = f (Xjrn, E[QsIWjT N ], 5) F ds
JT/N
|
|

1
M1 GADTIN i

||| (Q:— Q) AW,
| | JJT/N

(G+DT/N }
2E|: J (QS_QS)dWS

jT/IN

(+DT/N )
—E|:J' |Q5—Q5|2d5:|.
JTIN
(4.4)
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Since
(XGenrn —XGenmin)E = Xgrn = Xirn)°
= [(X¢+vrn —XGsnrn) — (Xjm/Nn _XjT/N)]Z
+2(Xjrn = Xjr ) [(X e v = XGanrn) = (Xjrn = Xjr/n) |
= [(Xgevrn = Kgenrin) = (Xrn = Xjrw) 1

(j+1)T/N 4.5)

+2(Xjr v —Xj1N) LT/N {f (Xjr/n, E[Qs | WirN],S)
— f(Xjr/n,E[Qs | WiT)n],8) Hds
i (G+DTIN i
+2(Xjm/Nv = Xj1/N) LT/N (Qs—Qy) dws,

and the expectation of the last term vanishes, we get
5 2
E[ (X = Xjrn)*
5 2 5 5 2
= E[(Xgorn —Xgevrw) | - E{l(XGevrv = Xenrn) = (Xjrn = Xirw) 1P}

) (j+DT/N
_ ZE{ (Xjr/N = XjTIN) JT/N {f (X, E[Qs | Wir N ], 5)
J

—f (Xjr/n, E[Qs]| WjT/N],S)}dS}.

(4.6)
By (4.4) and (4.6),
E(Xjrn —Xjn)°
(+DT/N
S 2 = N\ 2
<E(X¢+v1/n = X(j+1)T/N) —E[J_T/N (Qs—Qs) dS}
J
) 4.7)
(G+DTIN )
+2 - E{(Xjr/n = Xjr/n) [f (Xj1/80 E[Qs | Wit N ], )
J

— f(Xjr/n,E[Qs | Wi/, 8) ]} ds.

However,
GH+DT/IN X i .
J‘T/N E{(Xjr/n=Xjrn) Lf (Xjr/n, E[Qs [ Wiryn ], ) = f (Xjr N, E[Qs | Wirn ], ) 1} ds
J
(G+DT/N o
<L E[ (Xjrn =X
JTIN
G+DT/N i i
+L N E[| Xjr/n —Xjrn | |E[Qs | Wirn] — E[Qs [Wirn] | ] ds
J

LT ~ 2
< WE“XJ'T/N—XJ'T/N\ ]

(+1T/N i i
+L - E[|Xjrn = Xjrn | |E[Qs |Wjrn] = E[Qs | WjT/n]] ] ds.
J
(4.8)
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Therefore

E(Xjrn—Xjrv)°

I(j+1)T/N

- ~ LT -
=< E(X(j+1)T/N_X(j+1)T/N)2_E[ (Q:-Qs)° dS] +2WE[|XJ'T/N = Xj/N| 2]

JTIN

(j+DT/N ) 3
+2L J,T/N E{|Xjr)n = Xjrn | |E[Qs | Wjr/n] = E[Qs [Wjr/n] [} ds.
J
(4.9)

Fora > 0,b > 0,and A > Owe have ab = (Aa) (b/A) < (1/2)[(Aa)?+ (b/A)?]. Therefore
(4.9) becomes

. 2
E(Xj1/n — XjT/N)

J(J+1)T/N

SE(X(j+1)T/N_X(j+1)T/N)2_E[ (QS—QS)st]

JTIN
' 4.10)
LT 5 21y, [UFDTIN 3 ) (
+2WE[|XJ'T/N_XJT/N| :|+)\ L TN E[|XjT/N_XjT/N| :|d$
L (U+DT/N _
+FJ E[1Q:-Q.|*]ds.

JTIN

Taking A = /2L, then

X o1 1 [ (UDTIN -
E[(XjT/N_XjT/N) ]+2E[J- (Qs-Qs) df}
JT/N

4.11)
8 21 K . 2
<E[(Xgonrn—Xgoorw) ] + NE( | X=X %)),
where k = 2LT +2L%T. When N is large, k/N < 1, hence
-1
. 2 K o 2
E(Xjr/n—XjT/N)" < (1—ﬁ) E(X(j+nm/n—X(+01/N) - (4.12)
Therefore
5 2 K\ ¥ 5 2
E(Xjr/n—XjTN)" < (1_N> E(X(j+ro1T/N = X(j+l0T/N)
N (4.13)
K . 2
< (1_N> E(X(j+r1/N = X(j+l)TIN) "
Since (1 -k /N)™N — e~%, we get the conclusion. O

5. Convergence of X™ to Y. We are going to estimate the error between X™) and
Y in this section.
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THEOREM 5.1. There is a constant C such that

SupE'/? [ | X/ = Yirn | 2} <CN~'2 (5.1)
13

PROOF. We introduce for each n < N a discrete time process {le’f)%)}i:o,],_,_,;\; as

follows: define Xi(;‘)%) = Y;r/y (for all i = n) and for each i < n -1 we define the
process repeatedly by

(i+1)T/N 5
(n,N) _ y(n,N) P ) |
XiT/N = X(i+1)T/N_J, f(XiT/N '3 PT/NX(i+l)T/N(WlT/N),S ds
iT/N X (5 2)
(+DT/N 3 . '
- JiT/N ﬂp(”m/Nﬂxuh)nN(Ws) aws.

It is easy to see that Xf?’f}(j) = Yir/n and Xi(?/’%) = Xi(?/)zv- The difference X%\
X(n+1,N

nT/N —
nT/N ' is given by
XN = XN
(n+1)T/N ) (n+1)T
= JnT/N {f (Xr(Ly;zl\]'N), axPT/Nu(T— T' ) (WnT/N),S
—f(u(T—s,Ws),u;(T—s,ws),s)}ds
(n+DT/N (5 . ,
+LT/N {BXP(MUT/NSX(n;l)T,N(WS) —UX(T—S,WS)}dWS 5.3)

(n+1)T/N , (n+1)T
[ gt e (7 T Y .0)
nT/N N

—f(u(T—s,WS),u;(T—s,WS),S)}ds

(n+1)T/N , (11+1)T ,
+J {Pmﬂm_su,{(r— —,Ws) (T —s,Wy) Laws,
nT/N N

that is,

(n+1)T/N , (Tl"r 1)T ,
(KR -XEA) - | {P(mlmmux (= T W)~ - W) faw

(n+1)T/N , (7’l+ l)T
= J {f (Xy(:ﬁ;l\r’N),PT/Nux (T -, ) (WnT/N),S)
nT/N N

—f(u(T—s,Ws),u;(r—s,ws),s)}ds.

(5.4)
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Since the two terms on the left-hand side of (5.4) are orthogonal, we get

(n,N (n+1,N) |2
E|XnT/N XnT/N

(n+1)T/N (n+ l)T
SE[ J {f(X;?7#N>,PT/Nux<T—7,'>(WnT/N),S>
nT/N N

|

_f(u(T_SaWS)’uX(T_SlWS)aS)}dS

1 (DTN (LN (n+1)T
< —FE IP T- A7 2" W ’ )
N |:JnT/N ‘f( nT/N T/Nux( N )( ntiN). S
2
—f(u(T—S,WS),MX(T—S,WS),S) d5j|
(n+1)T/N (5.5)
< %E[J | XN —u (T s, WS){st]
nT/N
C (n+1)T/N (Tl+1)T 2
+—F J PT/NMX(T——)(WnT/N)—MX(T—S,WS) ds
N nT/N N
C (n+1)T/N ( LN) (N) 2
S [ -
(n+1)T/N
+§E[J | XN —u T—S,W3)|2ds}
nT/N
C (n+1)T/N (n+ ].)T 2
+—F J PT/NMX<T—7>(WWT/N)—MX(T—S,WS) ds y
N nT/N N

where we used Lipschitz condition on f. We use C to denote an arbitrary constant,
whose value may change according to the context but not depending on the given
variables.

We estimate the last two terms separately

1 n+1)T/N nN) 2
NE[LT/N | XN —u(T —s,Ws) | ds}

- ;E[I;:;;)T/N ’u(T—%T,WnT/N> —u(T—s,Ws) st}

< EE[ :;:;T/N Tf%T Ws) —u(T—s,Ws) st}
+§E[ (::T/N T- %T,WnT/N>fu(Tf%T,WS> st}
< fIE[ [ 2ds]
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C (n+1)T/N nT nT 2

*NEUM/N u (T*W Warix ) =u(T- 5w ) | ds
(n+])T/N

-5t ]

N nT/N

C J(Ter)T/N ( nT ) JS ( nT ) 2
+—E A T——— W, ) dt+ W NT———,W¢)dW; | ds

N [ nT/N nT/N Nt nTIN N !

C (n+1)T/N 2 C (n+1)T/N nT 2
<—E —| ds|+—E J J Au(T——,W) ds

N [ nT/N N nT/N nTIN Nt

C (n+1)T/N ( nT ) 2
+—F WNT ———, W |dW;| ds

N [ nT/N nT/N Ux N! t

C (n+1)T/N 2 C (n+1)T/N nT 2

=—F —| ds|+—E J J Au(T——,W) ds

N [ nT/N N nT/N nTIN Nt

C (n+1)T/N ‘ ( nT 2

- u\T- —,W) dtds

N [ nT/N nT/N * Nt
=0(N

(5.6)

In the deduction (5.2), (5.3), (5.4), (5.5), and (5.6), we used repeatedly the fact that
u € Hy, « so that u and its derivatives up to the second order are bounded.
For the last term of (5.5), we have

1 (n+1)T/N (n+1)T , 2
—E J ‘PT/NM (T—*)(WnT/N)—uX(T—S,WS) ds
N nT/N N

(O (n+1)T

< —F P AT ———— ) (W,
N [LT/N T/Nux( N >( nTN)
) (5.7)
! (T* W,an"/]\d dS:|

(n+1)T/N 2
Ty J u;<T7M,WnT/N)7u;(T75,Ws) ds |.
N nT/N N

Since uY, is bounded, it is easy to see from the property of Gaussian kernel that
|[Pryyus (T—(m+1)T/N,x) —u' (T - (n+ 1)T/N,x)|? converge to 0 uniformly in the

order of 1/N when N — . Therefore
2
ds}

1
—E
N |:
(n+1)T/N +1)T
=O(N73)+£E J ’M;(T—M,WnT/N)—M;(T—S,WS)
N nTIN N

, (n+1)T ,
PT/NMX<T* T) (WnT/N) *MX(T*S,WS)

J(n+l)T/N

nT/N

2
ds}
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J(VH—])T/N

so(N3)+CE[ |WnT/NWS{2dS]

nT/N

C (n+1)T/N nT s

+— ds
N Jur/N N

(5.8

where we used the fact that u) is Holder continuous in ¢ with exponential greater
than 1/2 and Lipschitz in x (see [5, page 46] for the definition of H». ).
Finally, by (5.5), (5.6), and (5.8), we get

EV2[| X0 = Xy [ 2] = 0 (N32). (5.9)
Applying Theorem 4.1, we deduce that

sup EV2[ | XN — X0 2] = 0 (N32). (5.10)
1

Itis easy to check that the last term has a bound which is independent on 7. Summing
up the above inequalities over n, we deduce that

sup EV2[ | X3y = Yirw |?] = Y sup EV2[ | XN - XN 1P| = 0(N"12). (5.11)
1 n 13
O

6. Convergence of Q™) to Z. We can also prove the convergence of Q™) to Z as
follows: according to the discussion in Section 2, we may assume that Z; = u, (T —
t,W:), where u € H»,, for simplicity. Since u, is Holder continuous with exponent
greater than 1/2 in t and with bounded derivative in x, it is easy to see that Z; is
Holder continuous with exponent greater than 1/2 in L, (Q).

For any pair0 < j/N <k/N<T,

(i+1)T/N >
J E|QWN) —Z| ds

j<i<k? TN

kT/N 2
=E[(J (Q§N)—Zs)dWs) }
JTIN

N

N) ) |2
< 2E|Yir/n = Yjrin = Xpr)n + Xjrin |

(i+1)T/N ) )
+2E Z ,[ (f(Ys5,Zs,5) _f(XiT/N,QiT/N,S))dS

Jj=<i<k iT/N
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N
< 2E|Yir/n = Yirn = Xoyn + Xy |°

Z(k— )T (i+1)T/N
+TJE[ S fy F0aZas) —F (X Qi) ds
J=<i<k

(N
<2E|Yirn=YiT/Nn - XkT/N XT/N\

C k_ T (i+1)T/N
L k=T E{ s J (Y5 - X))  ds
j<i<k

N iT/N
C(k—J)T J-(i+1)T/N
+———F .
N |:J<;<k iT/N (2 QlT/N)
(6.1)
Therefore
(i+1)T/N : (i+1)T/N
2 Ck—j)T 2
J. ElQM - Z| d5—4NJ J E|Qiy)x—Zs| ds
j=i<k? TN JLiekITIN
<2E|Yirn = Yir/N *Xl(cj%[;N +X(T/N | 62)
Clk— )T (i+1)T/N N 2 ’
+TE LT/N (YS_XiT/N) ds
Jj=<i<k
=0O(N71/?).
However,

(i+1)T/N o )
J E| Qir/n —Zs |“ds
1

Jj<i<k (T/N
(i+1)T/N ™) (i+1)T/N 2
= J E|Qi7)n—E[Zs | Wir/n] |Pds+ > J E|Zs—E[Zs|Wirn]|“ds
j<i<k iT/N Jj=i<k
(i+1)T >
J E|E [QWN = Z [Wirn]|“ds
jiek JITIN
(i+1)T/N )
E|Zs—E[Zs|Wirn]|"ds
J<l<k iT/N
(i+1)T/N (i+1)T/N 5
J E|lQWN —Z,|%ds+2 > J E|Zs—Zirn|“ds
]<l<k iTIN Jj=i<k iTIN
(i+1)T/N )
J E|ZirNn—E[Zs|Wir)n]|" ds
J<l<k iT/N
(i+1)T > -
E|Q§N>—ZS| ds+0(N~1/?),
iT/N

J<l<k
(6.3)
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where we used the fact that Q%}N = E[Q§N) |[Wir,n] when s is greater than iT/N and
the Holder L,-continuity of Z.
Thus when (k—j)T/N is less than 1/2C, we deduce from (6.2) and (6.3) that

(i+1)T/N ) ,
J E|Qit)n—Zs|"ds =O0(N"Y?). (6.4)

j<i<k?iTIN

If we decompose [0,T] into sub-intervals with length less than 1/2C, quoting (6.4)
and summing up, we get the following theorem.

THEOREM 6.1. There is a constant C such that

(i+1)T/N N) 5
J E|Qiy/y—Zs|"ds < CN2, (6.5)

(i;0=iT/N=T)? {T/N
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