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1. Introduction. Given a probability space (Ω,F,P). LetWt be a standard Brownian

motion with (Ft) ⊂ F as its natural filtration. Given any positive constant T <∞ and

a random variable ξ ∈ FT . A backward stochastic differential equation is the equation

[9]

Yt = ξ−
∫ T
t
f
(
Ys,Zs,s

)
ds−

∫ T
t
Zs dWs, (1.1)

where (Yt,Zt) are unknown predictable processes. We will assume that f is a Lipschitz

function with respect to its arguments throughout this paper. Since this equation has

its important applications into control theory and mathematical finance, many math-

ematicians are not satisfied merely by descriptive existence theorems. They are also

interested in constructing the numerical solutions. In order to make real construction,

Antonelli [1] solved in short time the coupled forward-backward stochastic differen-

tial equations, in which it is assumed that ξ = g(VT ) where {Vt}t is the solution to a

forward stochastic differential equation

Vt = x−
∫ t

0
b
(
Vs,Ys,Zs

)
ds−

∫ t
0
σ
(
Vs,Ys,Zs

)
dWs. (1.2)

Later, Hu and Peng [4] and Yong [11] proved the long time existence of the coupled

forward-backward stochastic differential equations. Moreover, a four step scheme was

suggested by Ma et al. in [7] to solve (1.1) and (1.2) jointly. However, their scheme is

related to solving a high dimensional semi-linear partial differential system, which is

nontrivial and numerically difficult as noticed by Zhang [12]. Bally [2] has a random

time discretization scheme, which requires to approximate integrals of dimension as

high as the partition size. Chevance [3] has a scheme under higher regularity condition

(C4). Ma et al. have a quite general numerical method which converge weakly to the

true solution [6].
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Zhang [12] studied a numerical scheme to solve a coupled forward-backward sto-

chastic differential equations, which converge strongly to the real solution. His ap-

proach is still quite different than ours. The main difference is that Zhang’s finite

difference equation is a little less natural than ours (3.4), but certainly his condition

is more general.

The purpose of this paper is to develop the idea appeared in [7] and to give a

simpler numerical scheme to solve (1.1) completely. Our method also gives a numerical

probability scheme to solve a semi-linear partial differential equation related to a

backward stochastic differential equation [10]

∂
∂t
u= 1

2
∆xu−h

(
u,u′x,t

)
, ∀t > β (1.3)

u(β,x)=φ(x), (1.4)

where we assume that h is Lipschitz with respect to its arguments, φ ∈H2+α and

φ(x)→ 0 (|x| →∞). It is well known [5, page 306] that (1.3) has a unique solution u∈
H2+α and it is easy to see (e.g., using Feyman-Kac formula) that u(x,t)→ 0 (|x| → ∞).

For simplifying our notation, we only consider the one-dimensional case. However,

it is easy to see that our argument is still valid for multidimensional case as well.

2. A PDE approach. It is well known [8] that the solution to (1.1) is stable when we

perturb the given value ξ. Given ξ ∈ σ(Ws, for all s ≤ T) and ε > 0, we can always find

an integer N and a compact supported smooth function g(x1, . . . ,xM) with bounded

partial derivatives up to the third order such that

E
∣∣g(Wt1 , . . . ,WtM )−ξ∣∣2 < ε, (2.1)

where 0< t1 < ···< tM = T . We will take g(Wt1 , . . . ,WtM ) as the given value ξ, the error

caused by this replacement of the given value is controlled by Ma et al. [8, Chapter 1,

Theorem 4.4].

Set now h(·,·, t) = f(·,·,T −t) in (1.3). Taking φ(x) = g(y1, . . . ,yM−1,x) with (y1,
. . . ,yM−1) fixed as parameters, we know from the assumptions imposed onφ that (1.3)

has its solution (see the introduction) on the time interval (0,T − tM−1) and it is de-

noted asu(t,y1, . . . ,yM−1,x). It is easy to check thatu(T−tM−1,y1, . . . ,yM−2,x,x), as a

function of x, is still inH2+α andu(T−tM−1,y1, . . . ,yM−2,x,x)→ 0 (|x| → 0). Next, we

use φ(x)=u(T−tM−1,y1, . . . ,yM−2,x,x) as the initial value to solve (1.3) on the time

interval (T −tM−1,T −tM−2) and denote the solution as u(t,y1, . . . ,yM−2,x). The term

u(T−tM−1,y1, . . . ,yM−3,x,x) as a function of x is still in H2+α and u(T−tM−1,y1, . . . ,
yM−2,x,x)→ 0 (|x| → 0). Iteratedly, we get the final equation

∂
∂t
u= 1

2
∆xu−f

(
u,ux,T −t

)
, T −t1 < t < T,

u
(
T −t1,x

)=u(T −t1,x,x).
(2.2)
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Denote

Yt =u
(
T −t,Wt1 , . . . ,WtM−1 ,Wt

) ∀tM−1 ≤ t ≤ T ;

Yt =u
(
T −t,Wt1 , . . . ,WtM−2 ,Wt

) ∀tM−2 ≤ t ≤ tM−1;

...

Yt =u
(
T −t,Wt

) ∀t ≤ t1,
Zt =u′x

(
T −t,Wt1 , . . . ,WtM−1 ,Wt

) ∀tN−1 ≤ t ≤ T ;

Zt =u′x
(
T −t,Wt1 , . . . ,WtM−2 ,Wt

) ∀tN−2 ≤ t ≤ tN−1;

...

Zt =u′x
(
T −t,Wt

) ∀t ≤ t1.

(2.3)

Then it is easy to see that through Ito’s formula (see [13] for details) (Yt,Zt) satisfy

(1.1).

3. Discretization. In this section, we consider the problem of discretization. From

the above discussion, it is sufficient to discuss the case where ξ = g(WT). The more

general case that ξ = g(Wt1 , . . . ,WT ) follows from the fact that we can patch the pieces

corresponding to different intervals (ti,ti+1) together as in Section 2. Since there is

no closed form solution to (1.3), our first goal is to solve it numerically by a discrete

probabilistic approach.

Denote by Pt the standard semigroup of Gaussian operators, that is,

Ptg(x)=
∫

1√
2πt

exp

{
− (x−y)

2

2t

}
g(y)dy. (3.1)

Given an integer N > 0. We first consider the following backward equation on discrete

time {kT/N}k=0,1,...,N . Set X(N)T = g(WT) and define X(N)kT/N inductively by the following

equation:

XkT/N
(
WkT/N

)= PT/NX(k+1)T/N
(
WkT/N

)

−
∫ (k+1)T/N

kT/N
f
(
XkT/N

(
WkT/N

)
,
∂
∂x
PT/NX(k+1)T/N

(
WkT/N

)
,s
)
ds,

(3.2)

where we used the fact that X(N)(k+1)T/N is a function and still denoted as X(N)(k+1)T/N of

W(k+1)T/N, so PtX
(N)
(k+1)T/N is defined as the result of Pt operating on X(N)(k+1)T/N . The

same type of notation will be carried out through this paper. Since f is Lipschitz, by

implicit function theorem, when N is large enough, (3.2) has a unique solution X(N)kT/N
as a function of WkT/N .

Next, define

Q(N)
kT/N =

∂
∂x
PT/NX

(N)
(k+1)T/N

(
WkT/N

)
. (3.3)



106 Y. ZHANG AND W. ZHENG

Finally, we consider the forward equation

Y(N)(k+1)T/N−Y(N)kT/N =
1
N
f
(
Y(N)kT/N,Q

(N)
kT/N,

kT
N

)
+Q(N)

kT/N
(
W(k+1)T/N−WkT/N

)
(3.4)

with the initial condition that Y(N)0 =X(N)0 .

Consider several useful facts. We may also get X(N) through the following equation:

X(N)kT/N =X(N)(k+1)T/N−
∫ (k+1)T/N

kT/N
f
(
X(N)kT/N,E

[
Q(N)
s |WkT/N

]
,s
)
ds−

∫ (k+1)T/N

kT/N
Q(N)
s dWs

(3.5)

with the initial condition X(N)T = g(WT). In fact, since (∂/∂s)PT−s = −(1/2)∆PT−s , we

easily have, from Ito’s formula, that

PT/Ng
(
W(N−1)T/N

)= g(WT )−
∫ T
(N−1)T/N

∂
∂x
PT−sg

(
Ws
)
dWs. (3.6)

Define Qs = (∂/∂x)PT−sg(Ws) (for all s ≥ (N−1)T/N) and take conditional expecta-

tion with respect to W(N−1)T/N on both sides of (3.5),

PT/Ng
(
W(N−1)T/N

)

=X(N−1)T/N+
∫ T
(N−1)T/N

f
(
X(N−1)T/N,E

[
∂
∂x
PT−sg

(
Ws
)∣∣W(N−1)T/N

]
,s
)
ds

=X(N−1)T/N+
∫ T
(N−1)T/N

f
(
X(N−1)T/N,PT/Ngx,s

)(
W(N−1)T/N

)
ds,

(3.7)

where we used the exchangeability between Pt−s and ∂/∂x. Then we get the solution

to (3.5) for k = N−1. Repeating this procedure, we get the solution to (3.5) for all k
by mathematical induction.

It is also easy to check that

Q(N)
kT/N =

∂
∂x
PT/NX

(N)
(k+1)T/N

(
Wk/N

)

=NE
[∫ (k+1)T/N

kT/N

∂
∂x
P(k+1)T/N−sX

(N)
(k+1)T/N

(
Ws
)
ds|Wk/N

]

=NE
[∫ (k+1)T/N

kT/N
Q(N)
s ds|Wk/N

]
.

(3.8)

We will show in Section 5 the rate of convergence of X(N) towards Y and in Section

6 the rate of convergence of Q(N) towards Z . Moreover, we will show in Section 6 that

Zs is Hölder continuous. Thus we may compare two forward stochastic differential

equations, (3.4) and (3.5), and easily see that Y(N) −X(N) → 0. Hence Y(N) → Y and

Q(N)→ Z .
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4. Stability of difference equation. Let XiT/N and X̃iT/N be two solutions to (3.5),

that is,

XkT/N =X(k+1)T/N−
∫ (k+1)T/N

kT/N
f
(
XkT/N,E

[
Qs|WkT/N],s

)
ds−

∫ (k+1)T/N

kT/N
Qs dWs,

X̃kT/N = X̃(k+1)T/N−
∫ (k+1)T/N

kT/N
f
(
X̃kT/N,E

[
Q̃s|WkT/N

]
,s
)
ds−

∫ (k+1)T/N

kT/N
Q̃s dWs,

(4.1)

with the initial condition thatXT = g(WT) and X̃T = g̃(WT ). Then we have the following

stability result, which is the discretized version of Pardoux-Peng’s remarkable result

[9].

Theorem 4.1. Suppose that |f(x,y,t)−f(x̃,ỹ,s)| ≤ L(|x− x̃|+|y− ỹ|+|t−s|).
Then there is a constant C such that when i+k≤N,

E
[∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)2ds
]
+E(XiT/N−X̃iT/N)2 ≤ CE

{(
X(j+k)T/N−X̃(j+k)T/N

)2
}
.

(4.2)

Proof. We have

(
X(j+1)T/N−X̃(j+1)T/N

)−(XjT/N−X̃jT/N)

=
∫ (j+1)T/N

jT/N

{
f
(
XjT/N,E

[
Qs|WjT/N

]
,s
)−f (X̃jT/N,E[Q̃s|WjT/N],s)}ds

+
∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)
dWs.

(4.3)

The two parts on the right-hand side are orthogonal,

E
[∣∣(X(j+1)T/N−X̃(j+1)T/N

)−(XjT/N−X̃jT/N)∣∣2
]

= E
[∣∣∣∣
∫ (j+1)T/N

jT/N

{
f
(
XjT/N,E

[
Qs|WjT/N

]
,s
)−f (X̃jT/N,E[Q̃s|WjT/N],s)}ds

∣∣∣∣
2
]

+E
[∣∣∣∣
∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)
dWs

∣∣∣∣
2
]

≥ E
[∣∣∣∣
∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)
dWs

∣∣∣∣
2
]

= E
[∫ (j+1)T/N

jT/N

∣∣Qs−Q̃s∣∣2ds
]
.

(4.4)
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Since (
X(j+1)T/N−X̃(j+1)T/N

)2−(XjT/N−X̃jT/N)2

= [(X(j+1)T/N−X̃(j+1)T/N
)−(XjT/N−X̃jT/N)]2

+2
(
XjT/N−X̃jT/N

)[(
X(j+1)T/N−X̃(j+1)T/N

)−(XjT/N−X̃jT/N)]
= [(X(j+1)T/N−X̃(j+1)T/N

)−(XjT/N−X̃jT/N)]2

+2
(
XjT/N−X̃jT/N

)∫ (j+1)T/N

jT/N

{
f
(
XjT/N,E

[
Qs
∣∣WjT/N],s)

−f (X̃jT/N,E[Q̃s∣∣WjT/N],s)}ds
+2

(
XjT/N−X̃jT/N

)∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)
dWs,

(4.5)

and the expectation of the last term vanishes, we get

E
[(
XjT/N−X̃jT/N

)2
]

= E
[(
X(j+1)T/N−X̃(j+1)T/N

)2
]
−E

{[(
X(j+1)T/N−X̃(j+1)T/N

)−(XjT/N−X̃jT/N)]2
}

−2E
{(
XjT/N−X̃jT/N

)∫ (j+1)T/N

jT/N

{
f
(
XjT/N,E

[
Qs
∣∣WjT/N],s)

−f (X̃jT/N,E[Q̃s∣∣WjT/N],s)}ds
}
.

(4.6)

By (4.4) and (4.6),

E
(
XjT/N−X̃jT/N

)2

≤ E(X(j+1)T/N−X̃(j+1)T/N
)2−E

[∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)2ds
]

+2
∫ (j+1)T/N

jT/N
E
{(
XjT/N−X̃jT/N

)[
f
(
XjT/N,E

[
Qs
∣∣WjT/N],s)

−f (X̃jT/N,E[Q̃s∣∣WjT/N],s)]}ds.

(4.7)

However,∫ (j+1)T/N

jT/N
E
{(
XjT/N−X̃jT/N

)[
f
(
XjT/N,E

[
Qs
∣∣WjT/N],s)−f (X̃jT/N,E[Q̃s∣∣WjT/N],s)]}ds

≤ L
∫ (j+1)T/N

jT/N
E
[(
XjT/N−X̃jT/N

)2
]

+L
∫ (j+1)T/N

jT/N
E
[∣∣XjT/N−X̃jT/N∣∣∣∣E[Qs∣∣WjT/N]−E[Q̃s∣∣WjT/N]∣∣]ds

≤ LT
N
E
[∣∣XjT/N−X̃jT/N∣∣2

]

+L
∫ (j+1)T/N

jT/N
E
[∣∣XjT/N−X̃jT/N∣∣∣∣E[Qs∣∣WjT/N]−E[Q̃s∣∣WjT/N]∣∣]ds.

(4.8)
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Therefore

E
(
XjT/N−X̃jT/N

)2

≤ E(X(j+1)T/N−X̃(j+1)T/N
)2−E

[∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)2ds
]
+2
LT
N
E
[∣∣XjT/N−X̃jT/N∣∣2

]

+2L
∫ (j+1)T/N

jT/N
E
{∣∣XjT/N−X̃jT/N∣∣∣∣E[Qs∣∣WjT/N]−E[Q̃s∣∣WjT/N]∣∣}ds.

(4.9)

Fora> 0, b > 0, and λ > 0 we haveab = (λa)(b/λ)≤ (1/2)[(λa)2+(b/λ)2]. Therefore

(4.9) becomes

E
(
XjT/N−X̃jT/N

)2

≤ E(X(j+1)T/N−X̃(j+1)T/N
)2−E

[∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)2ds
]

+2
LT
N
E
[∣∣XjT/N−X̃jT/N∣∣2

]
+λ2L

∫ (j+1)T/N

jT/N
E
[∣∣XjT/N−X̃jT/N∣∣2

]
ds

+ L
λ2

∫ (j+1)T/N

jT/N
E
[∣∣Qs−Q̃s∣∣2

]
ds.

(4.10)

Taking λ=√2L, then

E
[(
XjT/N−X̃jT/N

)2
]
+ 1

2
E
[∫ (j+1)T/N

jT/N

(
Qs−Q̃s

)2ds
]

≤ E
[(
X(j+1)T/N−X̃(j+1)T/N

)2
]
+ κ
N
E
(∣∣XjT/N−X̃jT/N∣∣2

)
,

(4.11)

where κ = 2LT +2L2T . When N is large, κ/N < 1, hence

E
(
XjT/N−X̃jT/N

)2 ≤
(

1− κ
N

)−1

E
(
X(j+1)T/N−X̃(j+1)T/N

)2. (4.12)

Therefore

E
(
XjT/N−X̃jT/N

)2 ≤
(

1− κ
N

)−k
E
(
X(j+k)T/N−X̃(j+k)T/N

)2

≤
(

1− κ
N

)−N
E
(
X(j+k)T/N−X̃(j+k)T/N

)2.
(4.13)

Since (1−κ/N)−N → e−κ , we get the conclusion.

5. Convergence of X(N) to Y . We are going to estimate the error between X(N) and

Y in this section.
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Theorem 5.1. There is a constant C such that

sup
i
E1/2

[∣∣X(N)iT/N−YiT/N
∣∣2
]
≤ CN−1/2. (5.1)

Proof. We introduce for each n ≤ N a discrete time process {X(n,N)iT/N }i=0,1,...,N as

follows: define X(n,N)iT/N = YiT/N (for all i ≥ n) and for each i ≤ n− 1 we define the

process repeatedly by

X(n,N)iT/N =X(n,N)(i+1)T/N−
∫ (i+1)T/N

iT/N
f
(
X(n,N)iT/N ,

∂
∂x
PT/NX

(n,N)
(i+1)T/N

(
WiT/N

)
,s
)
ds

−
∫ (i+1)T/N

iT/N

∂
∂x
P(i+1)T/N−sX

(n,N)
(i+1)T/N

(
Ws
)
dWs.

(5.2)

It is easy to see that X(0,N)iT/N = YiT/N and X(N,N)iT/N = X(N)iT/N . The difference X(n,N)nT/N −
X(n+1,N)
nT/N is given by

X(n,N)nT/N−X(n+1,N)
nT/N

=
∫ (n+1)T/N

nT/N

{
f
(
X(n+1,N)
nT/N ,

∂
∂x
PT/Nu

(
T − (n+1)T

N
,·
)(
WnT/N

)
,s
)

−f (u(T −s,Ws),u′x(T −s,Ws),s)
}
ds

+
∫ (n+1)T/N

nT/N

{
∂
∂x
P(n+1)T/N−sX

(n,N)
(n+1)T/N

(
Ws
)−u′x(T −s,Ws)

}
dWs

=
∫ (n+1)T/N

nT/N

{
f
(
X(n+1,N)
nT/N ,PT/Nu′x

(
T − (n+1)T

N
,·
)(
WnT/N

)
,s
)

−f (u(T −s,Ws),u′x(T −s,Ws),s)
}
ds

+
∫ (n+1)T/N

nT/N

{
P(n+1)T/N−su′x

(
T − (n+1)T

N
,Ws

)
−u′x

(
T −s,Ws

)}
dWs,

(5.3)

that is,

(
X(n,N)nT/N−X(n+1,N)

nT/N
)−

∫ (n+1)T/N

nT/N

{
P(n+1)T/N−su′x

(
T − (n+1)T

N
,Ws

)
−u′x

(
T −s,Ws

)}
dWs

=
∫ (n+1)T/N

nT/N

{
f
(
X(n+1,N)
nT/N ,PT/Nu′x

(
T − (n+1)T

N
,·
)(
WnT/N

)
,s
)

−f (u(T −s,Ws),u′x(T −s,Ws),s)
}
ds.

(5.4)
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Since the two terms on the left-hand side of (5.4) are orthogonal, we get

E
∣∣X(n,N)nT/N−X(n+1,N)

nT/N
∣∣2

≤ E
[∣∣∣∣
∫ (n+1)T/N

nT/N

{
f
(
X(n+1,N)
nT/N ,PT/Nux

(
T − (n+1)T

N
,·
)(
WnT/N

)
,s
)

−f (u(T −s,Ws),ux(T −s,Ws),s)
}
ds
∣∣∣∣

2
]

≤ 1
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣f
(
X(n+1,N)
nT/N ,PT/Nux

(
T − (n+1)T

N
,·
)(
WnT/N

)
,s
)

−f (u(T −s,Ws),ux(T −s,Ws),s)
∣∣∣∣

2

ds
]

≤ C
N
E
[∫ (n+1)T/N

nT/N

∣∣X(n+1,N)
nT/N −u(T −s,Ws)∣∣2ds

]

+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣PT/Nux
(
T − (n+1)T

N

)(
WnT/N

)−ux(T −s,Ws)
∣∣∣∣

2

ds
]

≤ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣X(n+1,N)
nT/N −X(n,N)nT/N

∣∣∣∣
2

ds
]

+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣X(n,N)nT/N−u
(
T −s,Ws

)∣∣2ds
]

+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣PT/Nux
(
T − (n+1)T

N

)(
WnT/N

)−ux(T −s,Ws)
∣∣∣∣

2

ds
]
,

(5.5)

where we used Lipschitz condition on f . We use C to denote an arbitrary constant,

whose value may change according to the context but not depending on the given

variables.

We estimate the last two terms separately

1
N
E
[∫ (n+1)T/N

nT/N

∣∣X(n,N)nT/N−u
(
T −s,Ws

)∣∣2ds
]

= 1
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣u
(
T − nT

N
,WnT/N

)
−u(T −s,Ws)

∣∣∣∣
2

ds
]

≤ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣u
(
T − nT

N
,Ws

)
−u(T −s,Ws)

∣∣∣∣
2

ds
]

+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣u
(
T − nT

N
,WnT/N

)
−u

(
T − nT

N
,Ws

)∣∣∣∣
2

ds
]

≤ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣ 1
N

∣∣∣∣
2

ds
]
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+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣u
(
T − nT

N
,WnT/N

)
−u

(
T − nT

N
,Ws

)∣∣∣∣
2

ds
]

= C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣ 1
N

∣∣∣∣
2

ds
]

+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣1
2

∫ s
nT/N

∆u
(
T−nT

N
,Wt

)
dt+

∫ s
nT/N

u′x
(
T−nT

N
,Wt

)
dWt

∣∣∣∣
2

ds
]

≤ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣ 1
N

∣∣∣∣
2

ds
]
+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣
∫ s
nT/N

∆u
(
T − nT

N
,Wt

)
dt
∣∣∣∣

2

ds
]

+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣
∫ s
nT/N

u′x
(
T − nT

N
,Wt

)
dWt

∣∣∣∣
2

ds
]

= C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣ 1
N

∣∣∣∣
2

ds
]
+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣
∫ s
nT/N

∆u
(
T − nT

N
,Wt

)
dt
∣∣∣∣

2

ds
]

+ C
N
E
[∫ (n+1)T/N

nT/N

∫ s
nT/N

∣∣∣∣u′x
(
T − nT

N
,Wt

)∣∣∣∣
2

dtds
]

=O(N−3).
(5.6)

In the deduction (5.2), (5.3), (5.4), (5.5), and (5.6), we used repeatedly the fact that

u∈H2+α so that u and its derivatives up to the second order are bounded.

For the last term of (5.5), we have

1
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣PT/Nu′x
(
T − (n+1)T

N

)(
WnT/N

)−u′x(T −s,Ws)
∣∣∣∣

2

ds
]

≤ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣PT/Nu′x
(
T − (n+1)T

N

)(
WnT/N

)

−u′x
(
T − (n+1)T

N
,WnT/N

)∣∣∣∣
2

ds
]

+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣u′x
(
T − (n+1)T

N
,WnT/N

)
−u′x

(
T −s,Ws

)∣∣∣∣
2

ds
]
.

(5.7)

Since u′′xx is bounded, it is easy to see from the property of Gaussian kernel that

|PT/Nu′x(T −(n+1)T/N,x)−u′x(T −(n+1)T/N,x)|2 converge to 0 uniformly in the

order of 1/N when N →∞. Therefore

1
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣PT/Nu′x
(
T − (n+1)T

N

)(
WnT/N

)−u′x(T −s,Ws)
∣∣∣∣

2

ds
]

=O(N−3)+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣∣∣u′x
(
T − (n+1)T

N
,WnT/N

)
−u′x

(
T −s,Ws

)∣∣∣∣
2

ds
]



DISCRETIZING A BACKWARD STOCHASTIC DIFFERENTIAL EQUATION 113

≤O(N−3)+ C
N
E
[∫ (n+1)T/N

nT/N

∣∣WnT/N−Ws∣∣2ds
]

=O(N−3)+ C
N

∫ (n+1)T/N

nT/N

∣∣∣∣nTN −s
∣∣∣∣ds

≤O(N−3),
(5.8)

where we used the fact that u′x is Hölder continuous in t with exponential greater

than 1/2 and Lipschitz in x (see [5, page 46] for the definition of H2+α).

Finally, by (5.5), (5.6), and (5.8), we get

E1/2
[∣∣X(n,N)nT/N−X(n+1,N)

nT/N
∣∣2
]
=O(N−3/2). (5.9)

Applying Theorem 4.1, we deduce that

sup
i
E1/2

[∣∣X(n,N)iT/N −X(n+1,N)
iT/N

∣∣2
]
=O(N−3/2). (5.10)

It is easy to check that the last term has a bound which is independent on n. Summing

up the above inequalities over n, we deduce that

sup
i
E1/2

[∣∣X(N)iT/N−YiT/N
∣∣2
]
≤
∑
n

sup
i
E1/2

[∣∣X(n,N)iT/N −X(n+1,N)
iT/N

∣∣2
]
=O(N−1/2). (5.11)

6. Convergence of Q(N) to Z . We can also prove the convergence of Q(N) to Z as

follows: according to the discussion in Section 2, we may assume that Zt = ux(T −
t,Wt), where u ∈ H2+α, for simplicity. Since ux is Hölder continuous with exponent

greater than 1/2 in t and with bounded derivative in x, it is easy to see that Zt is

Hölder continuous with exponent greater than 1/2 in L2(Ω).
For any pair 0≤ j/N < k/N ≤ T ,

∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

s −Zs
∣∣2ds

= E


(∫ kT/N

jT/N

(
Q(N)
s −Zs

)
dWs

)2



≤ 2E
∣∣YkT/N−YjT/N−X(N)kT/N+X(N)jT/N

∣∣2

+2E

∣∣∣∣∣∣
∑
j≤i<k

∫ (i+1)T/N

iT/N

(
f
(
Ys,Zs,s

)−f (X(N)iT/N,Q
(N)
iT/N,s

))
ds

∣∣∣∣∣∣
2
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≤ 2E
∣∣YkT/N−YjT/N−X(N)kT/N+X(N)jT/N

∣∣2

+ 2(k−j)T
N

E


 ∑
j≤i<k

∫ (i+1)T/N

iT/N

(
f
(
Ys,Zs,s

)−f (X(N)iT/N,Q
(N)
iT/N,s

))2ds




≤ 2E
∣∣YkT/N−YjT/N−X(N)kT/N+X(N)jT/N

∣∣2

+ C(k−j)T
N

E


 ∑
j≤i<k

∫ (i+1)T/N

iT/N

(
Ys−X(N)iT/N

)2ds




+ C(k−j)T
N

E


 ∑
j≤i<k

∫ (i+1)T/N

iT/N

(
Zs−Q(N)

iT/N
)2ds


.

(6.1)

Therefore

∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

s −Zs
∣∣2ds− C(k−j)T

N

∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

iT/N−Zs
∣∣2ds

≤ 2E
∣∣YkT/N−YjT/N−X(N)kT/N+X(N)jT/N

∣∣2

+ C(k−j)T
N

E


 ∑
j≤i<k

∫ (i+1)T/N

iT/N

(
Ys−X(N)iT/N

)2ds




=O(N−1/2).

(6.2)

However,

∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

iT/N−Zs
∣∣2ds

=
∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

iT/N−E
[
Zs
∣∣WiT/N]∣∣2ds+

∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Zs−E[Zs∣∣WiT/N]∣∣2ds

=
∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣E[Q(N)

s −Zs
∣∣WiT/N]∣∣2ds

+
∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Zs−E[Zs∣∣WiT/N]∣∣2ds

≤
∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

s −Zs
∣∣2ds+2

∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Zs−ZiT/N∣∣2ds

+
∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣ZiT/N−E[Zs∣∣WiT/N]∣∣2ds

=
∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

s −Zs
∣∣2ds+O(N−1/2),

(6.3)
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where we used the fact that Q(N)
iT/N = E[Q(N)

s |WiT/N] when s is greater than iT/N and

the Hölder L2-continuity of Zs .
Thus when (k−j)T/N is less than 1/2C , we deduce from (6.2) and (6.3) that

∑
j≤i<k

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

iT/N−Zs
∣∣2ds =O(N−1/2). (6.4)

If we decompose [0,T ] into sub-intervals with length less than 1/2C , quoting (6.4)

and summing up, we get the following theorem.

Theorem 6.1. There is a constant C such that

∑
(i; 0≤iT/N≤T)

∫ (i+1)T/N

iT/N
E
∣∣Q(N)

iT/N−Zs
∣∣2ds ≤ CN−1/2. (6.5)
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