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1. Introduction. In [1], there is a group-theoretic construction of a class of par-

allelisms in PG(3,K), where K is a field admitting a quadratic extension. The paral-

lelisms have the property that there is a unique Pappian spread Σ1 and a collineation

group G of the parallelism, which is also the full central collineation group of Σ1 with

fixed axis �. In this case, the group G is transitive on the remaining spreads of the

parallelisms and all such spreads are Hall spreads. This construction allows a fairly

accurate count of the number of mutually nonisomorphic parallelisms constructed in

this manner. This is accomplished by the authors in [5].

Moreover, the following characterization is given.

Theorem 1.1 (see [5]). Let K be a skewfield, Σ a spread in PG(3,K), and � a partial

parallelism of PG(3,K) containing Σ.

If � admits, as a collineation group, the full central collineation group G of Σ with a

given axis � that acts two-transitive on the remaining spread lines, then

(1) Σ is Pappian,

(2) � is a parallelism,

(3) the spreads of �−{Σ} are Hall,

(4) G acts transitively on the spreads of �−{Σ},
(5) � is one of the parallelisms of the construction of Johnson.

Hence, using the full central collineation group of an associated Pappian spread

forces the remaining spreads of the parallelisms to be Hall spreads. The question

is whether such is the case when the parallelism admits only a transitive subgroup;

a subgroup which fixes one Pappian spread and acts transitively on the remaining

spreads. Are the remaining spreads Hall? In [2], a general construction procedure is

given by which several infinite classes of parallelisms are constructed consisting of

one Desarguesian spread and the remaining spreads are derived Knuth conical flock

spreads.

Theorem 1.2 (see [2]). Let q be an odd integer equal to p2bz where z is an odd

integer greater than 1. Assume that 2a is the largest power of 2 that divides q−1, then

there exists a nonidentity automorphism σ of GF(q) such that 2a divides (σ −1).
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Let γ2 and γ1 be nonsquares of GF(q) such that the equation γ2tσ = γ1t implies that

t = 0. Then,

(1) there exists a parallelism �γ2,σ of derived Knuth type with (q2+q) derived Knuth

planes and one Desarguesian plane;

(2) the collineation group of this parallelism contains the central collineation group

of the Desarguesian plane with fixed axis � of order q22a(q+1).

The basic construction is shown to apply in the infinite case by the authors [4],

when K is the field of real numbers.

Theorem 1.3 (see [4]). Let f be any continuous strictly increasing function on the

field of real numbers K such that limx�±∞f(t) = ±∞. Let Σ1 be the Pappian spread

defined as follows:

x = 0, y = x
[
u −t
t u

]
∀u,t ∈K. (1.1)

Let Σ2 be defined as follows:

x = 0, y = x
[
u f(t)
t u

]
∀u,t ∈K, (1.2)

where f is a function on K such that f(t) = t implies that t = 0, and f(0) = 0. Then,

Σ2 is a spread and Σ1 and Σ2 share the regulus � defined by the partial spread t = 0.

Assume also that, f is symmetric with respect to the origin in the real Euclidean 2-

space and f(t0+r)= f(t0)+r for some t0 and r in the reals implies that r = 0. Then

Σ1∪Σ∗2g, for all g ∈ G− and where Σ∗2 denotes the derived spread of Σ2 by derivation

of �, is a partial parallelism �f in PG(3,K). Moreover, �f is a parallelism if and only

if f(t)−t is an onto function.

In this paper, we generalize the general group construction in [1], using the full

central collineation group G of an associated Pappian spread, but instead of a par-

ticular choice of a second Pappian spread sharing a given regulus with the original

Pappian spread, we choose m such Pappian spreads. By a choice of cosets of a par-

ticular subgroup of G, we are able to construct a tremendous variety of parallelisms.

The parallelisms that we obtain are called m-parallelisms and, in the finite case, ad-

mit a central collineation group (of the original Desarguesian spread in PG(3,q)) of

order q2(q2 − 1)/m. If m ≠ n, then an m-parallelism cannot be isomorphic to an

n-parallelism.

In a sense,m-parallelisms are generated using particularm Pappian spreads. Ifn of

them spreads are distinct, we call objects (m,n)-parallelisms. The original construc-

tion uses mappings from a particular second Pappian spread for the construction.

Such spreads are subject to a choice of coset representations, so further subclasses

are obtained.

Actually, we begin our discussion with central collineation groups of finite Desar-

guesian affine planes acting on parallelisms. However, our arguments apply for a more

general class of groups called parallelism-inducing groups so our results are ultimately

much more general than we initially state.
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One of our main construction theorems, using central collineation groups, in the

finite case is as follows.

Theorem 1.4. Let Σi, i = 1,2, . . . ,m+1, be Desarguesian spreads of PG(3,q) con-

taining a regulus � and assume that the spreads Σj for j ≠ 1 are distinct from Σ1. Let

G denote the full central collineation group of Σ1 with axis � in � and assume that m
divides q+1. Then, there is a normal subgroup G− of G of order q2(q2−1)/m, which

contains G�.

Assume that for each Σi i > 2, there is a line s2,i of Σ2 −� and an element gi of

G−−G� such that s2,igi is a line of Σi. Choose any coset representative class {hi : i =
2, . . . ,m+1} for G− in G. Let Σ∗i denote the spread obtained by the derivation of �.

Then Σ1∪m+1
i=2 Σ∗i hiki for all k2, . . . ,kt+1 ∈G− is a parallelism in PG(3,q).

2. The construction in the finite case. The construction in [1] produced paral-

lelisms in PG(3,q) using a Desarguesian spread Σ1 equipped with a central collin-

eation group of Σ1, G, with fixed axis �, of order q2(q2−1). It turns out that the set of

Baer subplanes incident with the origin of Σ1, which are disjoint from the axis �, are

in a single orbit under G and the number of such Baer subplanes is exactly q2(q2−1).
That is, the group G is regular on this set of Baer subplanes.

The construction also depends on the choice of an initial regulus � within Σ1 and

containing �. Choose a second Pappian spread Σ2 containing � and let G denote the

full central collineation group with axis � of Σ1. If s2 is any line of Σ2−�, then we note

that Σ2 = s2G�∪�. Let S be a normal subgroup of G containing G�, and let h∈ S−�.

We note that Σ2S∪Σ2hS is a partial parallelism. More importantly, if Σ3 is any Pappian

spread distinct from Σ1 that contains �, and g ∈ S−G�, then Σ3 = gs2G�∪�. This

says that Σ3S = Σ2S as a set and furthermore, it is also true that Σ3S∪Σ3hS is a partial

parallelism. Hence, it follows immediately that Σ2S∪Σ3hS is also a partial parallelism.

Formally, we list this result below and provide essentially the same argument in a more

concrete manner.

Lemma 2.1. Under the above assumptions, let S denote any normal subgroup of

G which contains G�. Let Σ2 and Σ3 be Desarguesian spreads distinct from Σ1 that

contain �. Assume that there is an element g of S−G� which maps an element s2 of

Σ2−� onto an element s3 of Σ3. Then,

(1) s3 is not in � and Σ3−�= s2gG� = s3G�;

(2) if h ∈ G−S, then Σ2w and Σ3hu share no line for all w,u ∈ S; Σ2S∪Σ3hS is a

partial parallelism.

Proof. We note that G� acts as a collineation group of any Desarguesian spread

which contains � and acts regularly on the lines (components) of the spread not in �.

Hence, this proves (1) (we will see below that s3 cannot be in �).

Assume that Σ2w and Σ3hu share a component. Then, Σ2wu−1h−1 and Σ3 share a

component α. Let δ∈ Σ2 such that wu−1h−1δ=α. Suppose that δ is in �. If α is not

in �, then Σ3 = Σ1 as wu−1h−1δ is in Σ1. If α= δ, then wu−1h−1 = 1 since the group

is a central collineation group. But this forces h to be in S, a contradiction. If α ≠ δ
then, wu−1h−1 leaves � invariant since � is a regulus. But, since G� is in S, again it

follows that wu−1h−1 is in S, forcing h to be in S.
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Hence, δ is not in �. If α is in �, we may use the argument above to conclude that

Σ2 = Σ1.

So, neither α nor δ is in �. By (1), there exists a unique element z of S which maps

α to δ. Hence, zwu−1h−1δ= δ so that zwu−1h−1 = 1 implying that h is in S, again a

contradiction.

Corollary 2.2. Denote the derived spreads of Σiw by derivation of �w by (Σiw)∗=
Σ∗i w. Then,

(1) Σ1∪Σ∗2w∪Σ∗3hk for h fixed in G−S and for all w,k∈ S is a partial parallelism

in PG(3,q);
(2) if the order of the S is q2(q2 − 1)/m where m divides q + 1, then there are

1+2(q(q+1)/m) spreads in the partial parallelism. Note that, it is not required

that Σ2 and Σ3 be distinct.

Corollary 2.3. Under the above assumptions, further assume that there are t
Desarguesian spreads Σi for i = 2, . . . , t+1 distinct from Σ1 and sharing � with the

property that for each Σi i > 2, there is a line s2,i of Σ2−� and an element gi of S such

that s2,igi is a line of Σi.
Assume that S is a normal subgroup of G. Let hi, i= 2,3, . . . , t+1, belong to mutually

distinct cosets of S. Then,

(1) ∪t+1
i=2Σihiki, for all k2, . . . ,kt+1 ∈ S, is a set of spreads t|S| spreads that share no

line of PG(3,q) not in Σ1 and disjoint from the axis � of G (of S);

(2) Σ1∪t+1
i=2 Σ

∗
i hiki for all k2, . . . ,kt+1 ∈ S is a partial parallelism in PG(3,q) of 1+

t(q(q+1)/m) spreads provided that the order of S is q2(q2−1)/m (we note

below that any such group of this order is normal).

Proof. Suppose that Σihiki and Σjhjkj share a component. Then, Σihihik−1
j h

−1
j

and Σj also share a component tj .
We know that, there exist elements s2,i and s2,j of Σ2−� and elements gi and gj of

S such that s2,igi and s2,jgj are in Σi−� and Σj−�, respectively. Let g̃ = hihik−1
j h

−1
j .

Let ti be in Σi such that tig̃ = tj . It is immediate that ti and tj cannot be in �. Hence,

there exist elements wi and wj of G� such that ti = s2,igiwi and tj = s2,jgjwj .

Hence, we obtain

s2,igiwig̃ = s2,jgjwj. (2.1)

Furthermore, since s2,i and s2,j are both in Σ2−�, it follows that there is an element

r of G� such that s2,i = s2,jr .

We, in turn, obtain

s2,jrgiwig̃ = s2,jgjwj. (2.2)

Now, since the group G acts regularly on Baer subplanes of Σ1, which do not inter-

sect the axis, it follows that rgiwig̃ = gjwj and thus rgiwihihik−1
j h

−1
j = gjwj .

Note that all group elements other than hi and h−1
j involved in the above expression

are in S. But, this says that hi and hj are in the same coset of S since S is a normal

subgroup. Hence, this contradiction completes the proof of the corollary with the

exception of the existence of a normal group of order q2(q2−1)/m containing G�

provided that m divides q+1.
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The full central collineation groupG = EH, where E is the full elation group of order

q2 and H is a homology group of order q2−1. Note that E is a normal subgroup and

H is cyclic. Let H− denote the unique cyclic subgroup of order (q2−1)/m provided

that m divides q2−1.

Then, we assert that EH− is a normal subgroup of EH and if m divides q+1, then

it contains G�.

Let g = eh ∈ EH = G, where e ∈ E and h ∈ H. We recall that h−1e−1EH−eh =
h−1EH−eh= Eh−1H−eh⊆ Eh−1H−Ehwhich is Eh−1EH−1h= Eh−1H−h= EH. Hence,

EH− is normal in EH. Since E is in EH− then E∩G� is in EH−. It remains to show that

there is a subgroup of order q−1 in G�∩EH−. However,H− has order (q2−1)/m and

is cyclic, so, it contains a group of order q−1 if and only if q−1 divides (q2−1)/m,

if and only if m divides q+1.

Hence, we obtain the following theorem.

Theorem 2.4. Let Σi, for i = 1,2, . . . ,m+ 1, be Desarguesian spreads of PG(3,q)
containing a regulus �, and assume that the spreads Σj for j ≠ 1 are distinct from Σ1.

Let G denote the full central collineation group of Σ1 with axis � in �, and assume that

m divides q+1. Then, there is a normal subgroup G− of G of order q2(q2−1)/m which

contains G�.

Assume that for each Σi i > 2, there is a line s2,i of Σ2 −� and an element gi of

G−−G� such that s2,igi is a line of Σi.
Choose any coset representative class {hi : i= 2, . . . ,m+1} forG− inG. Let Σ∗i denote

the spread obtained by the derivation of �.

Then, Σ1∪m+1
i=2 Σ∗i hiki, for all k2, . . . ,kt+1 ∈G−, is a parallelism in PG(3,q).

Proof. We merely note that the number of spreads in the partial parallelism is

1+m(q(q+1)/m)= 1+q(q+1)= 1+q+q2, so we obtain a parallelism.

Example 2.5. In order to specify specific instances of the above theorem, assume

that q is odd and assume that Σi are Desarguesian spreads for i = 1,2 of the form

x = 0, y = x[u γitt u

]
for all u,t ∈ GF(q), where γi are nonsquares in GF(q) and γ1 ≠ γ2.

Let γ3 be any nonsquare distinct from γ1 and γ2. Let θ = (γ2−γ3)/(γ3−γ1). Now,

consider the mapping of any group G− of order q2(q2−1)/m in E of the form




1 0 0 θγ1

0 1 θ 0

0 0 1 0

0 0 0 1


 . (2.3)

Then, y = x[0 γ2
1 0

]
maps onto y = x[ 0 θγ1+γ2

1+θ 0

]
. Now, it follows that

γ3(1+θ)= γ3

(
1+

(
γ2−γ3

)
(
γ3−γ1

))

=
(
γ2−γ3

)
(
γ3−γ1

)γ1+γ2 = θγ1+γ2.
(2.4)



172 N. L. JOHNSON AND R. POMAREDA

Hence, we may apply the above theorem for any set of nonsquares distinct from γ1.

We note, however, that the above construction did not actually require finiteness.

So, we obtain the following more general result.

Theorem 2.6. Let Σi, i = 1,2, . . . ,m+1, denote Pappian spreads in PG(3,K), for a

field K, on the same regulus � and of the general form,

Σi : x = 0, y = x
[
u γit
t u

]
∀u,t ∈K, (2.5)

for any finite set of distinct nonsquares γi, i= 1,2, . . . ,m+1.

Assume that there is an index m-subgroup H− of the homology group H of Σ1 with

axis x = 0. Let E denote the full elation group of Σ1 with axis x = 0 and form EH−

which is a normal subgroup of index m in EH. Further, assume that the full group

(EH)R ⊆ EH−. In the finite case, this is accomplished if and only if m divides q+1. Let

H =∪m+1
i=2 H−gi, where g2 = 1. Then, ∪m+1

i=2 Σigihi, for all h2, . . . ,hm+1 ∈ EH−, is a set of

spreads which covers all lines of PG(3,K) which are disjoint from x = 0 and not in Σ1.

Proof. More generally, if Σi is given by

x = 0, y = x
[
u+ρit γit
t u

]
∀u,t ∈K, (2.6)

then the same elation mapping will work provided that

(
γ2−γi

)
s = (γi−γ1

)
,

(
ρ2−ρi

)
s = (ρi−ρ1

)
(2.7)

have a unique solution for s. Hence, we have at least the solutions when either ρi = ρj
for all i,j or when γi = γj for all i,j.

In particular, we may obtain examples of parallelisms in fields of any characteristic

provided that there is a quadratic extension superfield.

Theorem 2.7. Under the above assumptions, Σ1∪m+1
i=2 Σ∗i gihi, for all h2, . . . ,hm+1 ∈

EH−, where Σ∗i denotes the derived spread by deriving �gihi, for all h2,h3, . . . ,hm+1 ∈
EH− (i.e., �g for all g ∈ EH), is a parallelism of PG(3,K).

Proof. The only lines which are missing from the previous set∪m+1
i=2 Σigihi and not

in Σ1 are the lines intersecting x = 0 nontrivially. Since these are the Baer subplanes of

the regulus nets corresponding to �g for all g ∈ EH, we have all of the lines covered

by q2+q+1 spreads so we obtain a parallelism.

Theorem 2.8. Assume that the set of (m+1)Desarguesian spreads Σi are mutually

distinct, and S = EH− is a normal group of index m. Then, the full central collineation

group with axis x = 0 of the parallelisms constructed above is EH−.

Proof. Suppose that there is a central collineation g ∈ EH−EH− which acts on

the constructed parallelism. Assume, without loss of generality, that g = g3 in the

context of the theorem. Then, Σ∗3g3g−1
3 = Σ∗3 is a spread of the parallelism. However,

Σ∗2 is also a spread and both spreads cover the Baer subplanes of � and are distinct,

which is a contradiction to the properties of a parallelism.
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Definition 2.9. A parallelism constructed from a group of index m is defined to

be an m-parallelism.

We remark that, conceivably, different choices of coset representation sets deter-

mine nonisomorphic m-parallelisms.

Hence, with {gi} denoting a coset representation set, we denote the associated m-

parallelism by (m,{gi}).
Corollary 2.10. An m-parallelism and an n-parallelism for m ≠ n are non-

isomorphic.

3. General construction. LetΣ1 be any Pappian spread in PG(3,K), and let � denote

a regulus containing a line �. Let G denote the full central collineation group with axis

� of Σ1. Assume that S is a normal subgroup of G of index m, which contains G�,

where it is not necessarily assumed that m is finite.

Let Σ2 denote a Pappian spread in PG(3,K) containing � and distinct from Σ1.

We consider the following set:

�={s ∈ (Σ2−�
)
S : �∪{s} is a partial spread

}
. (3.1)

Then, there is a unique Pappian spread Σs containing �∪{s}.
We consider the cardinality of this set of Pappian spreads card{Σs : s ∈ �} and

assume that card{Σs : s ∈�} ≥m.

Theorem 3.1. Under the above assumptions, choose any subset of {Σs : s ∈ �}
of cardinality m, say {Σs : s ∈ �m}, for some subset �m of � of cardinality m. Let

{gs for s ∈ �m} denote a coset representation set of the subgroup S. Let g2 = 1 for

2∈�m. Then S = Σ1∪�m Σ∗s gshs , for all hs ∈ S and for all s ∈�m, is a parallelism of

PG(3,K).

Proof. Clearly, the ideas of the previous sections show that we obtain a partial

parallelism. It remains to show that we have a parallelism. Note, it is clear by counting

that we have a parallelism in the finite case. We recall that G acts regularly on the set

of Baer subplanes of Σ1 (or rather on the subplanes of the corresponding affine plane)

incident with the zero vector of the affine plane, which are disjoint from the axis �
of G. We will obtain a parallelism if and only if

∪�mΣ
∗
s gshs, ∀hs ∈ S, ∀s ∈�m, (3.2)

is a cover of the above-mentioned Baer subplanes. Choose any such subplane π0. If

this subplane is an image of a subplane of Σ2−� under S, then the subplane is in

Σ2h for all h ∈ S. Otherwise, the subplane is an image of a subplane of Σ2 −� by

an element of G not in S, and hence equal to gs1hs1 for some fixed s1 ∈ �m. Let

s2 ∈ Σ2−� such that s2gs1hs1 = π0. We know that, there is an element s′2 in Σ2−�

and an element m ∈ S such that s′2m ∈ Σs1 . Moreover, there is an element n ∈ G�

such that s2n = s′2 hence, s′2m = s2nm ∈ Σs1 , where n,m ∈ S. Let s2nm = ss1 . Thus,

s2gs1hs1 = ss1m−1n−1gs1hs1 . Now, m−1n−1gs1hs1 ∈ gs1S since gs1S = Sgs1 . Hence, we

have a cover and this completes the proof of the theorem.
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3.1. (m,n)-parallelisms. Given anm-parallelism, we assume that there are at least

(m−1) Pappian spreads containing a given regulus �, which arise from a given Pap-

pian spread by a mapping from a subgroup G−. However, this is not necessary for

the construction of a parallelism. Given a normal subgroup G− of G containing G�,

assume that we take m Pappian spreads distinct from Σ1 but of these m, we assume

that only n are distinct. Then, we still obtain a parallelism, but now it is not entirely

clear what the full central collineation group is that acts on the parallelism. To be

clear on this construction, first, assume that m is finite and that we have n Pappian

spreads distinct from Σ1, say Σi for i = 2,3, . . . ,n+1. Assume further, that we have

ij spreads equal to Σi for
∑n+1
i=2 ij = n. Then, we obtain the following parallelism: let

{gi : i = 2, . . . ,n+1} be a coset representation set, where g2 = 1, then the parallelism

is

Σ1∪n+1
i=2

ij∑
j=1

Σ∗i gihi, ∀hi ∈G−, ∀i= 2, . . . ,n. (3.3)

Definition 3.2. Any such parallelism constructed above will be called an (m,n)-
parallelism. Since {ij} forms a partition ofn, the parallelism depends on the partition.

Furthermore, the order is important in this case, so we consider that the partition

is ordered. Moreover, the parallelism may depend on the coset representation class

{gi}. When we want to be clear on the notation, we will refer to the parallelism as a

(m,n,{ij},{gi})-parallelism. When n =m, we use simply the notation of (m,{gi})-
parallelism.

Furthermore, since each such parallelism depends on a choice of the initial Pappian

spreads, the nonisomorphic parallelisms are potentially quite diverse.

4. More examples. Let K be any field. Assume that there is a Pappian spread Σ1

in PG(3,K), so we may consider the central collineation group EH. We note that H is

isomorphic to the multiplicative group of F−{0}, where F is the field coordinatizing

the affine plane defined by Σ1. Consider EH−, where H− is a multiplicative subgroup

of H. Then the question becomes does EH− contain G�? We require H− to contain a

subgroup isomorphic to the multiplicative group of K−{0}.
We note that, when K has nonsquares and is infinite, a construction of the type

mentioned above is possible whenH− is isomorphic to the multiplicative subgroup of

K−{0}, and the cardinality of the set of nonsquares is the cardinality of K. Moreover,

it is also possible to take a group H−, basically, generated by

〈


u 0 0 0

0 u 0 0

0 0 1 0

0 0 0 1


 ,



0 γ1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



〉
, (4.1)

if Σ1 is x = 0, y = x[u γ1t
t u

]
for all u,t ∈ K. Note that the generated group consists of

diagonal or off-diagonal type elements.

5. Parallelism-inducing groups. We wish to extend our arguments in the previous

sections to more general groups. We recall some of the results of the authors in [3].
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Definition 5.1. Let Σ and Σ′ be any two distinct spreads in PG(3,K), where K is

a field that shares exactly a regulus R and let � be a line of R.

Let G be a collineation group of the affine plane associated with Σ that leaves �
invariant and has the following properties:

(i) G is sharply 2-transitive on the set of components of Σ distinct from �,

(ii) G is regular on the set of Baer subplanes of the affine plane associated with Σ
which are disjoint from �,

(iii) GR fixes Σ′ and acts regularly on the components of Σ′ −R (in the finite case,

if GR fixes Σ′, then the group is regular on Σ′ −R by (ii)).

Then, G said to be “parallelism-inducing” with respect to Σ and Σ′.

We justify the above terminology in the following theorem.

Theorem 5.2 (see [3]). Let G be a parallelism-inducing group with respect to Σ
and Σ′. Then, Σ∪g∈G Σ′∗g is a parallelism in PG(3,K), where Σ′∗ denotes the spread

obtained by the derivation of R.

Our main theorem, essentially, is that the previous results for central collineations

hold more generally for parallelism-inducing groups.

Let Σ1 be any Pappian spread in PG(3,K) and let � denote a regulus containing a

line �. Let G be any parallelism-inducing group for Pappian spreads Σ1 and Σ2 fixing

the line � of Σ1. Assume that S is a normal subgroup of G of index m, which contains

G�, where it is not necessarily assumed that m is finite.

As noted, Σ2 will be a Pappian spread in PG(3,K) containing � and distinct from Σ1.

We consider the following set defined by (3.1):

�= {s ∈ (Σ2−�
)
S : �∪{s} is a partial spread

}
. (5.1)

Then, there is a unique Pappian spread Σs containing �∪{s}.
We consider the cardinality of this set of Pappian as spreads card{Σs : s ∈�} and

assume that card{Σs : s ∈�} ≥m.

Theorem 5.3. Under the above assumptions, choose any subset of {Σs : s ∈ �}
of cardinality m, say {Σs : s ∈ �m} for some subset �m of � of cardinality m. Let

{gs for s ∈ �m} denote a coset representation set of the subgroup S. Let g2 = 1 for

2∈�m. Then, S = Σ1∪�m Σ∗s gshs , for all hs ∈ S and for all s ∈�m, is a parallelism of

PG(3,K).

Proof. The previous proofs extend directly to parallelism-inducing groups. Where

central collineation was used previously, we replace the argument using the assumed

sharply transitive action of the group in question.

6. Still more examples. We consider the following group, which with the full elation

group of the associated Desarguesian spread Σ1, is a putative parallelism-inducing

group for Desaguesian spreads

nHj
y :
〈
(x,y) 
 �→

(
xh

λ(m)
mj,yh

λ(m)
mj+1

)
:m∈ GF

(
q2)−{0}〉. (6.1)
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Theorem 6.1 (see [3]). Any nonlinear parallelism-inducing group for Desargue-

sian spreads has the form EnHj
y for some integer j. The group is, in fact, parallelism-

inducing provided that the second Desarguesian spread admits

〈
(x,y) 
 �→

(
xh

λ(m)
,yh

λ(m)
)

:m∈ GF(q)−{0}
〉

(6.2)

as a collineation group and (qi−i−1,q2−1)= 1, where hr = q2 and λ(m)= 1, if and

only if m∈ GF(m).
Note that in an EnHj

y group, there is a homology subgroup of the principal Desar-

guesian spread of order, exactly, q2(q2−1)/r .

Now, take any normal subgroup S of G that contains G� and apply the previ-

ous results. There are a tremendous number of mutually nonisomorphic ways to

produce parallelisms. We may extend the definitions of m-parallelisms to include

those obtained from the nearfield parallelism-inducing groups as well as the (m,n)-
parallelisms. Generally speaking, different nearfield groups will produce nonisomor-

phic parallelisms.

Acknowledgment. The second author gratefully acknowledges the support of

FONDECYT project no 1010423.

References

[1] N. L. Johnson, Subplane Covered Nets, Monographs and Textbooks in Pure and Applied
Mathematics, vol. 222, Marcel Dekker, New York, 2000.

[2] , Some new classes of finite parallelisms, Note Mat. 20 (2000/01), no. 2, 77–88.
[3] N. L. Johnson and R. Pomareda, Parallelism-inducing groups, to appear in Aequationes

Mathematica.
[4] , Real parallelisms, to appear in Note Mat.
[5] , Transitive deficiency one parallelisms, to appear in European J. Combin.

Norman L. Johnson: Department of Mathematics, University of Iowa, Iowa City, IA
52242, USA

E-mail address: njohnson@math.uiowa.edu

Rolando Pomareda: Department of Mathematics, University of Chile, Casilla 653,
Santiago, Chile

E-mail address: rpomared@abello.dic.uchile.cl

mailto:njohnson@math.uiowa.edu
mailto:rpomared@abello.dic.uchile.cl

