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Mann’s sequences are difficult to accelerate in the presence of a nonhyperbolic fixed point.
New accelerators are constructed for Mann’s sequences which are useful even for other
sets of very slowly convergent sequences.
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1. Introduction. One method for the numerical computation of a solution of a non-

linear equation of the form x = g(x) is to choose an initial value x0 and the iterative

process xn+1 = g(xn) in the hope that the sequence (xn), generated by g, converges

to a fixed point x∗ of g (which is a solution of g(x)−x = 0). To assure that such

a sequence converges to x∗, we often use fixed-point theoretical results such as the

Banach fixed-point theorem (see [15] for a survey on fixed point theorems). Namely,

if an operator A : X � X, defined in a complete metric space X is a q-contractor, that

is, d(Ax,Ay) ≤ qd(x,y) with 0 ≤ q < 1 and d the metric in X, then the equation

x = Ax has a unique solution x∗ in X and for any x0 in X, the iterative process

xn+1 = Axn converges to x∗. So, for a real differentiable iteration function g to be

a q-contractor, we must have |g′(x∗)| ≤ q < 1. When g′(x∗) = 1, the situation is

somewhat different, and that is why this case has its own name—the nonhyperbolic

case. Even when the existence and unicity of a fixed point for a nonlinear equation is

guaranteed still remains the computational task of computing fast such a fixed point

x∗ when x∗ is nonhyperbolic. The main aim of this work is precisely the computa-

tion of a fixed point x∗ (which is assumed to exist) for certain type of convergent

fixed point sequences, xn+1 = g(xn) verifying g′(x∗)= 1, so converging very slowly.

The type of sequences we will consider is generated by iteration functions g of the

form g(x)= x+φ(x)(f(x)−x), where f : [0,1]� [0,1] has at least one fixed point

x∗, f ′(x∗) = 1 and φ(x∗) ≠ 0 (see Definition 2.1 for the specific type of sequences

to be considered throughout the paper). This kind of sequences belongs to a larger

class known as Mann’s sequences [11]. Convergence results for (hyperbolic) Mann’s

sequences have been obtained by Dotson [4]; however, convergence issues of Mann’s

sequences are out of the scope of this work. We will always assume that the sequences

in study are convergent, and we mainly address the question of how to accelerate their

convergence.

Several authors tried to accelerate the convergence of sequences generated by iter-

ation functions of the form g(x) = x +φ(x)(f(x)−x). For instance, Kowalewski

in [9] showed that when x∗ is hyperbolic for f (|f ′(x∗)| < 1), the Aitken’s pro-

cess [1] and Ney’s transformation [12] accelerate the convergence. However, she failed
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to find an accelerator in the nonhyperbolic case, that is, when f ′(x∗) = 1. Nonhy-

perbolic Mann’s sequences are logarithmic convergent fixed-point sequences, that is,

sequences (xn) �→n x
∗ such that limn→∞(xn+1−x∗)/(xn−x∗)= 1 (properties charac-

terizing some general subsets of logarithmic real sequences are given in [8]).

Nonhyperbolic Mann’s sequences are used here as an application of a general ap-

proach developed by Graça in [5, 6]. This approach is based on the following scheme:

given an iteration map g, having an unknown nonhyperbolic fixed pointx∗ constructs,

in a first step, a new map h, with the same fixed point such that h′(x∗) ≠ 1 (for in-

stance by a simple newtonisation of the function x − g(x)). In a second step, the

function h is used to construct another iteration map H having the same fixed point

but verifying H′(x∗)= 0. This means that a nonhyperbolic fixed point for g becomes

a super attracting fixed point for H. In other words, given a very slow convergent se-

quence generated by an iterative process governed by the map g, we can construct H
in order to generate a sequence converging rapidly to the same fixed point of g.

The construction process of the maps h andH is quite general and obeys to the sin-

gle notion of combined iteration function (see Definition 3.1) introduced in Graça [5].

Combined iteration functions are useful in many other applications for the computa-

tion of nonhyperbolic fixed points. For instance, an obvious application is the com-

putation of multiple roots of a polynomial without the explicit knowledge of their

multiplicities.

The first two sections are devoted to the introduction of the necessary notions

and definitions as well as to the proof that we can always accelerate the convergence

of certain sets of nonhyperbolic sequences of Mann. The paper ends with numerical

examples showing the acceleration effectiveness of our iteration functionsH. In these

examples, iterative processes, having at least order two of convergence, are obtained

enabling the computation of good approximations of nonhyperbolic fixed points of

Mann’s sequences in a few iterations.

2. Definitions. In Dotson [4], a (normal) sequence of Mann (xn) is defined by

xn+1 = xn+αn
(
f
(
xn
)−xn)= g(xn,f (xn),αn), (2.1)

where f : [0,1] → [0,1] is a Lipschitz function with a finite number of fixed points,

and αn is a real sequence such that

(a) 0<αn < 1, for all n,

(b) limn→∞αn = 0,

(c)
∑∞
n=0αn divergent.

By definition, a sequence of Mann is a fixed-point sequence generated by an ite-

ration function g, depending on a given function f and an auxiliary sequence αn.

This type of sequences bears Mann’s name since in [11], Mann has studied a Cesàro

process, choosing for (αn) the sequence (1/n). For examples of Mann’s sequences and

conditions for the existence of a fixed point as well as the convergence of a normal

sequence of Mann, see Dotson [4]. Our main interest here is not the study of Mann’s

sequences in general but rather the fast computation of nonhyperbolic fixed points

of a certain type of sequences of Mann.
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Kowalewski [9] considered the question of accelerating the convergence of Mann’s

sequences, where αn+1 = αn(1−αpn) and p > 1. In particular, Kowalewski has shown

that for a hyperbolic fixed point x∗ of f , either Ney’s transformation or the Aitken’s

∆2 process accelerates the convergence of (xn). The same work also presented some

study cases for a nonhyperbolic fixed point of f being, however, unable to find any

accelerator. As it will be shown, we are always able to accelerate these nonhyper-

bolic fixed-point sequences by means of our iteration function H (see examples in

Section 4).

In this work, whenever we refer to a (nonhyperbolic) Mann’s sequence, we are adopt-

ing the following definition.

Definition 2.1. Let x∗ be an isolated nonhyperbolic fixed point (f ′(x∗)= 1) of a

given real function f : [0,1]� [0,1], continuously differentiable in a neighbourhood

� of x∗, and consider the sequence xn+1 = g(xn), x0 ∈�, where

g(x)= x+φ(x)(f(x)−x) (2.2)

and φ :]0,1[→R is

φ(x)= x(1−xp), p ∈R, p > 1. (2.3)

The sequence (xn) is called a nonhyperbolic sequence of Mann.

Note that forφ defined by (2.3) the sequenceαn+1 =φ(αn) is a fixed-point sequence

verifying the conditions (a), (b), and (c) in Section 2. Indeed it is not hard to see that

(αn) is a decreasing sequence of positive terms converging to zero, and as αn+1 =
α0
∏n
i=0(1−αpi ), we can easily deduce that

∑∞
i=0α

p
i diverges and also that the condition

(c) is verified.

As we will see later, the sequence (αn) does not play any particular role in the

application of our accelerators for nonhyperbolic Mann’s sequences.

Interesting cases arise when the function f in (2.2) is polynomial and x∗ is a mul-

tiple root of f(x)−x = 0 of multiplicity m, m≥ 2, that is, (see [2, page 87]) when

f(x)= x+(x−x∗)ma(x), a
(
x∗
)
≠ 0, (2.4)

and a(x) is continuous at x = x∗ (see Section 4).

With respect to the notion of accelerator, we will adopt a convenient definition for

the present context of iteration functions.

Definition 2.2. Let g andu be two continuously differentiable iteration functions

in a neighbourhood � of a common fixed point x∗, xn = g(xn−1) �→n x
∗, and tn =

u(tn−1) �→n x
∗, x0 ∈�.

We say that u is an accelerator of g in � (or the sequence (tn) converges faster than

(xn)) if u′(x∗)= 0 and g′(x∗)≠ 0.

Note that by the mean value theorem and for all n> 0, we have

xn−x∗ = g′
(
ξn
)(
xn−1−x∗

)
, ξn ∈

(
xn−1,x∗

)
or ξn ∈

(
x∗,xn−1

)
,

tn−x∗ =u′
(
τn
)(
tn−1−x∗

)
, τn ∈

(
tn−1,x∗

)
or τn ∈

(
x∗, tn−1

)
.

(2.5)
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Thus

tn−x∗
xn−x∗ =

u′
(
τn
)(
tn−1−x∗

)
g′
(
ξn
)(
xn−1−x∗

) . (2.6)

By the assumptions of g and u, there exists an integer N such that

∣∣∣∣ tn−x∗xn−x∗
∣∣∣∣<

∣∣∣∣ tn−1−x∗
xn−1−x∗

∣∣∣∣, ∀n>N. (2.7)

Therefore, limn→∞(tn −x∗)/(xn −x∗) = 0, which is the usual condition for faster

convergence (see [3, page 2]).

3. Accelerating Mann’s sequences. In the presence of a nonhyperbolic fixed point

x∗ of a given iteration function g, it is possible to construct an accelerator for g
using a suitable combination of g with another iteration function h for which x∗

is a hyperbolic fixed point (h′(x∗) ≠ 1). For that purpose, in [5] we have defined a

combined iteration function.

Definition 3.1 (combined iteration function). Let g and h be any two differentia-

ble functions in a neighborhood � of a common fixed point x∗ and h′(x∗) ≠ 1. A

combined iteration function H = C(g,h) is defined by

H(x)= C(g,h)(x)= h(x)−g(x)h
′(x)

1−h′(x) , ∀x ∈�. (3.1)

The requirement of x∗ to be a common fixed point of g and h in the definition of

H implies that x∗ is also a fixed point of H.

A straightforward computation of H′(x) gives the following proposition.

Proposition 3.2. If x∗ is a nonhyperbolic fixed point of g with g′(x∗) = 1, then

H′(x∗)= 0 where H = C(g,h).
Proposition 3.2 shows that the iteration mapH is always an accelerator of the given

nonhyperbolic map g. The main question now is how to choose the map h to be used

in C(g,h).
Next we show that, in general (if the given map g has good differentiability proper-

ties), a natural choice for h is Newton’s map.

Proposition 3.3. Consider x∗ to be an isolated fixed point of a sufficiently many

times differentiable iteration function u such that

u′
(
x∗
)= 1, u(j)

(
x∗
)= 0, 2≤ j ≤m−1, u(m)

(
x∗
)
≠ 0, (3.2)

for some integer m≥ 2. Let h be given by

h(x)=


u(x)−xu′(x)

1−u′(x) if x ≠ x∗,

x∗ if x = x∗.
(3.3)
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Then h is differentiable at x∗ and

0<h′
(
x∗
)= 1− 1

m
< 1. (3.4)

Proof. The result follows using Taylor’s series for u and u′ in the computation

(by definition) of h′(x∗) (see, e.g., [7, 10, 13]).

The function h of the previous proposition is a particular type of a combined it-

eration function; namely, h(x) = C(x,u), which also coincides with the Newton’s

iteration function N(x)= x−Ψ(x)/Ψ ′(x) for Ψ(x)= x−u(x). Hereafter, we refer to

h given by (3.3) as the newtonisation of u.

An immediate consequence of Propositions 3.3 and 3.2 is the fast computation of

a multiple root of an equation x−u(x) = 0. Choose for h the newtonisation of u;

that is, h(x) = C(x,u), and for g either u or even the identity map (i.e., g(x) = x),

then H = C(g,h) will be an accelerator of the original map. Note that if we choose for

h the Newtonisation of u and for g the identity map, then H = C(g,h) corresponds

to a double newtonisation of the original map u. Although under the conditions of

Proposition 3.3 we get for h a (1−1/m)-contractor, this is not a necessary condition

for the function h to be used in Proposition 3.2. We can choose h to be even a func-

tion verifying |h′(x∗)|> 1, the respective iterative process generated by H = C(g,h)
still being an accelerator of the nonhyperbolic process generated by g. So, combined

iteration functions are also useful for the computation of nonhyperbolic fixed points

even when we choose an iteration function h such that the sequence xn+1 = h(xn) is

locally divergent.

We apply the previous results to Mann’s nonhyperbolic sequences.

Theorem 3.4. Let g(x) = x+φ(x)(f(x)−x) be a Mann’s iteration function as in

Definition 2.1, and m≥ 2 an integer such that

f
(
x∗
)= x∗, f ′

(
x∗
)= 1, f (j)

(
x∗
)= 0, 2≤ j ≤m−1, f (m)

(
x∗
)
≠ 0. (3.5)

For u, either f or g and h= C(x,u), then

(i) h′(x∗)= 1−1/m;

(ii) H = C(g,h) and H = C(f ,h) are accelerators of g.

Proof. (i) The derivative of order k of g is

g(k)(x)=
k∑
i=0

(
k
i

)
φ(k−i)(x)

(
f(x)−x)(i), (3.6)

and so the hypotheses on f imply that g and f satisfy the hypotheses of the function

u of the Proposition 3.3. So, h= C(x,g) and h= C(x,f ) satisfy h′(x∗)= 1−1/m.

(ii) By (i), whenh= C(x,f ) orh= C(x,g)we haveh′(x∗)≠ 1, and so the Proposition

3.2 gives that H = C(g,h) and H = C(f ,h) are accelerators.

4. Numerical examples. Let f(x) = −(1/3)x3 + (1/2)x2 + (3/4)x+ 1/24 (see [9,

page 138]), having the fixed pointx∗=0.5 with f ′(x∗)=1, f (2)(x∗)=0, and f (3)(x∗)=
−2 (i.e., x∗ is a root of multiplicity m = 3 for the equation f(x)−x = 0). Consider
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Table 4.1. h= C(x,f ), H = C(g,h).

g h H
0.8 0.8 0.8

0.797408 0.7 0.505184

0.794862 0.633333 0.5

0.792361 0.588889 0.5

the auxiliary iteration function φ(x) = x(1−x2). The corresponding nonhyperbolic

Mann’s iteration function is

g(x)= x+φ(x)(f(x)−x)= x
24

(
25−6x+11x2−2x3−12x4+8x5),

g′
(
x∗
)= 1, g(2)

(
x∗
)= 0, g(3)

(
x∗
)=−0.75≠ 0.

(4.1)

The hyperbolic iteration function h= C(x,f ) is given by

h(x)= C(x,f )(x)= 1
6
(1+4x) (4.2)

and h′(x∗)= 1−1/m= 2/3≠ 1.

The combined iteration function H = C(g,h) is

H(x)= C(g,h)(x)= 1
12

(
6−x+6x2−11x3+2x4+12x5−8x6), (4.3)

leading to an iterative process of order three of convergence [13, pages 9–12] since

H′(x∗)=H(2)(x∗)= 0, and H(3)(x∗)= 1.5≠ 0.

Table 4.1 shows the values of the first three iterations, respectively, for the iteration

functions g, h, and H, beginning with x0 = 0.8 and computed using Mathematica [14]

with machine precision.

Now, take the same f and p = 100 in the auxiliary iteration functionφ given in (2.3).

The corresponding nonhyperbolic Mann’s iteration function g is

g(x)= x+ 1
24
x(−1+2x)3

(−1+x100), (4.4)

with g′(x∗)= 1, g(2)(x∗)= 0, g(3)(x∗)=−1.

Now, choose h= C(x,g)

h(x)= C(x,g)(x)= 6x2+100x101−206x102

−1+8x+101x100−208x101
,

h′
(
x∗
)= 0.666667≠ 1.

(4.5)

The accelerator H = C(g,h) has a cumbersome expression which will be omitted

for the sake of simplicity. We get

H′(x∗)= 0, H(2)(x∗)=−1.33333≠ 0. (4.6)
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Table 4.2. h= C(x,g), H = C(g,h).

g h H
0.8 0.8 0.8

0.7928 0.711111 0.496525

0.786166 0.647077 0.499992

0.780025 0.601504 0.499998

So, the iteration function H leads to a second-order iterative process (see Table 4.2).

Note that there can be considerable loss of numerical accuracy if too many iterations

are used.

5. Conclusions. In this paper, we have developed a new method of computing non-

hyperbolic fixed points for sequences of Mann. The procedure is illustrated with two

test sequences which are known to be difficult to accelerate.

The same ideas can be used to construct algorithms for the computation of nonhy-

perbolic fixed points of a general iteration function in R.
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