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ABSTRACT. In the present work it is studied the initial value problem for an

equation of the form

k k k-3
L 3 u - EE: Lj 9 u ,
atk =1 3 tkyj
where L is an elliptic partial differential operator and (Lj tji=1, ... , k)

is a family of partial differential operators with bounded operator co-
efficients in a suitable function space. It is found a suitable formula for
solution. The correct formulation of the Cauchy problem for this equation is

also studied.
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1. INTRODUCTION.

Consider the equation

q q _k-j
sz a (t) D D -}_"_f 7 Aq’j ()0 p{ M, (1.1)

la] = la| =

where q = (ql,... , qn) is an n-tuple of nonnegative integers, and

. slal ,
q q
Bxll. Loax
in which |q| = q1+...+ a4, H Dt = %— , and m, k are positive integers.

It is assumed in equation (1.1) that the follewing conditions are satisfied;

(a) The coefficients (aq(t), |q| = 2m) are continuous functions of t in [0,1].

(b) For each te [0,11], aq(t) p% is an elliptic operator.
lqi = 2m

(c) The coefficients (Aq,j (t), Iql =2m , j =1,...,k) for each t € [0,1]
are linear bounded operators from L2 (En) into itself, where LZ(En) is the
set of all square integrable functions on the n-dimensional Euclidean space En.
(d) The operators (Aq,j(t)’ |q| =2m, j=1,...,k), are strongly continuous in
t€f0,1].

In section 2, we shall find a solution u(x,t) of equation (1.1) in a
suitable function space so that t € (0,1), xEEn, and the solution u(x,t) satisfies

the following initial conditions

D‘l u(x,t) = £, (x), j = 0,1,2,...,k-1. (1.2)
t=0 J

The uniqueness of the solution of the problem (1.1), (1.2) is also proved. Under

suitable conditions ([ 3] ,[4]) we establish the correct formulation of the Cauchy

problem (1.1) and (1.2).
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2. A GENERAL FORMULA FOR THE SOLUTION

Let wm(En) be the space of all functions f € LZ(En) such that the distri-
butional derivatives DIf with |a| € m all belong to LZ(En)’ [8l.

We shall say that u is a solution of equation (1.1) in the space Wzm(En),
if for every t € (0,1) the derivatives Di u, j=0,1,2,..., k exist and are
members of Wzm(En) and if u satisfies equation (1.1).

We are now able to prove the following theorem.

THEOREM 1. 1If fj € Wzm(En), j=0,1,..., k=1 and if 4m > n, then there
exists a unique solution u of the initial value problem (1.1), (1.2) in the
space Wzm(En).

PROOF. As in (6] the differential operators (D%, |q| = 2m) can be trans-

formed into
le=rlv ™™g e wz“‘(En) , (2.1)
q

where V2 = D2 + ... + D , RY = Rl%" Rﬁn, R.is the Riesz-transform defined

1 n n 3
by _(ot1 X, -y

Re=-11 2 r@p | A= ey,

|x-y
n

I is the gamma function, i =Yy-1 and |x|2 = xi +...+ xﬁ , (see [11).

Using (2.1) we see that equation (1.1) is formally equivalent to,
k

pa 2 (®) & P =y A j(t)quz“'D‘t"J u, (2.2)
lqa] = 2m j=1 |q]=2m ?°
Using the notations
2m 2m
v u=sv, v fj = 8j,

a (t) RY =1 (v), A .(t) RY = H (v),
ﬁ;;:;:;m q ° lq = 2m 953 3

We obtain from (2.2) in a formal way the equation
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H (t) DXy = jff H,(t) D7 (2.3)
o £’ = = ] t U :

Since the operator z ; aq(t) p? is elliptic, it follows that the operator
q| = 2m

HO (t) has a unique bounded inverse H;l(t) from L2 (En) into itself, for each
t € [0,1]. Applying H;l(t) to both sides of (2.3) we get

K L k-j

D.v=2' H (t) H(t)D -~ v. (2.4)
t o o 3 t
j=1

Since the operators Rj s J=1,..., n are bounded in LZ(En)’ it can be easily
proved that Hj(t), j =1,...,k are bounded operators in Lz(En) for each
t ¢ [0,1]. It is convenient to introduce the following notations in order
to complete the proof by considering the problem in a Banach space to be
defined below.

Let A(t) denote the square matrix,

* * * * )
H, (t) Hy(t) ... H_,(t) H (t)
A(t) = 1 0 R ¢ 0 ,
0 I 0 0
0 0 e I
* 1 y -
where Hj(t) = H; (t) Hj(t), , j=1,2,..., k and I denotes the identity
operator.

Equation (2:4) can be written in the form

d v(e) _

It A(t) Vv(b), (2.5)

where V is the column matrix
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[ v,
V= V2
Ve
L -
_ k-j 2m
and vj Dt v u.

The column vector V satisfies formally the initial condition

-
8r-1

V(o) = 82

]
(2]

8,

Let B denote the space of columm vé;tors V, with the norm
k
¥l = 22 1wl 3, @

2
vhere ||£]| L) = S‘ £ (x) dx .
E

It is clear that B is a Banach space and A(t) is a linear bounded operator

107

(2.6)

from B into itself for each t € [0,1]. According to the conditions imposed

on the coefficients aq(t) R Aq j(t) , it can be seen that A(t) is strictly
b4

continuous on [0,1].

Since gj € L2(En), j=0,1, ... , k-1, we find that the columm vector
G is an element of the space B. The abstract Cauchy problem (2.5), (2.6)

can be solved by applying the above argument [7]. In other words, there

exists for each t € (0,1) a unique operator Q(t) bounded in the Banach space

B such that the formula

V() = Q(t) G,

2.7)
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represents the unique solution of the problem (2.5), (2.6) in the space B. The

operator Q(t) can be represented in the matrix form

Q) Q) v Q)
Q () QL) .o Q6

- -
where (Qrs(t) ,r=1,...,k, 8 =1,..., k) are bounded operatros in the space

Lz(En) for each t in [0,1].

Using (2.7) and (2.8) one gets

vr(x,t) = D:—r yem u(x,t)
k k 2n
= 2;% Qrs(t) B-s © ;éi Qrs(t) v fk.--s (2.9)

From (2.9) we get immediately
ux,t) = (71 Zk () V0 £ (2.10)

’ 2o %s k-s’ y
where (VZm)-l is a closed operator, defined on LZ(En) and representing the
inverse of Vzm.
We prove now that the formula (2.10) which we have obtained in a formal way
is in fact the required solution of the problem (1.1), (1.2) in the space

m
W ).
2m, -1 2m
Since (V7)) is a closed operator from L2 (En) onto W (En)’ it follows
immediately from (2.10) that
2m
u €W (E),

for each t ¢ [0,1].
Now the differential operator 4 in equation (2.5) denotes the abstract

dt
derivative with respect to t in the space LZ(En)’ i.e. if ft € LZ(En) for
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each t €.(0,1), then 4 ft is defined by

dt
d ¢ - £, vh
dat ‘¢ Tty e wWhere
Af .
lim || —% - £ 0
At t L, (E) ?
>0
and Aft = ft+At - ft'
d . 2m-1 _ o2m-l 4
Since o v £, v 3t ft’ ft € LZ(En)’

it follows from (2.9) and (2.10) that

k-r k k-r

d 2m, -1 d 2m
Se—u=( “5 Se——0q (t) V" £ _
dtk r & dtk r ks k-s

109

a3 (2.11)
The last formula proves that
k-r
. kr € w'" (En)’
dt
r=1,2, ... , k, and t ¢ (0,1).
Using (2.4) and (2.11) one gets,
k
d : € wzm (En)’
dt
for each t € (0,1).
In [5] we have proved that if u du c "2m (E) andLunE,L (E)
> de n dt 2 “n” 2
IqI = 2m, 4m > n, then the partial derivative Dtu exists in the usual sense

and that it is identical to the corresponding abstract derivative.

these conditions are satisfied by u in (2.10), therefore the same conclusion

applies. In a similar manner we can deduce also that the partial derivatives

Di u, j = 1,2,... , k exist in the usual sense for each t ¢ [0,1], x € En and

that they are identical to the corresponding abstract derivatives.
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Since Q(0) G = G , we have

I , T =8
Q_ (0) =
s 0 ,r#s, ;}

720 4(x,0) = = Q (0) VR & =vmg (x)
4 2;; ks k-s o

therefore

The last formula leads to u(x,0) = fo(x). In a similar manner we can prove
that
D{ u(x,0) = fj(x) s 3 =0,1,...., k,

which complete the proof. (Compare [2]).

THEOREM 2. 1If the coefficients (A, (t) , lqa] = 2m, § = 1,2,... ,k)
’
commute with Dr’ r=1,2,..., n, then the solution of the problem (1.1), and

(1.2) is given by the formula

k
u = 3Zg;- Qs (B) £ g (2.12)
PROOF. For any f € W'D (E_), we have RY ¢2® ¢ - p2m pY (2.13)

Since the operators (Aq (t) Iql =2m, j =1,... , k) commute with Dr s
b

J
r=1,2,..., n, it follows that the operators (Aq 3 ) |q] = 2m, j =1,..., k)
b
commute with (Rg, lql = 2m) and according to (2.2) and (2.13) we can write
k
VR @ D u- ¥ B @K ul =0
o t 3 t
j=1
The last equation leads immediately to
¥u = wt zk: H, (t) kIl
t ° i3 3 t :

Applying similar steps to theorem (1), we obtain the required result.

COROLLARY. If the operators (Aq j (t), Iq] = 2m, j=1,..,k) commute with
9’
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1,2,..., n, then the Cauchy problem (1.1), (1.2) is correctly

formulated.

PROOF. The proof of this important fact can be deduced immediately by using

formula (2.12), (compare [3], [u41]).

[11
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