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i. INTRODUCTION.
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The history of linear partial differential equations is more than two

centuries old; it is closely related with the development of functional

analysis, in which it is a source of very important notions such as spectral

theory and the theory of distributions. It is remarkable that this history is

full of a series of pitfalls.

2. It was natural to think that ordinary differential equations would give a

model of the behavior of solutions which would later generalize to partial

differential equations. The paradigm in this connection was the local unique-

ness and existence theorem of Cauchy for a vector-valued differential equation

y’ A(x,y)

where x is a real variable, y a vector in Rn, A is a mapping from I x H to H,

I is an interval of R and H is an open subset of Rn. In fact a general theorem

of such a nature is the theorem of Cauchy-Kowalewski and Himgren: Let us

consider the system of r equations in r real-valued unknown functions Vl,

v2
v
r

of p+l real variables xI, x2, Xp+I, of the form

3v 3vI
3vI

v Bv
r r) (i < j < r) (i)__i__ H x2 Vl v2 "’Vr xI x

2 Xp_1 xBVp+I J (Xl Xp+I
p

where the right-hand side expressions do not contain derivatives with respect

to Xp+l, and H. are supposed to be real and analytic functions of p+l + r + rp

variables in a neighbourhood V
0

of the origin in R!+I + r + rp. Under these

conditions there exists a neighbourhood V c V
0

of the origin in R
p+l

and a

solution (Vl, vr) of this system consisting of functions analytic in V such

that vj(xI x 0) 0 for i j r in V n R Moreover if all H. are
P P 3
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linear in all vj and this system of functions is the only system of C

class having such properties. For equations where the hypothesis of analytlcity

does not hold we have only one analogous theorem: the one concerning one

single equation (i) (r i) where the right hand H is real-valued and belongs

to class C with respect to the variables Xl, x
2 Xp+l, V _[V 8__V

xI Xp
It was not till 1955 that it was shown that these results could not be

generalized, thanks to a series of counter-examples: the first example being

the celebrated example of H. Lewy of a linear equation of order I with complex

coefficients C(which is equivalent to a system of two real equations) having

no solutions (even if distributional solutions are admitted); examples of

equations such as

)V Va(x, y) x where a is a complex valued C function for
Y

which the Cauchy problem with V(x, 0) 0 has more than one solution; finally

the example by Plls
v

of an elliptic equation in a ball, with C- coefficients

which does not have a global solution but has local solutions in the nelghbour-

ood of every point.

3. From the work of Laplace, Fourier, Poisson and Cauchy attention was drawn

towards linear equations with constant coefficients not only because they were

important for application in Physics, but because the Fourier-Laplace transform

reduces such problems to algebraic ones. If P .u. [ A Deu where the A

are constants, we have II < m

F(P.u)(E) (.A(2,i)) F u(),

and from the equation P.u f, we have
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( A (2i) =) _F u() _F f($),

II <m

provided the transforms of u and f exist; if v is a function satisfying this

equation and if its inverse Fourier transform F v exists it will be a solution

to the equation P .u f. The extension of he Fourier transformation to

tempered distributions has further enlarged the scope of applicability of

this method, permitting among other things the proof in all cases of the

existence of elementary solutions satisfying Pu 60 where 60 is Dirac measure

at the origin. Finally, a device introduced by Korn, which has been extensively

used for the local study of linear equations with variable coefficients,

consists in "approaching" the equation considered by re’placing the coefficients

by their values at the point x0
in the neighbourhood of interest; from the

knowledge of the solutions considered one then succeeds in many cases in

deriving a solution of the original equation. But it is clear that most of

the problems which are posed in the theory of linear partial differential

equations are invariant under diffeomorphism (for example the Dirichlet problem

with smooth boundary); it is therefore strange to emphasize _a priori a class of

equations which do not possess such an invariance property. Their consideration

is justified for the problems which are only translation invariant (for

example the Dirichlet problem for sphere.s); these then subordinate to the

problem of differential operators on the homogeneous spaces G/H, Which are

invariant under G.

4. Before 1940, the works on linear partial differential equations were mainly

devoted to 2nd order equations. For hyperbolic equations the generalization

to higher order equations proceeds in a natural way, but for elliptic

equations the existence (peculiar to 2nd order) of the maximum principle

which permits an elaborate study of solutions, completely distorts the
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perspective when one wishes to pass to elliptic equations of arbitrary order.

5. From 1950 on, the theory of distributions, in conjunction with the spectral

theory of Hilbert-Carleman-von Neumann, has permitted considerable progress,

notably in the treatment of the boundary value problems for elliptic or hyper-

bolic equations of any order.

The main idea is to use the theory of distributions to construct function

spaces (usually Hilbertian), the most important of which are the Sobolev spaces

HP(); for an integer p >0, this space consists of distributions T on an

open set of R
n

such that T and all its distributional derivatives DST for

Isl < p belong to L2(); defining the square of the norm of T as the value

f IDTI 2
dx we obtain a Hilbert space. Let P be a differential

operator which to every u C assigns the function [ As(x) De U(x) where A

belongs to C in ; then we define P T for all distributions on by the same

formula, and then one may consider distributions T satisfying P T f for a

given function or distribution f. Under certain restrictions on the operator _P

and on the given boundary values one can establish a_ priori inequalities of the

<II u I15 lP.ull5 / II for on fu = ion  spa=e 

E.. By general results of functional analysis (based upon the Hahn-Banach

theorem and general properties of Hilbert spaces), one can in many cases prove

the existence and the uniqueness of solutions which are known _a priori only to

belong to the functional spaces under consideration. This method has become

very popular among the specialists, who have often been satisfied with these

’eak" solutions and given only secondary importance to proving that when

f C, the weak solutions of P u f should be genuine C solutions satisfying

in the classical sense the given boundary conditions. The proofs consist
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in difficult manipulations of _a pr.iori inequalities, using for instance, the

fact that the intersection of the spaces Hm(), as m tends to =, is the space

of C functions. It may also be noted that these methods are non-constructive

even when they establish the uniqueness of the solution.

Nevertheless the results obtained by this method have been spectacular, so

much so that by 1960, the specialists had the impression that they had arrived

at an almost final state of the general theory.

6. Now the perspective has completely changed; the books written on the

subject during the period 1960-65 are outdated to a great extent. This is due

to the introduction of a new technique: that of pseudo-differential operators

and its generalizations.

One can associate the initial idea of this theory to the earlier results

on the solution of certain boundary value problems for linear partial dif-

ferential equations such as the Dirichlet problem for the Laplace equation

or the Cauchy problem for wave equations; when such a problem P u f has

a unique solution we can express it in the form of an integral operator

u=K. f,

where

(K f) (x) [K(x,y) f(y) my

K being any integrable kernel function. It seems therefore that there is a

fundamental difference in nature between a differential operator P and its

inverse K. Is it not possible to consider the differential and integral

operators as if they all belong to a larger class of operators forming an

algebra in which the notion of inverse would be the natural algebraic notion?

This is an old idea which can be credited to Lelbniz and which began to

be realized in Riemann-Liouville’s derivative of fractional order. The first

reasonably general and modern attempt in this direction has been the theory
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of singular integral operators of Calderon-Zygmund, which introduced a

significant link between the above theory and harmonic analysis. Towards

1963 this theory was considerably generalized by Kohn, Nirenberg, and Hrmander;

as for the derivative of Riemann-Liouville we can present its fundamental

idea by writing a differential operator as an integral operator by means of

the Fourier transformation. If P is the differential operator defined above

where the A are C functions in Rn, and if f S (Rn)_ we can write

2i(x )D f(x) e (2i)

Rn

and it follows that

Ff()d

2i(x )(P. f) (x)= e

R
n

where the symbol

Op (x, ) Ff()d, (2)

p (x,) [ A (x) (2i) (3)

is a polynomial of degree m in 6 R. which we write Sp= + spl where

is homogeneous of degree m in and opl is the sum of the terms of degree < m

in ; is called "the principal part" of P and has the important property

that if Q is another differential operator we have.

O O O

oQp [ (4)

The generalization consists in replacing the symbol in (2) by a more

general C function with prescribed growth condition as II tends to infinity:

for the symbol Op of the form (3), D p has the same asymptotic order in

as p has and DB Op is a polynomial in of degree m- 181- To get general

pseudo-differential operators, we impose on p the conditions



J. DIEUDONN

IDax D8 p (x,)l < C
SL

(i + II)m- 181, (5)

for x L, L being an arbitrary compact set; but this time m is any real

number. We then say that p is a symbol of order m and P is a pseudo-

dlfferential operator of order m, The ease when p + e, e being a

symbol of order < m and is positively homogeneous of degree m in is the

ost interesting one. We thn say that is the principal part of P. The

essential properties of these operators are as follows:

I) If p is defined for x , _Rn, _P u is defined for u _D(), and

we have P u E().

II) If P u D() for u D(), QP is defined and is" a pseudo-differentlal

operator of order m+r for all pseudo-differential operators of order r;

and furthermore if Q admits a principal part, then it is also true for

QP and we have the relation (4).

III) If m < -n, P is an integral operator, and if m < -n-r for an integer

r > 0, the kernel of P is of e.lass Cr. As it is well known that integral

operators are much more mnageable than differential operators, we thus

conclude that a pseudo differential operator is all the better when m is

negative and large in absolute value.

7. We would like to invert a pseudo-differential operator P of order m by

a pseudo-dlfferentlal operator of order-m; but the relation QP I, implies

O O
i and consequently we must have (x, ) # 0 for # 0; these

operators are called elliptic operators and these are the only ones for which

we can hope to find an inverse by these methods.

Now comes the idea of a parametrix, which dates back to E.E. Levi and

Hilbert (1907). We are not looking for a true inverse of P but only a

pseudo-differential operator that is an approximate inverse of P in the

sense that PQ--I + R where R is "less singular" than P. To obtain a
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solution of __P u f, we try to find it in the form u Q.v. This yields

v + R v f; if R is an integral operator we then arrive at an integral

equation which in principle is more manageable than a partial differential

equation.

8. This idea has been realized with the aid of the theory of Schwartz’s

Kernels. For any pseudo-differential operator P we can define P T for

any distribution T, with compact support, P T evidently being a distribution.

Now, among the "good" pseudo-differential operators, there are some "better

than others"; these are the integral operators with C Kernels, called

smoothing opera.tors; they are characterized by the fact that K T E() for

all distributions T 6 E’ () (in a nutshell, we may say that K transforms the

worst distributions into the best possible ones); for all pseudo-differential

operators P, P__K and KP are also smoothing operators. The existence theorem

of a parametrix can then be made more precise as follows: if P is an elliptic

pseudo-differential operator of order m, then there is an elliptic pseudo-

differential operator Q of order -m satisfying QP I + R and PQ I + R’,

where _R and R-- are smoothing operators. We then not only conclude the

possibility of obtaining solutions of P u f with the help of integral

equations, but also the fundamental property of hypoelliplicity of elliptic

operators: if T E-- () is such that P T f E(), it follows that

T + R T =Q f 6 E(), and since R is smoothing, we have also that R T

E(), from which we finally conclude that T 6 E().

9. The idea of the proof of the existence theorem of parametrices is

particularly interesting; the fact that smoothing operators form a two-sided

ideal in the algebra of pseudo-differential operators suggests calculating

modulo this ideal: we then write P1 P2 if P1 P2 is smoothing. The

hypothesis that (x,) # 0 for # 0 leads us to take as the first
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QOapproximation to the parametrix namely a pseudo-differential operator such

o o -i
that (o[) we then find Q__o [ [i’ where [i is of order -i, and

it remains to find i such that i (!- P_l ! + , where is smoothing.

The natural reaction in all problems of this type is to write

which by itself does not have any meaning. But we can give it a meaning as an

asymptotic expansion. In general, suppose we have a sequence AI, A
2

of

pseudo-differential operators of orders mI, m2, respectively, decreasing

to -=; then there exists a pseudo-differential operator A having the following

property: for all k, A_-(AI / _A2 + + ) is of order < m
k

and we write

this as A AI + A
2
+ + + In our case we have Pkl, and so taking

I__ + P--I + P-- + we then conclude that R QI(I- Pl is of order

m for all real m, which implies that R is smoothing.

i0. This calculation is but one example of the manageability of pseudo-

differential operators. Similarly, if o > O, we can define (modulo smoothing

operators) the roots p#/d of P_, and even the irrational powers of P_. We can

also continuously vary the pseudo-differential opertors as functions of

parameters without being always restricted to using polynomial symbols in .
Moreover, the development of this theory received its first impetus from

the problem of differential topology which led to the celebrated index

formula of Atiyah-Singer. This involves operators defined no longer on the

open sets of R
n

but on a differential manifold X With the help of charts

this definition does not pose any problems for differential operators which

are local operators; for pseudo-differential operators which do not possess

this property it demands greater care, but there is no essential difficulty.

For a compact manifold X, these operators are then linear mappings from F(E)
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into F(F), where E and F are vector bundles of base X, FE and FF being the

spaces of C sections of these bundles over X. The existence of a parametrlx

and the spectral theory show that if P is a self-adjoint elliptic pseudo-

differential operator mapping F(E) into itself, P (which is an unbounded

operator in the Hilbert space of square integrable sections), has a real

discrete spectrum with C eigenfunctions, and (P- I) -I
is compact if is

not in the spectrum of P. This result is the starting point of the Hodge and

Atiyah-Singer theories as well as of the generalization by Atiyah-Bott of the

Lefschetz fixed point formula.

ii. Let us briefly deal with the problem of boundary values in the theory

of elliptic pseudo-differential operators as dealt with by Calderon and

HDrmander; this presentation clearly indicates why the Cauchy problem has

no solution in general and why potentials appear in the expression of the

solution when the latter does exist.

Suppose P is an elliptic differential operator ’of order m > i on an open

R
n

set M c with n > 3; it can be shown that m is necessarily even. Let

be an open bounded set such that c M with smooth boundary 8 for all

functions u E(M), we denote by CD (u) (Cauchy date on ) the vector function
m

(u, __u 2 m-iu
n’ n2 nm-i

on (normal derivatives). In a distributional

sense we can write

P (u #) (P u) + N p CDm(U) (6)

where g I/ N p g is an operator which associates to a function g E (E (())m

a distribution with support in . If is a parametrix of P in M, we can

show that for all functions f D(M), the distribution Q (f) has a

restriction to which extends to a function of E()(Q being the volume

potential). Similarly, for all functions g 6 (E ())m, Q (Np_ g) extends
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to a function in E() ( being a multi- layer potential). Suppose for

simplicity that QP PQ _I on __E’ (M), and that we have for u EE()

P u f E()

CD (u) g E (E())TM

m

(7)

we can conclude by equation (6) that over we have

u Q. (f)+ Q. (N p. (g)), (8)

the sum of a volume potential and multi-layer potential; moreover if we

suppose that u satisfies the boundary conditions of (7), we arrive at the

necessary condition

g C g CD (Q (f)) (9)m

relating f and g where C: g l/ CD (Q (N g)) is called the Calderon
m --P

operator on corresponding to and . A deeper study of this operator

mshows that (9) imposes linear conditions. The classical Cauchy problem

for has therefore no solution in general, and to obtain a reasonable

mproblem, instead of m boundary conditions in (7) we must impose only linear

conditions:

B CD (u) g_. (I _< j < )
j m j

(i0)

where B. are pseudo-differential operators on (if we take B.. CD u
--3 -3 m

J-lu.
3 we obtain the Dirichlet problem as formulated by Garding-Visik).

nj-I

The study of the boundary-value problems of type (i0) for P introduces

ellipticity conditions on the B. (Shapiro-Lopatinski) which imply that the
3

mapping

u, (B.. CD u)) (i < j < ) from E () into E () x (E ()m/2A: (eU - m z
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has a kernel of finite rank and has closed range of finite co-dlmenslon.

But the analogy with the Fredholm theory stops here: it is in fact possible

that the problem

P u lu, B CD u 0 (i -< j < ) has non-zero solutions for all le C,

in other words, we have a "spectrum" equal to the’whole plane _..e instead of

a discrete spectrum. To get a discrete spectrum we must impose on P Hermitian

conditions.

12. The idea that leads to the pseudo-differential operators is open to

extensive generalizations, which enable us to tackle non-elliptic problems.

The definition (2) would lead us to write, taking into account the definition

of Fourier transforms

2i (x )
e o(x, ) F u()d

I I 2i(x-Yl )e

R
n

R
n

X

(x, $) u(y) dyd$,

but in general the double integral does not have any meaning even if u D(Rn).

However, we can define it as an improper integral, a notion that the theory

of distributions allows us to reinstate. More generally we can define in the

same way the "oscillating integrals"

I I i(m, y, ) a(x, y, ) dyd$,e

where the derivatives of a are limited by inequalities of type (5), and is

a "phase function" subject to conditions which amount to saying that except

for certain singular points (x,y), the "angle" rotates rapidly enough when

tends to + =.
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As a classical example, we have the formula which solves the Cauchy

problem for the wave equation

If ul (y)
2i (x-y I) + lIt) (uo(y) + yd.

The introduction of such operators has brought significant progress in the

past few years, notably concerning hyperbolic equations and the local

existence problem (Lax-Maslov, Hrmander-Duistermaat, Treves-Nirenberg,

Beals-Fefferman, etc. ).


