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ABSTRACT. Each irreducible character of the subclass algebra is paired up with

its irreducible module.
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INTRODUCTION.
Let G be a finite group and let H be a subgroup of G. If geG, the subclass
of G containing g is the set Eg = {hgh_llheH} and the subclass sum containing g is

B = Ix . The algebra over the complex numbers, K, generated by these subclass
erg

sums is called the subclass algebra (denoted by S) associated with G and H.

Let {M MS} be the irreducible KG-modules with M, affording the irreduc-

1200 3
ible character, Xj’ of G and let {N1 e Nt} be the irreducible KH-modules with Ni
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affording the irreducible character @i , of H. Suppose {ei}:=1 is a set of prim-
itive orthogonal idempotents of KH and {fi};=1 is the set of primitive central
orthogonal idempotentsoof KH where the sets are indexed so that Ni = KHei and

= (dim Ni)ei = S%E—Tl hﬁu Qi(h-l)h . We define the non-negative integers

t
{cij} by Xj = E ¢ e, -
H

fy

In [2], it was demonstrated that the irreducible S-modules are {eiMj}'

D. Travis [3] has shown that the irreducible characters of S are parameterized by

pairs Xj’ o, (cij # 0) and are given by

lE_|
(B ) = —&_ -1
¥y;(By) ] hgﬂ X; ()@, (7). (1

Independent of Travis's work we show that the irreducible character afforded by

eiMj is wij'

LEMMA: Xi(SBg) = |Eg|x(sg) V sesS, VWV geG

E - lE_|
PROOF: Since Bg =—£& 1 hgh l, we have Xi(SB ) = 8- ¢ X (shgh-l)
H | hen g |u | pep't
[E_| -1
=—£&_ 3 Xi(hsgh ) since hs = sh, V heH
|8 | hen

|Egl X (s8) .

//
THEOREM: Let wij be the character afforded by the irreducible S-module

eiMj(cij # 0). Then wij is as defined by equation (1).

t
PROOF: By proposition 2.3 of [2], we have M = I (dim Nk)ekM

Hs k=1 i
t
= LEM .
k=1 3

t
Therefore, for seS, Xj(Sfi) = I

(dim & )y , (sf,)
o1 K’ Ykj ‘8t
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= (dim ¢i)wij(sfi)
= (dim 2y, ()
since the trace of the action of sf, on f /M, is the same as the trace of the

i i3

action of s on fiMj and the trace of the action of sfi on koj (1 # k) is 0.

=1

Thus ¥, ,(8) = Freey Xy BE,)
lE_|

=By
dim@i j
L L oy, (gh)d, (b Y

= X g .
M | peu 3 i

(gfi) by the Lemma

/1
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