Internat. J. Math. & Math. Sci. Vol. 3 No. 2 (1980) 401-403

A NOTE ON THE SUBCLASS ALGEBRA

JOHN KARLOF

Department of Mathematics University of Nebraska at Omaha Omaha, Nebraska 68182 U.S.A.

(Received January 16, 1978 and in revised form November 19, 1979)

<u>ABSTRACT</u>. Each irreducible character of the subclass algebra is paired up with its irreducible module.

KEY WORDS AND PHRASES. Finite group, irreducible character, subclass algebra.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 20005 primary; 20015 secondary.

INTRODUCTION.

Let G be a finite group and let H be a subgroup of G. If gcG, the subclass of G containing g is the set $E_g = \{hgh^{-1} | hcH\}$ and the subclass sum containing g is $B_g = \sum_{x \in E_g} x$. The algebra over the complex numbers, K, generated by these subclass sums is called the subclass algebra (denoted by S) associated with G and H.

Let $\{M_1, \ldots, M_s\}$ be the irreducible KG-modules with M_j affording the irreducible character, χ_j , of G and let $\{N_1 \ldots N_t\}$ be the irreducible KH-modules with N_i

J. KARLOF

affording the irreducible character Φ_i , of H. Suppose $\{e_i\}^t$ is a set of primitive orthogonal idempotents of KH and $\{f_i\}_{i=1}^t$ is the set of primitive central orthogonal idempotents of KH where the sets are indexed so that $N_i \cong KHe_i$ and $f_i = (\dim N_i)e_i = \frac{\dim \Phi_i}{|H|} \sum_{h \in H} \Phi_i(h^{-1})h$. We define the non-negative integers $\{c_{ij}\}$ by $\chi_j\Big|_{H} = \sum_{i=1}^t c_{ij} \Phi_i$.

In [2], it was demonstrated that the irreducible S-modules are $\{e_iM_j\}$. D. Travis [3] has shown that the irreducible characters of S are parameterized by pairs χ_j , Φ_i ($c_{ij} \neq 0$) and are given by

$$\psi_{ij}(B_g) = \frac{|E_g|}{|H|} \sum_{h \in H} \chi_j(gh) \Phi_i(h^{-1}).$$
(1)

Independent of Travis's work we show that the irreducible character afforded by

$$e_i M_j$$
 is ψ_{ij} .
LEMMA: $\chi_i(sB_g) = |E_g|\chi(sg) \forall seS, \forall geG$
PROOF: Since $B_g = \frac{|E_g|}{|H|} \sum_{h \in H} hgh^{-1}$, we have $\chi_i(sB_g) = \frac{|E_g|}{|H|} \sum_{h \in H} \chi_i(shgh^{-1})$
 $= \frac{|E_g|}{|H|} \sum_{h \in H} \chi_i(hsgh^{-1})$ since hs = sh, \forall heH
 $= |E_g| \chi_i(sg)$.

THEOREM: Let ψ_{ij} be the character afforded by the irreducible S-module $e_i M_i (c_{ij} \neq 0)$. Then ψ_{ij} is as defined by equation (1).

PROOF: By proposition 2.3 of [2], we have $M_j \bigg|_S = \sum_{k=1}^t (\dim N_k) e_k M_j$ $= \sum_{k=1}^t f_k M_j .$ Therefore, for ses, $\chi_j(sf_i) = \sum_{k=1}^t (\dim \Phi_k) \psi_{kj}(sf_i)$

402

$$= (\dim \Phi_i) \psi_{ij}(sf_i)$$
$$= (\dim \Phi_i) \psi_{ij}(s)$$

since the trace of the action of sf_i on f_iM_j is the same as the trace of the action of s on f_iM_j and the trace of the action of sf_i on f_kM_j (i \neq k) is 0. Thus $\psi_{ij}(B_g) = \frac{1}{\dim \Phi_i} \chi_j(B_ff_i)$ $= \frac{|E_g|}{\dim \Phi_i} \chi_j(gf_i)$ by the Lemma $= \frac{|E_g|}{|H|} \sum_{h \in H} \chi_j(gh) \Phi_i(h^{-1})$.

Acknowledgment: We thank the referee for simplifying the proof of the above theorem.

REFERENCES

- 1. Curtis, C. W. and I. Reiner, <u>Representation Theory of Finite Groups and</u> <u>Associative Algebras</u>, New York: Interscience (1962).
- Karlof, J., The Subclass Algebra Associated with a Finite Group and Subgroup, <u>Trans. A.M.S. 207</u>, (1975) 329-341.
- 3. Travis, D., Spherical Functions on Finite Groups, <u>J. of Algebra 29</u>, (1974) 65-76.