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ABSTRACT. Each irreducible character of the subclass algebra is paired up with

its irreducible module.
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INTRODUCTION.

Let G be a finite group and let H be a subgroup of G. If gG, the subclass

of G containing g is the set E {hgh-llhEH} and the subclass sum containing g isg

B Ex The algebra over the complex numbers, K, generated by these subclassg xEE
g

sums is called the subclass algebra (denoted by S) associated with G and H.

Let {MI, ..,Ms } be the irreducible KG-modules with Mj affording the irreduc-

ible character, j, of G and let {N
I Nt} be the irreducible KH-modules with N

i
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affordn% the irreducible character i of H. Suppose {el}t is a set of prim-
i=l

i=Iveorthogonal idempotents of KH and {f.}t is the set of primitive central
I

orthogonal Idempotents of KH where the sets are indexed so that N
i = KHe

i
and

dim i E i(h-1)h We define thefl (dim Ni)ei H hell
non-negatlve integers

t

{cij} by Xj E Oi
H i=l

cij

In [2], it was demonstrated that the irreducible S-modules are {eiMj}.
D. Travls [3] has shown that the irreducible characters of S are parameterlzed by

pairs Xj, #i (cij # 0) and are given by

ij (B) [ . Xj (gh)#i(h-1).g IN hH
()

Independent of Travis’s work we show that the irreducible character afforded by

eiMj is ij"
LEMMA: Xi(sB IE [x(sg) /sgS geGg g

PROOF: Since B [_ 7. hgh-1 [EEl -i)we have Xi(sB) . (shghg IN heN g -IH h HXi

7. Xi(hsgh-I) since hs sh, /heH
hell

IE Xi(sg)g

THEOREM: Let ij be the character afforded by the irreducible S-module

elmj (cij # 0). Then ij is as defined by equation (i).

t

S k=lT. (dim Nk) ekMjPROOF: By proposition 2 3 of [2] we have Mj

t
7. f.M
k=ikJ

t
Therefore, for seS, Xj(sfi) k=iI (dim k)kj (sfi)

//
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(dim #i)@ij (sfi)

since the trace of the action of sf
i

on fiMj is the same as the trace of the

action of s on fiMj and the trace of the action of sf

Thus lJ(Bg di-i Xj (Bgfi)

dlm
i
xj(gfi) by the Lemma

z

i
on fkMj (i # k) is O.

//
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