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ABSTRACT. A procedure is given for the approximate solution of

a class of two-dimensional diffraction problems. Here the usual

inner boundary conditions are replaced by an inner region to-

gether with interface conditions. The interface problem is

treated by a variational procedure into which the infinite region

behavior is incorporated by the use of a non-local boundary

condition over an auxiliary curve. The variational problem is

formulated and existence of a solution established. Then a

corresponding approximate variational problem is given and
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optimal convergence results established. Numerical results

are presented which confirm the convergence rates.
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i INTRODUCTION

In [9] a method was presented for the numerical solution

of some diffraction problems. We believe this method, a

combination of variational procedures and integral equations,

to be of quite wide applicability. To illustrate the method

we discuss here an exterior interface problem for the Helmholtz

equation. The main idea is to use integral equations to reduce

diffraction problems in infinite regions to variational problems

over finite domains but with non-local boundary conditions. In

section four we indicate how the general method can be adapted

to other situations.

Let be a simple smooth closed curve dividing

into two open sets, a bounded region QI’ and an exterior

region n2. (i.e., we assume that n
2
D {x 6 ]R

2 ix > R]

for some R > 0.) We begin with the problem

+
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Find u such that

AU + k2]u f in 1
Au + ku 0 in 2

() U(Zo)- u(xo)+, XoF
u +(Xo) 2 (Xo) Xor

lim r ik2u 0.
rco

denotes differentiation inHere I’2 > 0 are constants, n
the direction of , the unit outward normal to F and, for

u (xO) lim u (x)
x_Xo
(xO)

U(o + lim u(x)
xxo

We attach similar meaning to the notation (Xo). Also the

2 2numbers k1 and k2 are complex constants with k
2

satisfying:

Im(k2) 0 and Re(k2) > 0 if Im(k2) O.

Figure i. 1
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We refer the reader to [2] and [8] for existence and uniqueness

results for problem P.

A physical realization of problem P is found in electro-

magnetic theory when the scattering of a time periodic incident

wave from an infinite cylindrical conductor is considered.

(See for example [4] .)

The method that we present here is a mixed variational-

integral equation technique for the interface problem. It is

based on the introduction of a boundary condition which enables

problem P to be reduced to a boundary value problem over a

2bounded subregion of ]R The boundary condition is described

as follows.

Let F be a simple smooth closed curve and denote its

exterior by Aco. It is a classical result that the problem

AU + k2u 0 in A

(Qk) u on

/ ulim r I ikul 0
roo

has a unique solution for any k 6 C, k 0 and for any function

F C. For given , k, and Foo we denote the solution of

problem (Qk) by Uv (x;k,) for x 6 Aoo
operator

BuF +

Tk[] (x) =- I "5n (Xo;k’) for

and define the

Xo6 o"
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We observe that the solution u of problem P is also a solution

of the boundary value problem given below provided the curve Foo
is chosen so that its interior contains Q1 U F.

u + k]2u f in QI
TAu + ku 0 in Q2

() u (xo) u (xo) +

Bu u +To 2 (Xo)- (xo) [u Io (_xo),

THere Q2 denotes the annulus that lies between F and oor"
This is shown in Figure 1.2.

Figure 1.2

The validity of the boundary condition (Xo) Tk[UIF (Xo)
for x e F__ for the solution of problem P follows from theo

Bufact that both u and are continuous across .n

Conversely, if u is a solution of problem we may extend it

to a solution of problem P by defining u U (x;k2,ulF for

x 6 A
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From here our plan is to approximate the solution of the

problem P using the finite element method. The principle

ingredient in the finite element method is a variational

formulation of the problem which, here, we construct in a

straightforward manner using Galerkin techniques. We begin

this development by assuming that v is a trial function with

v 6 C(QI U Q), vlQ 6 CI(Q),
1

v T
c (n).n2

Then for u the solution of we have

Integrating by parts and using the interface conditions together

with the boundary condition on Woo we conclude that

2 rooTk2 oo

fv dx for all such v.i J QI

We denote the left hand side of 1.2 by a(u,v) and the right

hand side by F(v). Thus, u the solution of problem P

satisfies the variational equation
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a(u,v) F(v) (1.3)

C
T i

for all v 6 (i U 2 ), v 6 C (i), v 6 C

With a variational formulation of P over a bounded region

available, the next step is to introduce approximate variational

problems. To do this we select a finite number of trial functions

h h h span[l,...,N]" We then attemptI’2’’’’’N and set S
h h h

h
S
hto find a function u 6 which satisfies

a(uh vh) F(vh) for all vh e S
h (i .4)

hThe solution u of (1.4) is taken as an approximation to u.

The complication in the above procedure is the determination

of the operator Tk. This can be done by integral equations and

in particular by using integral representations for the solution.

UF (x;k,) of problem Qk" It is shown in [6] that one can

obtain U (x;k, ) in the form

(y) Gk (x y)ds (1.5)U (x;k, ) j N’ y

(i) (klx-yl), H (I) is the Hankelwhere Ok (x,y) i/4 H
O o

function of the first kind of order zero and is determined

by the equation

Kk[] (x) r (y)Gk(X,y)dSy (,), ,DeFoo. (1.6)
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Equation (1.6) is a Fredholm integral equation of the first kind.

It is shown in [6] that this .equation is uniquely solvable and

the (1.5) andwe set Kkl[ From representation a

standard result in potential theory one has

5UF +

n (Xo;k’) (Xo) + (Y) Gk(Xo;Y)ds

1
( I + Mk)[] (xO) for oX6oo.

(1.7)

Thus we have the following characterization of Tk

k[] (] + k [].

The remainder of the paper proceeds as follows. In

section two we describe the variational procedure precisely,

and we state the convergence results. The proof of these is

reduced to two coercivity inequalities. The verification of

these is extremely technical and postponed to section five and

the appendix.

In section three we discuss the implementation of the

method including an approximate treatment of the operator Tk.

We report on some numerical experiments which confirm our

estimates for convergence rates.

Section four contains a brief discussion of other problems

to which the method applies.

The authors wish to express their appreciation to

Professor G. J. Fix for his help in the development of this paper.
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2. VARIATIONAL FORMUI2%TION

For any region Z we denote by Hk(z) the space of

complex valued functions on Z with square integrable derivatives

of order i k and we write

2 IDf 2dx for f6Hk (Z) {2.1)llfllk’Z II"k Z

HrFor closed curves 7 we also need the boundary spaces (7),

r 6 3 It is known (see [i] that if BZ is smooth then

there are continuous mappings

u - ulBZ Hk(z) - Hk-I/2(Sz). (2.2)

For our variational formulation we will need a space which

we define as follows

T6H[vIvIozHz(oz),vlo2
T v+1

(n2) ,v (,.) (,X..O) ,.6"["]

We also define the norms IIl’lllj on by

2 2IIIv III j Ilvllj, T3,Q2

and note that is a Hilbert space under the norm II1" IIz.
To proceed with the variational formulation we need the

following properties of Tk, which are proved in the appendix.

LEMMA i. T
k

is a bounded linear operator from Hr (Foo)
to Hr-

1
(Fco) and satisfies
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r Tk()@ ds r Tk($)ds

for all ,@ 6 HI/2(FO)
With this we observe that the bilinear form

(2.3)

Tk
2

(Vu.v k2a(u v) 2 (uIF )v ds i n lUV)-- d
F ooco 1

(2.4)

2 (u-v k2uv) dx
n2

is well defined on . By {2.2) u IF and are in

El/2 (oo) By Lemma i then Tk (u IF is in H-I/2 (oo) with

2 co ’oo oo

Hence by the generalized Schwarz inequality and (2.2)

I[ (ul) sl < cllull/2 r llvll/2 rF 2 OO OO OO
< c, lllullllllvlll.

Thus a(u,v) is well defined and

(2.6)

showing that a(.,.) HE C is bounded. We may also

comment here that if f 6 L2 (l) H (l) then

F (v) fv d
1

is a bounded linear functional on .
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The variational form of problem that we use is stated

as follows

Find u 6 such that

(V) a(u,v) F(v)

for all v 6 HE

Next we state the approximate problems. We suppose that

[SEh]0<h<l is a family of finite dimensional subspaces of

HE which satisfy the following:

APPROXIMATION PROPERTY. There exists an integer t 2

and positive constants Co and C 1 such that for any u 6 HE
hwith lllulll < D, i t, there exists a function u 6 SE

which satisfies

ht-J III ulll j 0,iIII u-ullIj i Cj 6
(2.7)

(the constants Co, C 1 are independent of h and u)

hi we pose the approximate problems:With such a family ISE

h hFind u e SE such that

(AVe) a(uh,vh) F(vh)
h

for all v
h

e SE

Our main results concerning problems V and AV are:
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THEOREM I. There exists a unique solution u of problem

V and there exists an h > 0 such that problem AV has a

hunique solution u whenever h < ho.

THEOREM 2. There exists constants C and Co

that, for h < ho

1 > 0 such

hIII u-uhllll CllllU-Whllll for all Wh6SE (2.8)

and

u
h

u
h (2.9)

The constants Co and C 1 are independent of u and h < h
o

Theorem 2 is an optimality result and is typical for finite

element methods applied to elliptic problems. If we use the

hi, together with the regularityapproximation property of ISE
of the solution u, we obtain

COROLLARY i. Suppose that f 6 H-2 (n I) with 2 i i t

then for h < h there are constants Cj, j 0, i, independent

of h < h such thato

III u-uhlIIj Cjh’-j (2 .i0)

PROOF OF COROLLARY i. Regularity results for problem P

H 2 H
.show that if f (i) then u IQ 6 (QI) and

1
T

uln 6 H(n2 thus Ill ulIl < (D By (2.7) we have that

hg-1inf IIlu-whllll C1 III ulll,j.
h

Wh6SE
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Applying this in (2.8) we find that

h-Illlu-uh III < c lllu llI. (2 .ii)

From (2.9) and (2.11) we obtain (2.10) for j 0, i.e.,

III u-u IIio < Co lllu III.
The proofs of Theorems 1 and 2 are complicated by the fact

that the variational problem is not positive definite. Hence

we need the following rather technical result which is treated

in section five.

THEOREM 3. There exists constants ho,Ca > 0 such that

sup la(u,v) > C Illulll for all u6HE (2 12)
0v6HE Illvllll a 1

sup h
0vs. IIlv Ill

h>_ Ca Illuh Ill m for all UheSE. (2.3)

Once (2.12) and (2.13) are established we may use these

estimates in a standard way to prove the existence and uniqueness

results stated in Theorem 1 (see [I]). Before proving (2.12)

and (2.13) we will first show that 2.13 yields 2.8 of Theorem 2.

(The result 2.9 will be treated in section five.)

From the formulation of problems V and AV we have

h Thus, for anya(u,vh) F(vh) a(uh,vh for all vh 6 SE.
h

Wh e SE
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la(uh-wh,vh)
(2.14)

The right hand side of (2.14) is bounded above (using (2.6)) by

hC lllU-Whlll I. By taking the supremum over v
h 6 SE, v

h
0

and applying (2.13) we obtain

llluh-wh IIII i C ’lllu-wh III i" (2.15)

_u
hThe triangle inequality applied to lllu IIIi gives

III u-uhllll i llIU-Whllll + IIluh-whllll"
Using this and (2.15) we obtain

Ill u-uhllll i (I + C’) lllu-whllll.
Thus (2.13) implies (2.8).

3 IMPLEMENTATION OF THE METHOD

The approximate problem

Find uh h
6 SE such that

(AVe) a(uh,vh) F(vh)
hfor all VheSE

is seen to be equivalent to a matrix problem by selecting a

h
basis {I’2’’’’’NH] for SE.
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We find a function uh given by

u Z q_. _.
j=l

which satisfies

a(uh,i) (,i), i i,...,h.

The system of equations (3.2) is the matrix problem

(3 .i)

(3.2)

(3.3)

where q (ql,...,qNH)T is the vector of weights in (3.1),

f (F(I)’’’’’F(NH))T is the source term

and

K (Kij) is the stiffness matrix

with entries

Kij a(j’i) 2 T(jlFoo)ids i (V’j’i
oo 1

k21ji) dx
(3.4)

To use the ideas presented so far in actual computation

we must be able to impose the nonlocal boundary condition

u (u I)
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along the outer boundary oo" We see from 3.4 that, in the

approximate variational problem, this amounts to computing the

integrals

[ Tk(ilr )ids (3.5)

F oo

for the basis functions 1’02’ "’Nh
of the approximation

h This computation may be carried out in a straight-space SE

forward manner according to the definition of Tk by solving

the integral equations

J i (Y)Gk(X’y)dSy i (x), xeFoo
r’

i I,...,Nh (3.6)

for the densities i’ computing Tk (i) (x) for x6Foo from

the formuia

Tk[i (x) @i(x) + i(Y) Gk(X’y)dSy (3.7)

and finally computing the integrals 3.5 using a suitable

quadrature rule. The execution of this procedure for general

h
is a lengthy process at bestfinite element spaces SE

Fortunately the matter of computing the integrals 3.5 can be

greatly simplified by making special choices of the curve

hand the approximation spaces SE In the following discussion

hwe take F-- to be a circle and choose SE so that the

restrictions of the trial functions to F are piecewise linear

functions of arclength corresponding to a uniform mesh along
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TFigure 3.1 shows the region 2 when Foo is a circle of

radius R. We assume that a finite element space
h

SE span[l, "’’’Nh
has been chosen so that i is that

piecewise linear function of arclength along Foo which either

vanishes identically along

_
or is equal to one at one node

on Foo and vanishes at the remaining nodes.

Figure 3.1

2 we mayIf we set 8j hlJ j 1,2,...,Nl where hI N1
characterize each i IF (which does not vanish identically

on (D) in terms of the polar angle 8 as a translation of a

function $o (8) where $o is the 27r-periodic extension of the

function defined by

o()
-e/h + 0 < < h
e/hI + 1 -hI i e < 0

0 h & lel < .
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We have, for those i’s which do not vanish on Woo

i(R cosS,R sinS) $o(8 hlmi) (3.8)

for some integer mi, i mi NI. (By renumbering the i’s
we may assume that m

i i.) We note that, by solving elementary

boundary value problems for the circle, one obtains the formulas,

H() V (kR)
Tk(COS(n8 + )) k _.n

H (1) (kR)n

cos(n8 + )

for n 0,i,2,.. where H (I) is the Hankel function of the
n

first kind of order n. (The superscript "V" denotes

differentiation with respect to the argument.) Then, if one

expands @o in a Fourier series one obtains, after some algebraic

rearrangement, see [9],
(3.9)

2v h21 + [Tk[P] (8))Ih e= (-2)hF

where

(8) f(8 + hI) f(8)

is the forward difference operator,

and

4 2 2 3 4
p(8) "n" "n" I,,el + lel le[

9-- 12 12 48 181 . 21r. (3.10)
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From the formula 3.9 we see that to compute all of the

integrals 3.5 in the special case under consideration we need

only compute Tk[p] (8) at %j, j I,...,N1 for the single

function p(8) defined by 3.10. This amounts to first solving

the integral equation

2

R_i4 (t)H(1)o (2kRlsin 8---tl)dt P(8) 0 8 2 (3.11)
0

for the density (t). (We have specialized to the case when

F is a circle of radius R and used the fact that

i H(1)(2kRlsin 8___tl)Gk(x,y) o

when x (R cosS,R sinS), (R cos t,R sin t) are points

on Foo.) Once (t) 0 i t i 27r is determined Tk(p) (8)

is found from the formula: (again specialized to the case when

1 RikTk(p) (8) (8) + --- (t)Hl(1) (2kRlsin 8---tl)Isin 8--tldt. (3.12)
0

The kernel of the integral operator in 3.8 is obtained using

the fact that

%nx Gk(X,y)_ -ik Ho(1)V(2kRlsin 8__tl) isin 8__t

when x (R cosS,R sinS) and y (R cos t,R sin t) are on

together with the identity

o (.) _H()(.).
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We may also observe that this kernel is continuous at 8 t,

in fact,

lim HI) {2kR sin 8---t I) sin 8---t _i
7rR

8t

In the numerical examples that follow the equation, 3.11

was solved using numerical methods described in [6] with

Simpson’s rule replaced by the rectangular quadrature rule.

With this modification the discretized form of 3.11 is a matrix

problem

A p

with A a circulant matrix. This feature enables the problem

to be solved efficiently using well known inversion formulas for

circulants (see [5] or [I0]).

To verify the convergence rates predicted by the theory we

consider the following example for various values of i’ 2’
kI k

2

Find u such that

au + klu 0 < Ix < 2

nu + ku 0 l_xl > 2

U 1 on l_xl I

+
U U- on l_xl 2

,u, + u
=2t’ I()- on l_xl 2

rl/2 BuI- ik2ul 0lim
r-D

(3.14)
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In this example the curve F is a circle with radius

greater than two (we use R 3). Following our procedures we

construct the boundary value problem

Figure 3.2

Au + k]2u 0

Au + k22u 0

u 1 on lxl 1

+u u on Ixl 2

+ I_xl =2 () i () on

B__u
Tk [u I--xI=R on Ixl 3.n 2

h] used here are sets of piecewiseThe approximation spaces ISE
linear functions of the polar coordinates r,8. They may be

constructed by first mapping the region [xll < Ixl < R] into

the rectangle [0,2] x [I,R] in the r-8 coordinate system.

We then construct piecewise linear finite element spaces (composed

of 2-periodic functions) corresponding to triangulations of

the rectangle and transform back to rectangular coordinates. We

thus obtain a distorted triangular grid with associated trial

functions which are linear in r and . The resulting family

hi (n maximum diameter of the triangles)of subspaces ISE
satisfy the approximation property with t 2. According to

Corollary 1 we should observe that
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-u
h

0 (h2)

and

_u
h

hi Our examples are chosen so that thefor this family ISE
exact solutions are known and we measure convergence rates by

computing llluh-uI IIio and III uh-uI III i where uI is the

h
interpolant of the exact solution in SE

From approximation

theory we have that

0 (h2) and III u-uI III 1 0 (h)iil _u lifo
Using this and the triangle inequality we may show that the

-uh will be optimal ordererrors lllu-uh IIio and lllu III 1
(0(h2) and 0(h), respectively) if we observe in the

calculations that

h2 and lluh-uIllll < ClhuI IIio co
(3.15)

We display the results graphically in Figure 3.4 and Figure 3.5

by plotting

III uh-uIlllj vs i/h j 0,I

on a log-log scale. A slope of -2 (-I) indicates quadratic

(linear) convergence. Eight trials were conducted. The values

of i’ a2’ kl and k
2 used to solve problem 3.14 in these

cases are listed in Table 3.1.



FINITE ELEMENT MEHTOD FOR EXTERIOR PROBLEMS 333

TRIAL 61 2 kl k2

i i 4 i 2

2 i 2 I 2

3 i 4 i 4

4 i 2 i 4

5 i 4 i i0

6 2 i i 4

7 4 i i 4

8 4 i i i0

Table 3.1

Figure 3.4 shows llluh-uIlllO vs I/h and we observe in

every case, for sufficiently small h, that the convergence is

quadratic. In Figure 3.5 llluh-ulllll is plotted against i/h.

Here the slopes of the curves lie between -I and -2 indicating

that

llluh I h.-u III i
Thus, from the remarks preceding 3.15, we observe that the

convergence rates are optimal.

4. EXTENSIONS OF THE METHOD.

The particular problem studied here was chosen for

illustrative purposes only. It demonstrates the power of

variational methods to handle complicated situations on finite

regions and the ability of integral equations to deal with

infinite regions. We sketch a few more examples.
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0 0 0 0

HOIdH3 H x

mO

o o b b

--o
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We note first that all the standard exterior problems for

the Helmholtz equation can be treated. That is one can solve

the problem Au + k2u 0 in 2 with the radiation condition

and any combination of Dirichlet, Neumann or mixed data given

on F2.
The next observation is that the exterior problem can also

be treated in the case of variable coefficients. Consider the

equation,

div(A(x)Vu) + b(x)N "Vu + k2(x)u 0 in 2" (4.1)

Suppose there is an R
O

such that for lxl > R
O

we have

i 0
k2 2A (0 1 )’ bN (0’0’0)’ (x)N k2. (4.2)

Then if one chooses F so that it contains the circle

Ixl R one can formulate boundary value problems for 4.1,
Twith the radiation condition as variational problems over 2

U Tk (uIF on too.with the condition n- 2 oo
An example of equation 4.1 occurs in [3] in the study of

acoustic radiation from a cylinder when heating causes local

spatial inhomogenities. The equation there is

c2 5t2
1Zp + V)’Vp 0 (4.3)

where c c(x) is sound speed, D (x is the density and

p(x,t) is the acoustic pressure. If one seeks periodic

itsolutions of the form P(2t) Re (u(x))e then one arrives

at 4.1 with
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i 0 I ,A= (0 1 )’ b=N 0 c

Finally it can be seen that one can treat interface

problems with the geometry of Figure i.i, but with equations

of the form 4.2 holding in i and 2 with associated

(Al,b_l,kI) and (A2,b2,k2). It is necessary only that 4.2

hold for (A2 b2 k2) for II R and that the second
O

interface condition be replaced by one which is naturally

associated with 4.1, that is,

l(AlVU’nA)- 2(A2Vu" nA) +"

5. PROOF OF THEOREM 3.

We begin by considering an auxiliary problem. This is:

Find u such that

AU 0 in A

Qo u= on V
co

u 0 ()

-2Vu 0(r

as r co

o (x;)This problem has a unique solution which we denote by U
and we may define the associated T operator T as in problemo

Qk" That is

To [’] o
o;)

’n
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The following results concerning the operator To are

established in the Appendix.

LEMMA 2. T
O

is a bounded linear operator from Hr (1oo) to

Hr-i (co) with the following properties.

(i) I To(,)ds To(@)ds for all ,,@

(ii) To()ds 0 for all e

is a bounded linear operator(iii) For all k, Tk To
Hr+lfrom Hr (FD) into (co)

With Lemma 2 stated we can outline the proof of Theorem 3. We

write a (u, v) in the form

a(u,v) al(u,v) + a2(u,v) (5.2)

where

V oo Ol 02

a2(u,v) I 2(T-To) [uIF 2 I udx (5 4)

O
1 O T

2

and look for a v e of the form V u + w, w for

which the inequality 2.12 holds. For this function v we use

the decomposition 5.2 and find
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1 T2

+ [a2(u,u) + aI ud + a

1 2Judx] + a(u,w)

(5.5)

The first bracketed expression on the right side of 5.5 is

negative and bounded above by -C’ lllu III 2 This follows fromi"

Lemma 2(ii) and the definition of aI(.,.) If w can be

chosen so that

a(u,w) -[a2(u,u) + i udx + a2 ;Tn I n 2

then we would have for v u + w,

a (u v) C’ Illu III =1"
If, in addition, w satisfies the estimate

(5.6)

(5.7)

then

that

IIIwlllx c,lllulllx (5.8)

llllllx _< (x + c,)Illulll and it would follow from 5.7

l.a (u, v) c> x / c Illulllxlllvlllx
proving 2.12. Inequality 2.13 follows from 2.12 and the

hi if the estimate 5.8 can beapproximation property for ISE
strengthened to

lllwlll= < c’lllulllx, (5.9)
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h and construct w e soTo see this we set u uh e SE that

5.6 and 5.7 hold. Then

(5 .0)

holds for v uh + w. By the approximation property 2.7 and

h
the assumption 5.9 we may pick wh e SE such that

(5 .)

If we set vh uh + wh then there exists h
O > 0 such that

la(uh,)l >_ c" Illuh III 2z for h < ho.- (5.12)

Moreover, using 5.9 and 5.11,

IIllllz _< Illuhlllz + IIllllz

Illuhlll + IIIwll12 + IIIw-lllx
_< ( + c, + cxh) Illuhlllx.

Thus

IIIv III _< c’" Illuh III .. (5.13)

Finally, we note that

a (Uh,Vh)
>- IllulllzIIIvhlllz c

for h < ho

follows from 5.12 and 5.13. This proves 2.13.

This result is a simple consequence of 5.10, 5.11 and 2.6
using the estimate

la(uh,Vh) >_ la(uh,V) la(h,W-Wh) I.
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TO complete the proof of Theorem 3 we must show that for

arbitrary u E there exists w E such that 5.6 and 5.9

hold. To do this we consider the variational problem

Find w e such that

a(e,w) -[a2(O,u) + ’i I )dx + 2 ,. dx]
n I

for all e .
Our arguments to this point utilize what is known as Nitsche’s

Trick [11], and the problem VP is the sort of adjoint problem

that arises in these instances. The desired results 5.6 and

5.9 are immediate consequences of an existence and regularity

result for VP. This is stated in the following 1emma which

is discussed in the Appendix.

LEMMA 3. There exists w e HE satisfying problem VP

Moreover, III wll12 < c and satisfies

IIIwlll 2 _< c,lllulll.

Having completed the outline of the proof of Theorem 3

we return to the matter of proving the L2 estimate 2.9 of

h
Theorem 2. We again use Nitsche’s Trick. Let eh u u

and consider the problem
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Find w e such that

for all v e HE.

(5.14)

We may show, using integration by parts and Lemma i, that this

is equivalent to the following boundary value problem

+ kl2W in Q1
T+ k22w in Q2

w w on r
+

C1 () CZ2 () on

1 )-)- oTk
2 Foo

r

on F

This may in turn be recast as an exterior interface problem

+ kl2W in Q1
Teh in n2

0 in A

--+w w on r (5 .t5)

+
Cl () 2 (-) on r

lira r I/2 I ik2l o
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Problem 5.15 has a unique solution and, by arguments similar

to those outlined in the discussion of the proof of Lemma 3,

its solution satisfies the estimate

IIIwlll 2 c’lllhlllo. (5.16)

We put v eh in 2.14 and obtain

2 (5 17a(eh,w) II1%111o.
Since eh u uh and a(u,wh) a(uh,wh) F(wh) for all

h he SE we have a(e,w)_nn- 0 for all wh e SE. We subtractw
this form 5.17 to obtain

h2 for al i Whe SE(%,w-w) Ill%lifo (5 .8)

From 2.6 and 5.18 we have

2 hIIlh IIio c IIlh 111 IIIw-w] III z for all w
h SE

or

2lllh IIIo c Illh II! inf IIw-w]lllz.
h

WheSE

The approximation property 2.7 implies that

(5.19)

inf IIIw-wh III x I cx Illw III 2"h
WheSE

Using this and 5.16 gives

inf IIIw-w] Ill c , Illeh IIio,
h

WheSE
(5.20)
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Finally, 2.19 and 2.20 establish

which prov4s the L2 estimate 2.9.

APPENDIX: PROOFS OF. LEMMAS.

PROOF OF LEMMA I. It is shown in [7] that Kk is a bounded

linear map from Hr (lco) onto Hr- 1 (co) with a bounded

inverse. When F is a smooth curve it is known that the

quantity n Gk in the definition of 1 is a smooth function

and the first statement of Lemma 1 follows.

In order to establish, the property 2.3 for Tk we use a

Green’s theorem argument. Suppose , e HI/2 (Fco) Define U

and V by U UF (k,), V UF (_x;k,). Then Green’s

theorem yields

where FR is a large circle (radius R) containing Fco"
The radiation condition implies that the limit of the right-hand

side-as R tends to infinity is zero. Hence the left-hand

side is zero and this is the result stated.

PROOF OF LEMMA 2. We first obtain a representation for the

operator T. To do this we need to discuss the solution of

problem Qo" It is shown in [6] that the solution can be

obtained in the form

ur ,)
oo F

(A.2)
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where is determined by the equations

Ko[ (y) inlx-ylds
Z

+ C (A.3)

a (y) ds O. (A .4)

The equation Ko[] X can be solved for any M. The

condition A.4 determines the constant C and serves to make

oUF bounded at infinity. It is shown in [7] that K
O

is a

bounded map from Hr (Foo) onto Hr+l(oo) with a bounded

inverse. In order to establish the results in Lemma 2 we must

look a little more closely at the solution procedure (A.2)-(A.4).

From A.3 we have

-I[] + CKoI[I] (A.5)= Ko

and then A.4 determines C by the formula

C (- [ Kl[]ds)/( Kl[l]ds). (A.6)

(It is shown in [6] that if Fco is chosen so that its mapping

radius is not one then the denominator in A.6 does not vanish.)

-i maps Hr (oo) into Hr- 1 (Foo) we observe that A.6Since K

defines C as a continuous linear functional on Hr (Too).
Indeed by the generalized Schwarz inequality we have

Icl Ic(m) (r-l) ,FO0
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In order to determine To we observe that by A.2 and A.5

TOIl] (;&o) ’an (--Xo;)] u(-Xo) + ) inl--x-xldsZ

(A.8)

(I + MO)Kl[q)] O + C() (I + MO) Kl[1] X),

X e F
O OO

It follows from this formula that T
O

maps Hr (FcD) into

Hr- 1
(oo) continuously.

Property (i) of Lemma 2 follows by the same Green’s theorem

type result as in Lemma i. The negativity result (ii) is

oanother Green’s theorem argument. We have (for u Ur, (x;) ),

T
O
[] ds u ds Vu =dx + u. (A.9)

Here FR is as before and nR Aco N int(FR) Once again the

conditions at infinity imply that tne limit of the integral over

FR as R tends to infinity is zero hence we obtain (ii).

It remains to establisy (iii) of Lemma 2. We begin by

1observing that Gk(X,y and in lx-f have the same

singularity. We have in fact,

i inlx-yl +Gk (x,y) 2v Rk Ix-ml (A. X0)

with

Rk(l-,.v[) . + [,,,x-,yl21nlx-x.ylyk(I,,X.,X-,.,y[) + 6k(I,,,x-.yl) (A.11)
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where k is a constant and 7k and 8
k

are analytic.

Thus we may write 1.6 in the form

(y) In
(A.12)

or,

It is shown in [7], on the basis of A.II, that the integral

operator

c’)Rk (I,,.x-yl)asM

takes Hr (co) into Hr+3 (Fco) Hence if we compare A. 13 with

A.5 we see that

o .C() I KIU (_x;k,) U (x;) + 2v [i] in Ix_-_y IdsX
(A. 14)

+ ,I Gk(’) c(Z)Rk(l-l)dszds"

UF
Now we obtain Tk by computing .n(D)+ This introduces the

operator Mk as in 1.7. we note, however, that A.12 implies

that Mk differs from M
O

by terms with more regularity

Hr (D) Hr+2 (oo) If one performs(specifically Mk-M
the calculations with A.13 and A.8 one finds that

Tk[] To[] C() (I + Mo)Kol[l] + k []
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where k is a continuous map from Hr (oo) into Hr+l

Now, by A.6 the functional is given by

F

-i
is self-adjoint hence,where 8 is a constant. But K

F F

(The constant also involves K-Ill] .) Now if the curveo
-iFeD is smooth then K
O

[i] would be a smooth function and

then A.16 and the generalized Schwarz inequality yields

IIC() (I + o)Kol[l]llr+l,Fo i IC()lll(I + o)Kol[l]llr+l,Fo

Thus A.15 yields (iii) of Lemma 2.

PROOF OF LEMMA 3. The definitions of a(., .) and

a
2 (., .) and integration by parts used in a standard way yield

that the problem VP is equivalent to the boundary value problem
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+ kl2W - in QI
T+ k22w - in n
2

w w on

+
=2 () i () on r

(wit () =-(Tk2-TO) (u) --h on Foo.Tk2 oo

(A.17)

The result (iii) of Lemma 2 together with the fact that

6 HI/2 (oO) gives the information that

(A. 18)

We may further note that problem A.17 is equivalent to the

exterior interface problem

+ kl2W - in QI
T-u in 2

/ k22w
0 in A

w w on F

a’2 (’) i (’) on

w w on Foo

(A. 19)

() h on

lim r1/21 ik2l 0.
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The solution of A.19 can be obtained in the following form:

w(x)

(x,z) dSy + w (x) in

2 (Y)Gk2 (x’y)dsNZ
+ wl (x)N + w

2 (x) in n
2

(A. 20)

where

wO(x) J" (y)Gkl(X,y)dy
Q1

(A.21)

(A.22)

w2(x) I h(y)Gk (x,y)dsy. (A.23)

Standard potential theory arguments show that A.20

satisfies all the conditions of A.19 except the interface

conditions on F. The imposition of these leads to the

integral equations,

Kk2[2] + wI + w
2 i[i] + w on F (A.24)

Wl w2 1 w (A. 25

e2 (I + Mk2)[G2] + -- + --] el[ (-I + Mkl)[GI + ’--] on r.

Here the integral operators are as in 1.6 and 1.7 but on F

instead of

It can be shown that the solution of A.19 is unique and

the Fredholm alternative can be used to establish the existence
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of solutions of A.24 and A.25. The estimate in Lemma 3 can be

established by tedious but fairly straightforward analysis of

the mapping properties of the operators in A.20. We omit

these details.
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