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ABSTRACT. A procedure is given for the approximate solution of

a class of two-dimensional diffraction problems. Here the usual
inner boundary conditions are replaced by an inner region to-
gether with interface conditions. The interface problem is
treated by a variational procedure into which the infinite region
behavior is incorporated by the use of a non-local boundary
condition over an auxiliary curve. The variational problem is
formulated and existence of a solution established. Then a

corresponding approximate variational problem is given and
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optimal convergence results established. Numerical results
are presented which confirm the convergence rates.
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1. INTRODUCTION.+

In [9] a method was presented for the numerical solution
of some diffraction problems. We believe this method, a
combination of variational procedures and integral equations,
to be of quite wide applicability. To illustrate the method
we discuss here an exterior interface problem for the Helmholtz
equation. The main idea is to use integral equations to reduce
diffraction problems in infinite regions to variational problems
over finite domains but with non-local boundary conditions. 1In
section four we indicate how the general method can be adapted
to other situations.

Let T Dbe a simple smooth closed curve dividing 112
into two open sets, a bounded region Ol, and an exterior
region Q,. (i.e., we assume that Q, > {x ¢ R 2 Ix| > R}

for some R > 0.) We begin with the problem

This work was supported in part by the National Science )
Foundation under Grant MCS 77-01449 and in part by the Office
of Naval Research under Grant N00014-76-C-0369.
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Find u such that

I
Hh
78
o]
D

2
Au + klu

Au+k§u=0 in Q

- +
(P) u(g,) = ulx)), xeT
[u - - 3u +
1 an®Fo) = 02 an(Be) s EET
lim r1/2’_§1:_ - 1k2ul = 0.
r-00

313

Here a0, > 0 are constants, 2 denotes differentiation in

an

the direction of ﬁ, the unit outward normal to T and, for

z-{oer"

u(ggo)' = lim u(x)
X*Xo
(5601)

+ _ .

u('go) = lim u(x).
A*Xo
(5602)

+
We attach similar meaning to the notation %_(350) . Also the

numbers k2

satisfying:

Im(k2) > 0 and Re(kz) >0 if Im(kz) = 0.

Figure 1.1

1 and kg are complex constants with k2
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We refer the reader to [2] and [8] for existence and uniqueness
results for problem P.

A physical realization of problem P is found in electro-
magnetic theory when the scattering of a time periodic incident
wave from an infinite cylindrical conductor is considered.

(See for example [4].)

The method that we present here is a mixed variational-
integral equation technique for the interface problem. It is
based on the introduction of a boundary condition which enables
problem P to be reduced to a boundary value problem over a
bounded subregion of Ilz. The boundary condition is described
as follows.

Let roo be a simple smooth closed curve and denote its

exterior by Aoo’ It is a classical result that the problem

Au + k2u =0 in A
@
Q) u=¢9 on T_
lim r1/2|%% - iku| = 0
r-0o

has a unique solution for any k € C, k # 0 and for any function
o : I' > C. For given o, k, and Tbo we denote the solution of

problem (Qk) by Up (x:k,p) for x e Aoo and define the
0o

JBUT +
o0
Ty [0] (%) El 3n ZXoiks®) for x eT__. (1.1)

operator
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We observe that the solution u of problem P is also a solution

of the boundary value problem given below provided the curve T

oo
is chosen so that its interior contains Ol U T.
A+k2—f' 9}
u v = in 1
2. _ . T
Au+k2u—o in 02
(¥) ulx))” = ul(x )", xeT
au - 3u +
@ anBo) = %3 3nZ,) s XET
3y )" =1 [u] 1(x)) x eT
3X ~o k2 T o’? ~o oo
Here Og denotes the annulus that lies between T and Ibo.
This is shown in Figure 1.2.
Figure 1.2
45 tion (x )" =
The validity of the boundary condition an(50) = Tk[ulrbol(zo)
for x, ¢ T, for the solution of problem P follows from the
fact that both u and %% are continuous across Tbo'

Conversely, if u 1is a solution of problem ¥ we may extend it
to a solution of problem P by defining u = Up (5;k2,u|r ) for
“ oo oo

X € A .
~ @
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From here our plan is to approximate the solution of the
problem P using the finite element method. The principle
ingredient in the finite element method is a variational
formulation of the problem which, here, we construct in a
straightforward manner using Galerkin techniques. We begin

this development by assuming that v is a trial function with

T 1 1l1,.T
v € CO(O1 U 02), v|nl e CcT (), V!QT e C (02).

2

Then for u the solution of ¥ we have

a J (Au + kzu); dx + a [ (Au + kzu)V dx = o f fv dx.

1 02 1

Integrating by parts and using the interface conditions together
with the boundary condition on Tbo we conclude that

a j (Yu.9v - k2u v)dx
1 aQ 1 ~

1

a T, [u|x 1V ds
2 j k T
T 2 oo

— 2 —-—
- 0y J T(Vu-VV - k2u v)d§ (1.2)

a9,

" w—
= a, | fvdx for all such v.
un ~
1
We denote the left hand side of 1.2 by a(u,v) and the right
hand side by F(v). Thus, u the solution of problem P

satisfies the variational equation
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a(u,v) = F(v) (1.3)

for all v ¢ Co(ﬂ U QT), v € Cl(n ), V€ Cl(OT).
1 2 1 2
With a variational formulation of P over a bounded region
available, the next step is to introduce approximate variational
problems. To do this we select a finite number of trial functions
¢?,¢g,...,¢g and set Sh = span{w?,...,wg]. We then attempt

to find a function uh € Sh which satisfies
h h
a(u ,vh) = F(vh) for all v, € s (1.4)

The solution uh of (1.4) is taken as an approximation to u.
The complication in the above procedure is the determination
of the operator Tk' This can be done by integral equations and
in particular by using integral representations for the solution.
Urbo(%jk’w) of problem Q. It is shown in [6] that one can

obtain Up (x:;k,9) in the form

0o
UT'! (,%7}{,‘9) =J U(Z)Gk(zgz)dsy (105)
(e o) ™ A
@®
= - i (1) (1
where G, (x,y) = - i/4 HJ (k|x-y1), Hy is the Hankel

function of the first kind of order zero and o 1is determined

by the equation

‘rl" o (PG (x,y)ds, = @(x,), Xl . (1.6)
oy 4

K, [0] (%)
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Equation (1.6) is a Fredholm integral equation of the first kind.
It is shown in [6] that this equation is uniquely solvable and
we set o = Kil[w]. From the representation (1.5) and a

standard result in potential theory one has

?U +
___I‘C_D.(x.k ) _.lo(x).,_f ()lG(x~)d
an RBois® T2 " %o T oY) Jn “x &Y 9%y
. e #
(1.7)
=-l.
= (2 I+ Mk)[c]ggo) for ‘5o€rbo‘
Thus we have the following characterization of Tk
T (6] = (3 I+ MK (o) (1.8)
k! 2 MKy Lol y

The remainder of the paper proceeds as follows. In
section two we describe the variational procedure precisely,
and we state the convergence results. The proof of these is
reduced to two coercivity inequalities. The verification of
these is extremely technical and postponed to section five and
the appendix.

In section three we discuss the implementation of the
method including an approximate treatment of the operator Tk’
We report on some numerical experiments which confirm our
estimates for convergence rates.

Section four contains a brief discussion of other problems
to which the method applies.

The authors wish to express their appreciation to

Professor G. J. Fix for his help in the development of this paper.
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2, VARIATIONAL FORMULATION

For any region Z we denote by Hk(z) the space of
complex valued functions on Z with square integrable derivatives

of order < k and we write

lelg 5 = }I:Sk Jrleaf|2d§ for feHN(2). (2.1)

la

For closed curves vy we also need the boundary spaces Hr(y),
r e R. It is known (see [l1l]) that if 23Z is smooth then

there are continuous mappings

u - u|az : Hk(Z) > Hk'l/z(az). (2.2)

For our variational formulation we will need a space HE which

we define as follows

By = (v[vlg €81 (), v] gel! (03),97 Geg) = vF (o) xgeT -
2

We also define the norms |

'HIJ on HE by

i3 = Wi5q, + W12
2

and note that H, is a Hilbert space under the norm |H-|Hl.
To proceed with the variational formulation we need the

following properties of Tk’ which are proved in the appendix.

LEMMA 1. Tk is a bounded linear operator from Hr(rbo)
to Hr-l(Ibo) and satisfies
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[ mevas =] er was (2.3)
™ r
(e o] oo
for all o,) ¢ H1/2(I}D).

With this we observe that the bilinear form

—_ r — —
a(u,v) = ay IF Tkz(U|rbo)v ds - oy JQ (Ju.9v - kiuv)dg
oo 1
(2.4)
~a, | (vuvv - k2ivrax
T
n2

is well defined on HE X HE. By (2.2) ulrbo and v are in

Hl/z(l"oo) . By Lemma 1 then Tk(u]r,oo) is in ®BY2(r_) witn
Ty (ulp )l Cllu .
x, 0T 12, T <<l H1/2,1“oo

Hence by the generalized Schwarz inequality and (2.2)

| 1 (ulp )V as| < clul vl ctillallly Hvllly - (2.5)
jroo x, tir Vsl < I 1/2,T_ 1/2,1“003 LA

Thus a(u,v) is well defined and

latu,v) | < clifulll, lllv]il, (2.6)

showing that a(-,:) : HE X HE - C 1is bounded. We may also

n

comment here that if f ¢ L2(01) HO(Ql) then

F(v) = [ fv dg
I.ol

is a bounded linear functional on HE'
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The variational form of problem ¥ that we use is stated

as follows

Find u ¢ HE such that

(VPB) a(u,v) = F(v)

for all v ¢ HE'

Next we state the approximate problems. We suppose that
by
E’0<h<1

HE which satisfy the following:

(s is a family of finite dimensional subspaces of

APPROXIMATION PROPERTY. There exists an integer t > 2

and positive constants Co and Cl such that for any u ¢ HE

with |Hu|HL <@, L £ t, there exists a function u* ¢ Sg
which satisfies
llu-ux Il < esn™ il 3= 0,1 (2.7)
3 J 1 ’

(the constants CO,C1 are independent of h and u).

With such a family {sg} we pose the approximate problems:

Find uh € Sg such that

(avP) a(uh,vh) = F(v)

h

for all Vh € SE .

Our main results concerning problems VP and AVP are:
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THEOREM 1. There exists a unique solution u of problem
vP and there exists an h_ > 0 such that problem AVP has a

unique solution uh whenever h < ho.

THEOREM 2. There exists constants Co and C1 > 0 such

that, for h < ho

h h
[[la-u |||1 < ¢ lllu-wy [ll; for all wy€S (2.8)

E

and
h h
lu-a"[l, < e hllla-u™ ]l . (2.9)

The constants CO and C1 are independent of u and h < ho.
Theorem 2 is an optimality result and is typical for finite

element methods applied to elliptic problems. If we use the

approximation property of {sg}, together with the regularity

of the solution u, we obtain

1-2

COROLIARY 1. Suppose that f ¢ H (Q with 24t

1)
then for h < ho there are constants Cj’ j = 0,1, independent

of h< ho such that

-3

h .
My < egp™ ™. (2.10)

[[lu-u

PROOF OF COROLIARY 1. Regularity results for problem P

show that if f ¢ Hl—z(ﬂl) then u|n € HL(nl) and
1

ulqT € HL(ﬂg) thus |Hu|HL < @. By (2.7) we have that
2

. 1-1
ing lla-w [l < el
whesE
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Applying this in (2.8) we find that
h 1-1
lla-u™ll; < ch™ lalll, . (2.11)

From (2.9) and (2.11]) we obtain (2.10) for j = 0, i.e.,

lla-a® Il < chllalll, -

The proofs of Theorems 1 and 2 are complicated by the fact
that the variational problem is not positive definite. Hence
we need the following rather technical result which is treated

in section five.

THEOREM 3. There exists constants ho’ca > 0 such that

a(u,v
sup > c_||lul]lly for all wue (2.12)
O#veHE v 1 a 1 HE
la(u, ,vy) |
h h
sup v > c_|llu. ], for all €S, . (2.13)
O#vhesg Vnlllh all®n il "n*°E

Once (2.12) and (2.13) are established we may use these
estimates in a standard way to prove the existence and uniqueness
results stated in Theorem 1 (see [l1]). Before proving (2.12)
and (2.13) we will first show that 2.13 yields 2.8 of Theorem 2.
(The result 2.9 will be treated in section five.)

From the formulation of problems VF and AVF we have
a(u,vh) = F(vh) = a(uh,vh) for all Vi € Sg. Thus, for any

h
wh € SE
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la(uh‘ h’vh)l - Ia(u‘w-h,vh)l
My, T, My, T,

. (2.14)

The right hand side of (2.14) is bounded above (using (2.6)) by
. h
cllju- w1+ By taking the supremum over v, e Sp» Yy # O

and applying (2.13) we obtain
NuP=w 111, < et llu-w Il - (2.15)
The triangle inequality applied to |||u—uh|||l gives
Mu-a®ll; < Mlu-wy (il + (e 1] -
Using tnis and (2.15) we obtain
la-a®[ll; < @+ e [[lu-wy Il -
Thus (2.13) implies (2.8).

3. IMPLEMENTATION OF THE METHOD.

The approximate problem

Find uh € Sg such that

(ave) a®,v,) = F(vp)

h
for all vheSE

is seen to be equivalent to a matrix problem by selecting a

basis {¢1,¢2,...,¢NH} for SE.
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We find a function uh given by

h h
u = T q.o. (3.1)
- j=1 373
which satisfies
h . .
a(u ,¢i) = F(¢i), i=1i,...,N. (3.2)

The system of equations (3.2) is the matrix problem

Kg = £ (3.3)
where q = (ql,...,qNH)T is the vector of weights in (3.1),
E = (F(epl),...,F(cpNH))T is the source term
and

K= (K..) 1is the stiffness matrix

1]
with entries
K,. = a(e. ) = & J T (9. | Yo.ds - a J (Vg Yo, - k2¢ ; )ydx
ij ®309 2 o 10 JNR 1 A RALZ 19493/ 9%X
™ 9]
© 1 (3.4)
- a, I (v¢j'v¢i - kzmjwi)Q§.
Q2

To use the ideas presented so far in actual computation

we must be able to impose the nonlocal boundary condition

du _
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along the outer boundary Tbo. We see from 3.4 that, in the
approximate variational problem, this amounts to computing the

integrals

J Tk(°i|Tbo)¢ids (3.5)

To

for the basis functions IR PYRERPL of the approximation
h

h
space SE'

forward manner according to the definition of Ty by solving

This computation may be carried out in a straight-

the integral equations

~

J Oi(X)Gk(i’z)dsy = ¢i(§), fgfbo, is= l,...,Nh (3.6)
r ~

oo

for the densities ci, computing Tk(°i)(§) for fgrbo from

the formula

T lo] 00 = 3 0,60 + [ 0, (p) 3 6, (x,y)ds,, (3.7)
T}D =
and finally computing the integrals 3.5 using a suitable
quadrature rule. The execution of this procedure for general
finite element spaces SE
Fortunately the matter of computing the integrals 3.5 can be

is a lengthy process at best.

greatly simplified by making special choices of the curve ILD

and the approximation spaces Sg.

we take Tbo to be a circle and choose Sg so that the

In the following discussion

restrictions of the trial functions to Tbo are piecewise linear

functions of arclength corresponding to a uniform mesh along Tbo'
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Figure 3.1 shows the region Qg when Tbo is a circle of
radius R. We assume that a finite element space
h

Sg = span{wl,...,¢Nh] has been chosen so that wilrbo is that

piecewise linear function of arclength along Ibo which either
vanishes identically along Tbo or is equal to one at one node

on Tbo and vanishes at the remaining nodes.

Figure 3.1

.. = 2r
If we set ej = hlj, j = 1,2,...,N1 where h1 = N, we may

characterize each ¢ilr (which does not vanish identically
(e o)
on Ibo) in terms of the polar angle 6 as a translation of a

function § () where P  is the 2m-periodic extension of the

function defined by
-e/h1 + 1 0L 8 <L h1

P () = o/h; + 1 -h; < 80
0 hy < |ef L.
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We have, for those mi's which do not vanish on Tbo
®; (R cos8,R sing) = wo(e - hym,) (3.8)

for some integer m,, 1< m <N (By renumbering the ¢i's

we may assume that m, = i.) We note that, by solving elementary

boundary value problems for the circle, one obtains the formulas,

Hél)v(kR)
Ty (cos(ne + a)) =k ) cos (n® + a)
H (kR)
n
for n= 0,1,2,... where Hél) is the Hankel function of the

first kind of order n. (The superscript "¥" denotes
differentiation with respect to the argument.) Then, if one
expands wo in a Fourier series one obtains, after some algebraic
rearrangement, see [9],

(L (3.9)
ki, (R)

= 1 4
J Tk[q’j Ir\w]QidS = R 27 hl + Trhié-hl{Tk[P] (9)}'9.___ (&-2)1’11]
oo
where

Ay £(8) = £(8 + hy) - £(8)
1
is the forward difference operator,
L= |i- 3|
and

4 2 2 3 4
T T18] r]e]| |l
P(8) =55 - i3~ +*+ 13— - a8 o] < 2w, (3.10)
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From the formula 3.9 we see that to compute all of the
integrals 3.5 in the special case under consideration we need
only compute Tk[p](e) at 8 = Gj,
function p(8) defined by 3.10. This amounts to first solving

j= 1,...,N1 for the single

the integral equation

2T
- %f °(t)Hc(,1) (2kR |sin —egtl)dt =p(e) 0K 8 < 2r (3.11)
0
for the density o(t). (We have specialized to the case when
T is a circle of radius R and used the fact that

oo
i 1 . 8-t
Gk(f’z) =-7 Hé )(ZkR|51n —E_I)
when X = (R cos8,R sine), Y= (R cos t,R sin t) are points

on T_ .) Once o(t), 0 tg 2r is determined T, (p)(8)

is found from the formula: (again specialized to the case when

To = (xllxl =R}
x 27
T, (p) (8) = 1 o(e) + Ri- j' o()u{!) (2kr|sin 2-E)) |sin LEjat. (3.12)
(0]

The kernel of the integral operator in 3.8 is obtained using

the fact that

-] ik 1)v ... 6-t . 6-t
= Gk(i,z) = - %I Hé ) (2kR |sin —3—|)|51n -5—|
when X = (R cos®,R sing) and y = (R cos t,R sin t) are on

I}D together with the identity

(H)v _ (D)
H («) = -H;77 ().
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We may also observe that this kernel is continuous at 8 = t,

in fact,

; (1) . 8-t .. 8-t i
lim H. ' (2kR |sin =) |sin ==| = - = .
8ot 1 2 2 TR
In the numerical examples that follow the equation, 3.11
was solved using numerical methods described in [6] with
Simpson's rule replaced by the rectangular quadrature rule.
With this modification the discretized form of 3.11 is a matrix

problem

~

A0 = p

with A a circulant matrix. This feature enables the problem
to be solved efficiently using well known inversion formulas for
circulants (see [5] or [10]).

To verify the convergence rates predicted by the theory we
consider the following example for various values of a5 Qs
kys k2.
Find u such that

su + k2u = 0 1< |x| < 2
Au + kgu =0 x| > 2
u=1 on |x|=1
vt =u on x| =2 (3.14)
Buy+ _ 3u, - -
e, Gy = oG on x| =2
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In this example the curve Tbo is a circle with radius
greater than two (we use R = 3). Following our procedures we

construct the boundary value problem

2

Au + kju = 0 1< |x] <2
su + X2u =0 2 < x| <3
u=1 on x| =1

ut = u” on x| = 2
0, @ = 0, A% on |x| = 2
2'3n %1 3n ~

au _
. Tkzlu'|§|=R] on |x| = 3.
Figure 3.2

The approximation spaces {Sh used here are sets of piecewise

E)
linear functions of the polar coordinates r,8. They may be
constructed by first mapping the region (x|l < [x| < R} into

the rectangle [0,27] X [1,R] in the r-8 coordinate system.

We then construct piecewise linear finite element spaces (composed
of 2r-periodic functions) corresponding to triangulations of

the rectangle and transform back to rectangular coordinates. We
thus obtain a distorted triangular grid with associated trial
functions which are linear in r and 8. The resulting family

of subspaces {Sg} (n = maximum diameter of the triangles)

satisfy the approximation property with t = 2. According to

Corollary 1 we should observe that
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0 (h?)

h
[T

and

la-u®|ll, = o)

for this family {Sg]. Our examples are chosen so that the
exact solutions are known and we measure convergence rates by
computing Hluh-uIHIo and lHuh-uIlll1 where ul is the

interpolant of the exact solution in Sh From approximation

E
theory we have that

flu-uljll, = om? and |flu-u|ll; = o(m).

Using this and the triangle inequality we may show that the
errors IHu-uhlﬂo and H]u—uhlll1 will be optimal order
(O(hz) and 0(h), respectively) if we observe in the

calculations that

2

h I h I
lu"-u™[l|g £ e;h® and ||lu"-u”]ll; < c;h. (3.15)

We display the results graphically in Figure 3.4 and Figure 3.5

by plotting

h 1 .
[|[u™- IIIj vs 1/h ji=o,1

on a log-log scale. A slope of -2 (-1) indicates quadratic
(linear) convergence. Eight trials were conducted. The values
of Qs Ops k1 and k_2 used to solve problem 3.14 in these

cases are listed in Table 3.1.
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TRIAL o a, kl k2
1 1 4 1 2
2 1 2 1 2
3 1 4 1 4
4 1 2 1 4
5 1 4 1 10
6 2 1 1 4
7 4 1 1 4
8 4 1 1 10
Table 3.1

1
Il

Figure 3.4 shows |Huh-u vs 1/h and we observe in

o
every case, for sufficiently small h, that the convergence is
quadratic. In Figure 3.5 |||uh-uI|||1 is plotted against 1/h.
Here the slopes of the curves lie between -1 and -2 indicating

that
h I
Ia"-uT |} < eh.

Thus, from the remarks preceding 3.15, we observe that the

convergence rates are optimal.

4. EXTENSIONS OF THE METHOD.

The particular problem studied here was chosen for
illustrative purposes only. It demonstrates the power of
variational methods to handle complicated situations on finite
regions and the ability of integral equations to deal with

infinite regions. We sketch a few more examples.
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We note first that all the standard exterior problems for
the Helmholtz equation can be treated. That is one can solve
the problem Au + k2u =0 in 02 with the radiation condition
and any combination of Dirichlet, Neumann or mixed data given
on Té.

The next observation is that the exterior problem can also

be treated in the case of variable coefficients. Consider the

equation,
div(A(x)vu) + b(x) -vu + k2(§)u =0 in Q,. (4.1)

Suppose there is an R such that for |§| > R, we have

10
A= (5, b= (0,00, kK*(x) = k3. (4.2)
Then if one chooses I;o so that it contains the circle
|§| = Ro one can formulate boundary value problems for 4.1,

with the radiation condition as variational problems over Qg
; ition 28 -
with the condition £ = k2(ull..oo) on T .
An example of equation 4.1 occurs in [3] in the study of

acoustic radiation from a cylinder when heating causes local
spatial inhomogenities. The equation there is

2
t P

1
c? 3

where ¢ = c(x) 1is sound speed, p = p(x) is the density and
pgﬁ,t) is the acoustic pressure. If one seeks periodic
iwt

solutions of the form p(x,t) = Re(u(x))e then one arrives
Ie '~

at 4.1 with
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S Lo -1 _ e
A= (], B=-37%, k=2.

Finally it can be seen that one can treat interface
problems with the geometry of Figure 1.1, but with equations
of the form 4.2 holding in 01 and 02 with associated
(Al,gl,kl) and (Az,gz,kz). It is necessary only that 4.2
hold for (a,,b,,k,) for x| > R, and that the second
interface condition be replaced by one which is naturally

associated with 4.1, that is,
o, @ v = o, @a,0umt.
5. PROOF OF THEOREM 3.
We begin by considering an auxiliary problem. This is:
Find u such that

Ad = 0 in Aoo

= ™
Qo u ¢ on T
u= 0(1)
as r -» @
vu = O(r'z)

This problem has a unique solution which we denote by Ug (x:0),
@®

and we may define the associated T operator To as in problem
Q, . That is

k o +

3UR  (x,:9)
@®
T Il (%) = n . (5.1)



FINITE ELEMENT METHOD FOR EXTERIOR PROBLEMS 337

The following results concerning the operator To are

established in the Appendix.

LEMMA 2. To is a bounded linear operator from Hr(Tbo) to

Hr'l(Tao) -with the following properties.

(i) [ T (e)4as = [ o T_()ds for all o,p ¢ g 2(r_)

T ™
oo a

(ii) I T (9)ods < 0 for all o ¢ H1/2(T‘°°)

™
@

(iii) For all k, Ty - T is a bounded linear operator

r . r+1l
from H (TED) into H (Tbo)‘

>

With Lemma 2 stated we can outline the proof of Theorem 3. We

write a(u,v) in the form
a(u,v) = al(u,v) + az(u,v) (5.2)
where

al(u,v) = J “2To‘“‘r;°); ds - J aIVu~dVd§,- I a2Vu-€;d5 (5.3)

TED 01 02

p— — 2 -—
az(u,v) = J “Z(T-To)[u|fbo]v ds + alki j uvdx + a2k2 J uvdx (5.4)

I}D 01 ‘13

and look for a v € HE of the form v =u+w, We I-lE for
which the inequality 2.12 holds. For this function v we use

the decomposition 5.2 and find
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a(u,v) = {a;(u,u) - q j uudx - a, iruﬁdﬁ}

a a
1 2 (5.5)

+ (a,(u,u) + a; J uudy + a, J‘Tu_ﬁd;s} + a(u,w)

9 9

The first bracketed expression on the right side of 5.5 is
negative and bounded above by -C'IHuIHi. This follows from
Lemma 2(ii) and the definition of al(-,-). If w can be

chosen so :that

a(u,w) = -{az(u,u) + a, I dﬁdﬁ + a, J dﬁd;] (5.6)
T

O a

then we would have for v = u + w,
lata,v) | > crlllulll}. (5.7)
If, in addition, w satisfies the estimate
Mwllly < erlllallly (5.8)

then |Hv|||1 < (1 + ¢ |fjull]; and it would follow from 5.7
that

1
Lot > w5 iy

proving 2.12. 1Inequality 2.13 follows from 2.12 and the

approximation property for {SE] if the estimate 5.8 can be

strengthened to

Hwllly, < ctlitallly . (5.9)



FINITE ELEMENT METHOD FOR EXTERIOR PROBLEMS 339

To see this we set u = u, € Sg and construct w € HE so that

5.6 and 5.7 hold. Then

late,v) | > ¢l 12 (5.10)

holds for v = u, +w. By the approximation property 2.7 and

the assumption 5.9 we may pick w, € Sg such that

1
l”w‘ h”ll < C]_h”lwl”z <L Cl h”|“-h|||1- (5.11)
If we set Vi T U, oW then there exists ho > 0 such that
. 2
Ia(u.h,vh)l > c |Hu.h|||1 for h < h°.+ (5.‘12)
Moreover, using 5.9 and 5.11,
vy Illy < Mg Iy + i 11l
< Mg llly + Il + HHiwew 11l
!
< @+ ct+cih)ligll;.
Thus
vy Iy < €™ Mgl - (5.13)
Finally, we note that

la(u,v) | e
T, 2" lluy Il for h < hy

follows from 5.12 and 5.13. This proves 2.13.

+This result is a simple consequence of 5.10, 5.11 and 2.6
using the estimate

latu,vy) | 2 Jatu,v) | - fatuy,w-w) .
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To complete the proof of Theorem 3 we must show that for
arbitrary u € HE there exists w ¢ HE such that 5.6 and 5.9

hold. To do this we consider the variational problem

Find w ¢ HE such tnat

vp* a(e,w) = -{a,(8,u) + a; f fudx + a, f udx}
! o

for all 0@ ¢ HE‘

Our arguments to this point utilize what is known as Nitsche's
Trick [11], and the problem VP* is the sort of adjoint problem
that arises in these instances. The desired results 5.6 and
5.9 are immediate consequences of an existence and regularity
result for VP*., This is stated in the following lemma which

is discussed in the Appendix.

LEMMA 3. There exists w ¢ Hp satisfying problem vp*.

Moreover, |||wH|2 < oo and satisfies

llll, < et illallly -

Having completed the outline of the proof of Theorem 3
we return to the matter of proving the L2 estimate 2.9 of
Theorem 2. We again use Nitsche's Trick. Let €, =u- uh

and consider the problem
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Find w ¢ HE such that
a(v,w) = a, I vzhdgs+ a, f v—e'hdg\(‘ (5.14)
Q, ng

for all v e HE

We may show, using integration by parts and Lemma 1, that this

is equivalent to the following boundary value problem

Y
Aw + klw e, in 01

- 2= = T
Aw + k2w = e, in 02
w=wt on T
W- o Qw4+
al(an) = °'2(an) on T
_ Aw. -
T, (w] y-E2)" =0 on T
k2 1"oo an @

This may in turn be recast as an exterior interface problem
= = _ =
Aw + klw = ¢, in Ql

- . T
z_w e, in 02

A3+k1 =
0 in A
ao
W =w on T (5.15)
Wy - _ B+
@1G@n) = ey o T

im r213% _ iy Wl =
lim r ar-lkzwl—o

r-co
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Problem 5.15 has a unique solution and, by arguments similar
to those outlined in the discussion of the proof of Lemma 3,

its solution satisfies the estimate
Hwlll, < ctllley Nl (5.16)
We put v = e, in 2.14 and obtain
_ 2
aley,w) = |lleylllg- (5.17)

Since e, =u - uh and a(u,wh) = a(uh,wh) = F(wh) for all

h h
wy € SE we have a(eh,wh) = 0 for all w, € S We subtract

E°
this form 5.17 to obtain

a(ey,w-w) = |“ehl”§ for all wye Sg. (5.18)

From 2.6 and 5.18 we have

e, 12 < cllley llly lllw-wy lll, for all w, e sh
or
llenlllg < cllienllly — ing  [llw-wy il (5.19)
wheSE

The approximation property 2.7 implies that

inf ||lw=wy [ll; < cpnlllwlll,-
wheSE
Using this and 5.16 gives

inf [[lw-wy [ll; < c'hllleylll,. (5.20)
whesg
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Finally, 2.19 and 2.20 establish
eyl < c™hllley Il
which proves the Lz estimate 2.9.

APPENDIX: PROOFS OF LEMMAS.

PROOF OF LEMMA 1., It is shown in [7] that K is a bounded
linear map from Hr(IhD) onto Hr'l(rbo) with a bounded
inverse. When I;D is a smooth curve it is known that the
quantity g% Gy in the definition of M is a smooth function
and the first statement of Lemma 1 follows.

In order to establish the property 2.3 for Tk we use a
Green's theorem argument. Suppose ®,) € Hl/z(I}D). Define U
and V by U= UF (x:k,0), V= Utho(sz,w). Then Green's

oo
theorem yields

v
V- U3, (a.l)

51

T
0o

.l~ (%%V-%U)=J (an
I%

where Ik is a large circle (radius = R) containing Ibo.

The radiation condition implies that the limit of the right-hand

sidesas R tends to infinity is zero. Hence the left-hand

side is zero and this is the result stated.

PROOF OF LEMMA 2. We first obtain a representation for the
operator T. To do this we need to discuss the solution of
problem Qo‘ It is shown in [6] that the solution can be

obtained in the form

1
U% (x,9) = > J c(z)ln|§-x|dsX - C (A.2)
@ T

(e o]
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where 0 is determined by the equations

K [0] = é% f o(y)lnlgﬁxldsx =9+ C (A.3)
T
I o(y)ds, = O. (A.4)
Teo

The equation Ko[o] = x can be solved for any ¥. The
condition A.4 determines the constant C and serves to make
U% bounded at infinity. It is shown in [7] that Ko is a
bogided map from Hr(Tbo) onto Hr+l(IB°) with a bounded
inverse. 1In order to establish the results in Lemma 2 we must
look a little more closely at the solution procedure (A.2)-(A.4).

From A.3 we have

1

o= K;l[cp] + CK; [1] (A.5)

and then A.4 determines C by the formula

c= (- f K;l[cp]ds)/( f K;l[l]ds). (A.6)
rm rCD

(It is shown in [6] that if Ibo is chosen so that its mapping

radius is not one then the denominator in A.6 does not vanish.)
. -1 r . r-1

Since K° maps H (Tbo) into H (T;o) we observe that A.6

defines C as a continuous linear functional on Hr(Tbo).

Indeed by the generalized Schwarz inequality we have

-1
lc] = lct@ | < ¢yllk ™ (o) \lr_l,rooulll_(r_l),roo < czllepllr,roo, @A.7)
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In order to determine To we observe that by A.2 and A.5
o

[-1¢
T
Tol0) (5g) = (G2 (5or®) )" = 5 0txy) + 5 | oWy nlx-ylas,
T
[0 o]
(a.8)

(1 + MK ] (5,) + Clo) BT + MOKS 1] (%),

It follows from this formula that To maps Hr(rbo) into
Hr'l(T ) continuously.

oo

Property (i) of Lemma 2 follows by the same Green's theorem
type result as in Lemma 1. The negativity result (ii) is

another Green's theorem argument. We have (for u = ﬁ% (x:9)),
©

I T [9leds = %% uds = - I |ou|“dx + I 3% u. (A.9)
roo roo nR FR

Here Ih

conditions at infinity imply that tne limit of the integral over

is as before and QR = A n int(Tk). Once again the

oo

Ih as R tends to infinity is zero hence we obtain (ii).

It remains to establisy (iii) of Lemma 2. We beéin by
observing that G, (x,y) and j% ln|x-y| have the same

singularity. We have in fact,
1
Gy (%,¥) = 5= ln|x-y| + Rk(|5-1|) (A.10)
with

R (1x-xD) = oy + |x-y/°Inlz-ylv (z-yD + & (lx-yD @.11)
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where ay is a constant and Y and Gk are analytic.

Thus we may write 1.6 in the form

(A.12)
1 _ :
75 | T Inlagylas, = K [01 () = o(x)) - | oR(z,yDas,
rho rbo
or,
o(x) = K3l 9] (5) - Kb [ o(pr, (Ix,yds,.  (a.13)
~0 (o) o o 34 ~o 2 Y .
Iko
It is shown in [7], on the basis of A.1ll, that the integral

operator

o(y)R, (Ix-y yl)ds

Jou
m
H

takes Hr(Tbo) into r+3(r ). Hence if we compare A.1l3 with

A.5 we see that

-1
Uroo (x:k,9) = U‘r’.cD (x79) + %%Lf K, [1] 1n|5—x|dsz

Ly
@ (A.14)

+ I Gk(ﬁég) I o(z)Rk(lx-z|)dszdsx.
Izn IED
3.

( I‘oo)+
¥3n

operator Mk as in 1.7. We note, however, that A.12 implies

Now we obtain Ty by computing This introduces the

that Mk differs from Mo by terms with more regularity
et r r+2
(specifically Mk-Mo : H (TED) - H (Tbo)). If one performs

the calculations with A.13 and A.8 one finds that

T lel = T (9] - C(9) (%1 + Mo)Kgl[l] + £, [9]
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. . r . r+l
where Sk is a continuous map from H (Tbo) into H (Ibo).

Now, by A.6 the functional is given by

r -1
Clo) = B | K '[e]ds

Teo

is a constant. But K; is self-adjoint hence,

where B
I K ! [olds = I o K:'[1]ds. (A.16)
rbo Tzo
(The constant B also involves K;l[l].) Now if the curve
T is smooth then K;l[l] would be a smooth function and

then A.16 and the generalized Schwarz inequality yields
-1
lco) | < 'B|”¢"r,I;D”Ko [1]H_r,rbo,
1 -1 1 -1
lletw) (5T + m ) K] [l]Hr+1,TBO < lee) G + )k [1]"r+1’fgo

< C'Hwﬂr,rbonxéllll“r+1,r;o
< cloll,r -

Thus A.15 yields (iii) of Lemma 2.

PROOF OF LEMMA 3. The definitions of a(-,-) and
az(-,-) and integration by parts used in a standard way yield
that the problem VP is equivalent to the boundary value problem
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— 2— —
Aw + klw = -u in 01
= 2= T
Aw + kzw = -u in 02
w=% on T (a.17)
v+ _ o Aw, -
az(an) al(an) on T
= 3w, - -
T, (W] ) - &%) = -(r, =T )(u) =h on T_.
k2 rw an - k2 o [e’e)

The result (iii) of Lemma 2 together with the fact that

u e Hl/z(Tbo) gives the information that
3/2
hen’ (M) and |nl, < cllully . (A.18)
2’ oo 2’ "o

We may further note that problem A.17 is equivalent to the

exterior interface problem

Aw + kia = -u in Q

. 1
- . T
_ -u in Q
Aw + kg;: = 2
0 in Aco
w=%w on T
Aw+ _ o Aw, -
a, (Bn) = a; 33) on T (A.19)
—+ _ =-
w = on T'oo
v+ Bw, -
(an) (an) =h on Tbo
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The solution of A.19 can be obtained in the following form:

jcl(x)le(’:s,x)dsZ + wo(i) in 01
W) = " (A.20)
Jr°2 (Z)sz (E’X)dsx +wy(x) + wy(x) in Q,
o)
where
vox) = - [ Wpe, (x,pay (a.21)
a 1
1
wp (%) = - J T(y)e, (x,y)dy (A.22)
QT 2
2
wy (%) = rj h(x)sz (5y) s, - (a.23)
[e o]

Standard potential theory arguments show that A.20
satisfies all the conditions of A.19 except the interface
conditions on T. The imposition of these leads to the

integral equations,

K](;[cz] +wy bW, = xkl[ol] +w, on T (A.24)
(a.25)
aw aw aw
oyl (%I + M’kz) [op] + a_nl + 352) = oyl (‘%I + M‘kl) [0}] + 35°) on T.

Here the integral operators are as in 1.6 and 1.7 but on T
i ™
instead of o

It can be shown that the solution of A.19 is unique and

the Fredholm alternative can be used to establish the existence
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of solutions of A.24 and A.25. The estimate in Lemma 3 can be

established by tedious but fairly straightforward analysis of
the mapping properties of the operators in A.20. We omit

these details.
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