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i. INTRODUCTION.

This paper is concerned with the fourth order differential equation

(p(x)y")" q(x)y" r(x)y 0 (L)

and its adjoint

[p(x)y" q(x)y]" r(x)y 0 (L)

where p, q and r are assumed to be continuous real-valued functions on the interval

R
+ [0, ). In addition, it is assumed throughout that p > 0, q >- 0 and r > 0 on

R+, with r not identically zero on any subinterval. It is clear that if q is a

constant, then (L) is selfadjoint; otherwise (L) is non-selfadjoint.

The objectives of the paper are to study the behavior of Wronskians of solutions

of (L) and (L*), and to relate this behavior with the oscillation of (L) and (L*),

as well as to the structure of the subspaces of the solution spaces of (L) and (L*).

A nontrivial solution y of (L) {(L*)} is oscillatory if the set of zeros of y is not

bounded above. If the set of zeros of y is bounded above, implying that y has only

finitely many zeros on R+, then y is nonoscillatory. Equation (L) (L*)} is oscill-

atory if it has at least one nontrivial oscillatory solution. For convenience here-

after, the term "solution" shall be interpreted to mean "nontrivlal solution."

Various special cases of (L) have been studied in detail. In particular, we

refer to the fundamental work of W. Leighton and Z. Nehari [10,Part I] on the self-

adj oint equation

(p(x)y") r(x)y 0 (I.I)

M. Keener [7,Part I] continued the investigation of (i.i), concentrating on the

oscillatory behavior of solutions. S. Ahmad [1] considered the selfadjoint equation

(4)
y r(x)y 0 (1.2)
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and gave a necessary and sufficient condition for the existence of a linearly inde-

pendent pair of oscillatory solutions. In [12] and [13] V. Pudei investigated the

behavior of solutions of the equation

y(4) q(x)y" r(x)y 0 (1.3)

Finally, we refer to the authors’ work in 5 where sufficient conditions for the

oscillation of (L) and (L*) are given, and where the behavior of both oscillatory

and nonoscillatory solutions is studied.

2. PRELIMINARY RESULTS.

As a notational convenience in treating the solutions of equations (L) and (L*),

we introduce the following differential operators.

D0Y(X D0Y(X) y(x), DlY(X) DlY(X) y’(x),

D2Y(X) p(x)y"(x), D3Y(X) [p (x) y" (x) D4Y(X) [p(x)y"(x)]

, ,
D2Y(X p(x)y"(x) q(x)y(x), D3Y(X) [p(x)y"(x) q(x)y(x)]

,
D4Y(X) [p(x)y"(x) q(x)y(x) ]

Our first result is essential in the work which follows. Corresponding results

for equations (I.I), (1.2), and (1.3), are given in [7], [i] and [13], respectively.

The proof is a straightforward modification of the proofs of Lemmas 2.1 and 2.2 in

[Io].

THEOREM 2.1. If y is a solution of (L) {(L*) } such that DiY(a) > 0
,

{Diy(a) _> 0}, t 0, 1, 2, 3, for some a e with strict inequality for at least

one i, then Di Y > 0 {Di Y > 0}, i 0, I, 2, 3, D4Y _> 0 {D4y _> 0} on (a,,) and

lim DiY(X {lim DiY(X) }, i 0, 2
x-- x-m

If z is a solution of (L) {(L*)} such that (-l)iD *z(b) > 0 {(-i)
i
Diz(b > 0}
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i O, I, 2, 3, for some b R+, b > 0, with strict inequality for at least one i,

iDiz {Dz D4z {Dzthen (-I) > 0 > 0}, i 0, I, 2, 3, and >_ 0 > 0} on [O,b).

It is clear from Theorem 2.1 that (L) and (L*) each have unbounded nonoscil-

latory solutions. In fact for any point a R+, the four solutions Yi(x,a),
i 0, I, 2, 3, of (L) {(L*)} determined by the initial conditions

,
DiYi(a,a) ij {DjYi(a,a) ij }

i, j--0, I, 2, 3, where ij is the Kronecker delta, are monotone increasing (on

[a, )), unbounded solutions which form a solution basis for (L) ((L*)}; a so-called

canonical basis. In general, a nonoscillatory, solution y of (L) {(L*)} satisfying

DiY(X) > 0, DiY(X)> 0},i=0, i,2,3, on (b,), for some b R+, is strongly increasing.

The next theorem provides the existence of a bounded nonoscillatory solution.

The technique employed in establishing this result is well-known (see [7, Theorem

i.I], or [I, Theorem 2]) and, consequently, the proof is omitted.

THEOREM 2.2. There exists a solution w of (L) {(L*)} such that

3 3
(+/-) n Diw(x) # 0 { n Diw(x) 0} on R’

i--0 i=0

(ii) sgn Dow sgn D2w # sgn DlW sgn D3w
{sgn D0w sgn D2w sgn DlW sgn D3w}
on R+

,
(iii) lira DlW(X) 0 {lim Diw(x) 0}, i 0, I, 2, 3,

x->o

lim lwCx) k >_ 0

i i *A solution w of (L) { (L*) }which satisfies (-I) Diw(x) > 0 {(-i) Diw(x) > 0}.

i 0, I, 2, 3, on R+ is said to be strongly decreasing. Of course, by Theorem 2.2,

each of (L) and (L*) has such a solution.
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Pudei [13, Theorem 55] has shown that equation (1.3) is oscillatory if and

only if its adjoint is oscillatory. With obvious modifications, his proof can

be extended to the case of (L) and (L*). An alternative proof of this fact can

th
be accomplished by showing that the n--conjugate point of a with respect to (L)

th
coincides with the n---conjugate point of a with respect to (L*), and then

applying Leighton and Nehari’s result [i0, Theorem 3.8]. The final theorem in

this section gives a necessary and sufficient condition for the existence of

oscillatory solutions of (L) and (L*). The authors established this result for

(L) (see [5, Theorem 4.1]) using the approach developed by Ahmad in [i]. This

approach can also be used to establish the result for (L*).

THEOREM 2.3. The following two statements are equivalent:

(a) Equation (L) (L*) is oscillatory

(b) If y is a nonoscillatory, eventually positive solution of (L) (L*)},

then y is either strongly increasing or strongly decreasing.

3. WRONSKIANS OF SOLUTIONS.

Let $ and * denote the space of solutions of (L) and (L*) respectively.

The theorems of the previous section suggest the identification of the following

subsets of $, and of $*:

I {y e $ either y or -y is strongly increasing}

{w e $ either w or-w is strongly decreasing}

O= {z S z,S uD}

Let I*, D* and 0* be the corresponding subsets of S*. Theorems 2.1, 2.2 and 2.3

specify that none of these subsets is empty. Moreover, according to Theorem 2.3,

(L) {(L*)} is oscillatory if and only if every solution in 0 (*) is oscillatory.

In this section we study the Wronskians of solutions of (L) and (L*), we

give some basic identities satisfied by these Wronskians, and we give a neces-

sary and sufficient condition for the nonoscillation of (L) and (L*) in terms of
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these Wronskians.

Let u, v, y, z S Then

W2 (u,v)
u v

Dlu Dlv W3(u,v, Y)

u v y

DlU DlV DIY
D2u D2v D2Y

W4(u,v,y,z

u v y z

DlU DlV DIY DlZ
D2u D2v D2Y D2z
D3u D3v D3Y D3z

, , ,
The Wronskians W2(u,v), W3(u, v, y) and W4(u, v, y, z) of solutions u, v, y, z

,
of (L) are defined in a similar manner. Of course W4(u v, y, z)--k (constant)

{W(u, v, y, z) =- k} on R+, and k # 0 if and only if {u, v, y, z} is a solution

basis for (L) {(L )}. Also, it is well-known (and easy to verify by direct

calculation) that if u, v, y are any three linearly independent solutions of

(L) }.(L) {(L*)} then W3(u, v, y) {W(u v y)} is a solution of (L*
,

The linear operators L and L associated with equations (L) and (L),

respectively, are defined by

L[y] [p(x)y"] q(x)y" r(x)y,

[y] [p(x)y" q(x)y] r(x)y

A function y defined on R+ is said to be admissable for /_ {*} if each of y and

R/"py" {py’ qy} is twice differentiable on If y is admissable for /_ and z is

admissable for L then they satisfy the Lagrange identity.

z/_[y] yL [z] {y;z}’, (3.1)
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where

{y;z} z(py") z (py") + (pz"- qz)y (pz"-qz) y
3

i *. (-I) Diz DB_iY
i--0 (3.2)

,
If follows from (3.1) that if y S and z S then {y;z} 0, which

implies {y;z} k (constant) on Thus the relation (3.2) determines a

function }: S x / R (the reals), and it is easy to verify that this

function is linear in each of its arguments. This function can also be used to

express a relationship between certain Wronskians of orders 3 and 4. In

particular, let u, v, y S be linearly independent, and let z S. Then

W3(u, v, y) S and

{z; W3(u v, y)} W4(u, v, y, z)

Similarly, if v, y, z E S’are linearly independent and u S then

W3(v y, z) e S and

{W3(v, y, z); u} W4(u, v, y, z)

(3.3)

(3.4)

These identities are an extension of the ideas introduced by J. M. Dolan in [4].
,

They can be verified by expanding W
4 along its last column and W

4 along its

first column. It is clear from identities (3.3) and (3.4) that {u, v, y, z}

forms a solution basis for S (S) if and only if

{z;W3(u, v, y)} k # 0 ({W3(v, y, z); u} k # 0).

Our first two results establish a connection between two and three

dimensional subspaces of S (S*) and certain second and third order Wronskians.

These results are related to the Wronskian identities established by W. J. Kim

in [8].
, , ,

THEOREM 3.1. Let y ( S (S) and let Sy (Sy) be the subset of S (S)

defined by
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’,.* {z {y;z} O} (Sy {u e S {u;y} O)
Y

Then

S* S(i) The set
Y (Sy) is a three dimensional subspace of (S).

(ii) Let u S (S*). Then S* S* (Sy Su) if and only if y ku for
Y U

some nonzero constant k.

(iii) Let u, v, z be a basis for S (Sy). Then W3(u v, z) my
Y

(W3(u, v, z) my) for some nonzero constant m. In fact, the basis u, v, z

may be chosen such that W3(u, v, z) y (W3(u v, z) y)

NOTE. The proofs in this section will be given in terms of elements of S

only. It will be clear that the same arguments apply equally as well for

elements of S

PROOF. Part (i) follows from the fact that {y;z} 0 essentially defines

a third order, linear, homogeneous differential equation.

Consider part (ii). Since {. ,.} is linear in each of its arguments, it is

easy to see that if y ku, then S Su). To show the converse
y u

Sassume that y, u S are linearly independent Since is a three dimensional
Y

subspace of S it follows that if a is any point in R+ and i, j are any two

distinct integers, 0 < i, j < 3, then there exists a solution z S* such that
y

Diz(a) Djz(a) 0. Fix any a R+. Suppose y(a) 0, u(a) # 0. Then it is

easy to verify, using the Lagrange identity, that S contains the solution z
Y

satisfying D0z(a) Dlz(a) D2z(a) 0 D3z(a) i and z S Thus S # S
u y u

The same argument applies if u(a) 0, y(a) # 0. Now suppose y(a) # 0 and

u(a) # 0. From part (i) we can assume that y(a) u(a). Let i, i _< i <_ 3 be

the least integer such that DiY(a) # Diu(a). Such an integer exists since y and

Su are linearly independent Now choose z
Y

such that D.z(a)3 DkZ(a) 0,

j # k, 0 < j, k < 2 and j # 3 i, k # 3 i. Then from the Lagrange identify

ztS.
U
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, ,
For (iii), let {u, v, z} be a basis for S and let W--W3(u v, z}. Then,

Y , ,
from (3.4), {W;u} {W;v} {W;z} 0, which implies S

W Sy, and so

W my from (ii). The last part of (iii) follows from the fact that

i* *i ira_Wv, v, v, v,
,

THEOREM 3.2. Let y,z S(S be linearly independent. Then:

(i) S* * *
N S (Sy N Sz) is a two dimensional subspace of S (S).

y z

S* S* (Sy(ii) If {u,v} is a basis for n n S then
y z z, ,

W2(y, z) kW2(u, v) {W2(y, z) kW2(u, v)} for some nonzero constant k.
, ,

Moreover u andv may be chosen so that W2(y, z) W2(u, v) {W2(y, z) W2(u, v)}.

PROOF. Part (i) follows from the fact that the intersection of two

distinct three dimensional subspaces of a four dimensional vector space has

dimension two.

To prove part (ii), assume that y, z S are linearly independent and {u,v} is a

* S*basis for S N Then u and v satisfy the "third" order equations
y z

, , , ,
D0Y D3 DIY D2 + D2Y DI- D3Y D0= 0

and
* , , ,

D0z D3qc DlZ D2c + D2z D1- D3 z D0q: 0

Multiplying these two equations by y and z, respectively, and subtracting, yields

the second order equation

W2(Y, z) D2 p(yz zy )DI+ [y D3z z D3Y]= 0

Now D2 p q so that this equation can be written.

W2(Y, z) W2(Y z) + [y D3z z D3Y q] 0

P

Since u and v satisfy this equation, we have, by Abel’s identity,
,

W2(y, z) k W
2 (u, v),

for some nonzero constant k, on any interval on which W2(Y z) # 0. The
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continuity of W2, W
2

and their derivatives imply that this equation actually
, ,

holds on R+. Finally, since k W2(u v) W2(ku, v), we have (ii) in the case

y, z

We conclude this section with a necessary and sufficient condition that
,

each of (L) and (L) be nonoscillatory. This condition is stated in terms of

the nonoscillation of second and third order Wronskians of linearly independent

solutions. In particular, the Wronskian W
i (Wi) i 2 or 3, of linearly

* +
independent solutions of ..q (S) is nonoscillator if there is a number b R

such that W
i

(Wi) is nonzero on [b, ); otherwise W
i (Wi) is oscillatory.

THEOREM 3.3. Equations (L) and (L) are nonoscillatory if and only if

every second and third order Wronskian W2, W
3 {W2, W3} of linearly independent

solutions of S {S*} is nonoscillatory.

PROOF. Assume that all second and third order Wronskians of linearly

independent solutions of (L) are nonoscillatory. Then, in particular, all third

order Wronskians W
3

are nonoscillatory. By Theorem 3.1 (iii) every solution of
,

..q is the Wronskian of three linearly independent solutions of S. Thus we can

conclude that (L), and hence (L), are both nonoscillatory.

Now assume that (L) is nonoscillatory. Then Theorem 3.1 (iii) and the fact
,

that (L) is also nonoscillatory implies that all third order Wronskians of

linearly independent solutions of (L) are nonoscillatory. Thus, it remains to

examine the second order Wronskians. Let y, z S be linearly independent and

R+.assume y > O, z > 0 on [b, =) for some b e It was shown in [5, Lemma 3.1]

that i u is any nonoscillatory solution of (L), then

2
D.u # 0 on [c, =) for some c R+

i=O

Therefore, by taking b large enough, we may assume y > O, z > O, DiY O,

D.zl # 0, i i, 2, on [b, ). Suppose W2(Y z) is oscillatory. Recall the
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subsets I, D and 0 of S. We show first that we cannot have y I, z D u 0

(or vice versa). Since W2(Y z) yz zy it is clear that y e , z is

impossible. Suppose, therefore that y e and z 0. There are three possible

cases for the signs of z and its "derivatives".

(I) z > 0, z > 0, D2z < 0 on [b, ),

(II) z > 0, z < 0, D2z > 0, D3z > 0 on [c, =), c >- b,

(III) z > 0, z > 0, D2z > 0, D3z < 0 on [c, ), c > b.

Since y > 0 and y is strongly increasing, we may assume that DiY > 0,

i i, 2, 3, on [b, =). If z satisfies (II), then W2(Y z) < 0 on [c, =). If z

satisfies (I), then W2(Y z) yz zy < 0 on [b, =) which implies that W
2
has

constant sign on [d, ) for some d > b. Finally, suppose z satisfies (III).

Then it is easy to verify that

(PW2)
D2Y D2z

y Z

D3Y D3z
and as a result of the signs of y, z and their "derivatives", we find that the

first term on the right hand side is monotone decreasing and the second term has

limit -. Thus lim pW
2

-,. This implies that W
2

< 0 on [d, ,) for some d >- b

and so W
2

is eventually of one sign. We can now conclude that if W2(Y z)

oscillates, then either y, z I, or y, z D u 0.

Assume y, z and W2(Y z) oscillates. Choose u 0 such that y, z, u

are linearly independent. Then W3(y, z, u) # 0 on [a, ) for some a R+, and

{y, z, u} is a solution basis for the third order differential equation

y z u

DIY DlZ DlU
p" D2Y D2z D2u
(P) D3Y D3z D3u



286 G. J. ETGEN AND W. E. TAYLOR

which can be written in the form

WB(Y z, u)(p WB(Y z, u)(p + f(x) + g(x) O. (3.5)

Now, the fact that u and W2(Y, u) are nonoscillatory implies that there exists

b > a such that u 0 and W2(Y, u) 0 on [b, ). Therefore, according to

Ahmad [2, p292] (see also, G. Polya .F12]),(8) is disconjugate on Fb, ). Thls

implies that the adjoint of equation (3.5) is disconjugate on [b, )

(see J. H. Barrett [3]). But (x)= W2(Y, z)/W3(Y, z, u) is an oscillatory

solution of the adjolnt equation, and we have a contradiction. The same method

of proof can be used if we assume that y, z D u 0 and W2(y, z) oscillates.

4. SUBSPACES OF S AND S:

In this section we consider the structure of the three dimensional

subspaces of S and S*, and as a corollary, we also identify certain two

dimensional sbspaces. We will be making use of the subsets , D and 0 of

* * O* *S and I and of defined in Section 2, and we shall also be concerned

with the "complimentary" subspaces S (Sy) determined by the solutions y of
Y

S (S). In this regard recall that if y S (S) then S (Sy) is the three
y

dimensional space of solutions of the third order equation

, , , ,
D0Y D3 DlY D2+ D2Y DI- D3Y D0 0 (4.1)

D0Y D3 DlY D2 + D2Y DI D3Y DO 0}

In [6], M. Hanan defined two classes of third order linear differential

equations. In particular, a third order equation is in class C
I

on [a, )

if amy soltion,wlth D double zero t some point b > a is nonzero on [a, b), and

it is in class CII
nonzero on (b, ).

on [a, =) if any solution with a double zero at b >- a, is

THEOREM 4.1. Let y e S.
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,
(1) If y I, then S [z, u, v] (= the space spanned by z, u, v), whereY

0* *z E I u, v E W2(u v) # 0 on [’a, ) for some a > 0, and the third order

equation (9) is in class CII on [a, ).

P* O* *(ii) If y E D, then S * [w, u v], where w E u, v E W2(u,v) 0y

on [a, ) for some a > 0, and the third order equation (4.1) is in class

CI on [0, m).

S* * D* 0*(ill) If y E 0, then [z, w, u], where z E I w E and u E
Y ,

The corresponding statements hold if y E S

PROOF. As in Section 3, we will prove the theorem only for the case y E S.

(1). Suppose y E [, and assume, without loss of generality, that y is

eventually positive. Then there exists a > 0 such that Diy > 0, i 0, i, 2, 3,

on [a, ). Choose any b > a and let z be a solution of (9), i.e. let z be an
,

element of S such that z has a double zero at b. Then it is easy to verify
Y , ,

from (9) that_ D2z(b) and D3z(b) cannot have opposite sign. We may assume,
,

therefore, that D2z(b) > 0, D3z(b) >_ 0 with at least one inequality being strict,
,

and so, by Theorem 2.1, z E [ and equation (4.1) is in class CII on [a, ).
,

Now choose w D and consider the two dimensional subspace S n S Ify w

uS* * 0*n S then {y;u} {w;u} 0 from which it follows that u Thusy w
* 0*S S [u, v], where u, v Finally, from Theorem 3.2 (ll), there is ay ,

nonzero constant k such that W
2

(u, v) k W2(Y w) 0 on [a, ). Therefore
,

S [z, u, v] and the proof of Dart (i) is complete.
Y

(ll). Suppose y D, and assume, without loss of generality, that

i
(-i) DiY > 0"on [0, ). Choose any b > 0 and let z be a solution of (4.1) such

,
that z has a double zero at b. Then it is easy to see from (4.1) that D

2
z(b)

, , ,
and D

3
z(b) must have opposite sign, say D

2
z(b) > 0, D

3 z(b) < 0. Thus, by

i *Theorem 2.1, we have (-i) D
i

z > 0, i 0, i, 2, 3, on [0, b) and equation (4.1)

is in class CI on [0, ). Now, for each positive integer n, let z be a solution
n
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of (4.1) which satisfies Zn(n) DI Zn(n) 0, D2Zn(n) > 0, D3zn(n) < 0. Then

by a standard "sequence argument" (see A. C. Lazer [9, Theorem 1.17 or Ahmad [17),

we can construct a solution w of (4.1) such that

sg w sgn D2w # sgn DlW sgn D3w on [0, =), i.e. such that w e D Now

choose any y e I and assume DiY > 0 i 0, i, 2, 3 on [a, =), a e 0. Then by

using the same argument as in part (i), we can conclude that S [w, u, v],
Y

where w u, v 0 and W2(u,v) # 0 on [a, ).

(iii). Suppose y e 0. Choose any z e I and any w e . Then S 0 S n S
y z w

* * S* *is a one dimensional subspace of S and if u e n n S., then u must be in
y z w

0* * 0*because {z;u} {w;u} 0. Thus S contains an element u in Now,
Y ,

suppose that y is oscillatory, and let {zI, z 2, z 3} be a basis for S Then, by
Y

Theorem 3.1 (iii), W3(z I, z2, z 3) my for some nonzero constant m. Let b be a

,
zero of y. Then W3(zI, z2, z3)(b) 0 which implies that there exists a

nontrivial linear combination z of the solutions zI, z 2, z
3

such that z has a

triple zero at b. We may assume that D3z(b) > 0 and conclude, by Theorem 2.1,

*that D.z > 0, i 0, I, 2, 3, on (b,=) so that z e Let {b be the sequence
1 n

of zeros of y. Then for each positive integer n there is a solution z of (4.1)
n

such that Diz (bn) 0 i 0 i 2 and D3Zn(bn) < 0. Thus by Theorem 2.1
n

i *(-i) D.z > 0, i 0, i, 2, 3 on [0, b ), and so, by using the "sequence
i n n

*argument" cited above we can construct a solution w in S such that w
Y

Finally, it is easy to verify that S [z, w, u].
Y

Now suppose that y is nonoscillatory. As observed in the proof of

Theorem 3.3, y and its derivatives must satisfy one of the following three sets

of inequalities on an interval [a, =).

(I) y > 0, y > 0, D2Y < 0

(II) y > 0, y < 0, D2Y > 0, D3Y > 0

D2y(III) y > 0, y > 0, > 0, D3Y < 0
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In each case y has two consecutive derivatives DiY, Di+lY, 0 -< i _< 2 which have

the same sign on [a, ,), and two consecutive derivatives Djy, Dj+lY, 0 -< j -< 2

which have opposite sign on [a, ). Choose any b > a. Let z be a solution of

(4.1) such that D z(b) 0 for the two m’s with the property that D z(b) is not
m m

a coefficient of either DiY(b) or Di+lY(b). It then follows that the remaining

two "derivatives" of z at b cannot have opposite sign. Assutng that at least

one of these "derivatives" is positive, we have z e I Now let {b be an
n

increasing sequence in [a, ,) with limb ,. For each positive integer n, let
n--t n

z be a solution of (4.1) such that D z _(bn) 0 for the two m’s with the
n m n

property that DmZn(bn) is not a coefficient of either Djy(bn) or Dj+lY(bn).
Then we can conclude from equation (9) that the retning o "derivatives" of

z at b must have opposite sign. Thus the consecutive "derivatives" of zn n n

must have opposite sign on [0, n), and the "sequence argument" allows us to

construct a solution w of (4.1) such that w Finally, it is easy to

verify that the three solutions, u, z, nd w are linearly independent, and this

completes the proof of the theorem.

There are a variety of consequences of Theorem 4.1 which describe the

structure of the two and three dimensional subspaces of S and S*. We list these

results in the following corollaries.

COROLLARY: (i) Every three dimensional subspace of S($ has a non-

oscillatory solution.

(2) Equation (L) (L)} is oscillatory if and only if every three dimensional

subspace of S (S) has an oscillatory solution.

(3) Every three dimensional subspace of S (S) contains a pair of solutions

whose Wronskian is nonzero on [a, ) for some a >- 0.

PROOF. Let T be any three dimensional subspace of .q (q), and let

{Yl’ Y2’ Y3 } be a basis for T. Then y W(Yl, Y2’ Y3 {y W (Yl’ Y2’ Y3 )} is
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S* *an element of (S) and T S (T y).y ,
We now consider the two dimensional subspaces of and S We note that

corresponding to any two dimensional subspace T of there is a unique two

T* * * *
dimensional subspace S n S of S where {y, z} is any basis for T.

y z , ,
Similarly, a two dimensional subspace T of S determines a unique two

dimensional subspace T of S.

COROLLARY 2. Let T be a two dimensional subspace of S. Then T satisfies

exactly one of the following:

(i) T [y,u], y E I, u E 0, and [z, vl, z I*, v 0*
T* O* O*(2) T [y,w], y I, w D, and [u, v u E v

0*and every combination of u and v is in

T* D* 0*(3) T [w u] w E D, u E 0, and [z, vl z E v E

O* O* O*(4) T [u v] u E v E and every combination of u and v is in

T* D*and [y w], y E I* w E

T*Clearly, the corresponding statements hold if is a two dimensional subspace
,

of S

PROOF. The four cases follow from the fact that if T is any two dimensional

subspace of S, then T o (0 u D) @ and T 0 (0 u I) # @. This fact can be

established by considering the intersections T n S and T n S where y E I*
y w’

w E D and using Theorem 4.1.

The structure of T specified in cases (i) (3) is easy to verify. The

0*structure specified in (4) follows from the fact that if y E then any two

dimensional subspace of S must contain either an element of I, or an element ofY
P. Thus T* O*cannot contain an element of from which it follows that

T [y w! y E I w 0

We conclude by noting that if the equations (L) and (L*) are oscillatory,

then the structure of a two dimensional subspace can be determined by
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looking at the Wronsklan of a basis for the subspace. Recall that if (L) and

(L*) are oscillatory, then every solution fn 0 and 0 fs oscillatory.

COROLLARY 3. Assume that equation (L), and hence (L), are oscillatory.

Let T be a two dimensional subspace of S, let {YI’ Y2 be a solution basis for

T, and let W(x) W2(Yl, y2).

(i) If W is oscillatory, then either T [y, u], y E 7, u E 0 and

[z, v], z v 0 or T [w, u], w P, u 0 and T [y, v],

yD,vO.

(2) If W is nonoscillatory, then either T [y, w_,, y 0, w P and

[u, v], u, v 0 every linear combination of u and v is in 0 and the

zeros of two independent solutions separate on [a, ) for some a O, or vice

versa, i.e. [u, v], u, v 0, etc., and [y, w], y w
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