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ABSTRACT. We apply projection operator techniques to the computation of the

natural frequencies of oscillation for three symmetrically coupled mechanical

systems. In each case, the rotation subgroup of the full symmetry group is used

to determine the projection operators with the result that the Lagrangian must be

expressed in terms of complex-valued coordinates. In the coordinate system obtained

from the action of the projection operators upon the original coordinates, the

Lagrangian yields equations of motion which are separated to the maximum extent

made possible by symmetry considerations.
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i. INTRODUCTION.

We consider a vibrating mechanical system of point masses and ideal rotators.
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If we define the n-dimensional column vector, X by the notation

X col(XlX2"’’xn) we are able to write the Lagrangian for the system as

1 1L mT kXVX

where X the transpose of X is the row vector X- (XlX2-..xn) Here we

have i,2,-.., and Xl,X2,.--,x as velocities and displacements with
n n

respect to an orthonormal set of vectors, { l’U2 ’’’’’un Both T and V

are symmetric n x n matrices with all entries real.

Let G be the finite point symmetry group of the mechanical system, and

let us denote the distinct, nonequivalent, unitary matrix representations of

G by F ()(G) where e{l,2,---,k} and k is the number of conjugacy

classes in G Then for geG let us denote the i j-th complex entry in

the matrix r()(g) by F..()(g)
Further, let #(g) be the linear operator induced by geG acting on the

solution space which has basis {Ul’U2’’’"Un } Then we are in a position

to define the projection operator

() ()
Pij Z rij

geG
Cg) O(g)

There are exactly [G of these operators [4], [S]

The action of these operators on the basis {u
1
u
2 -’-,u } will produce

n

a new basis of symmetry coordinates wth which it is possible to exploit the

geometric symmetries of the system to the maximum extent in the solution of

the equations of motion [6] That is, from the new coordinates, we construct

-i -I
a unitary matrix U such that UTU and UVU will assume block diagonal

forms which lead to significant simplifications in the equations of motion.

In general, the entries in U will be complex, leading to transformed

velocities and displacements with real and imaginary components.
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That is,

1 1 U-Iuvu-IL m U-1UTU-1U k
1 UVU-IN*-mUTU-I* kl

UX

where N col(qlq2.-.qn) Note that j and qjcC and that they give the

velocity and displacement with respect to the symmetry coordinate e. [1], [2].

Also observe that qj* denotes the complex conjugate of Bj
The equations of motion are then given by

0 or equivalently,

by d }L }L

The use of the Lagrangian in the case that the new coordinates are complex

is both convenient and intrinsically interesting.

2. EXAILES.

We now give three problems to illustrate the technique.

EXAILE I. Six point masses of which three have the value m and three

have the value M are symmetrically arranged about a fixed circle as shown

below. They are interconnected with identical springs of force constant k

We desire to find the natural frequencies of vibrations for this system if all

motion is of very small amplitude and is confined to the fixed circle.

SOLUTION. We take the symmetry group to be C
3

{E, R(120) R(240)}

which is a subgroup of the full symmetry group C
3v

The irreducible representations over are given by
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r C1) (c3) r(1)(g) 1 gC3

1 iF(2)(C3) F(2)(E) 1 F(2)(R(120o)) - +

1 i/r(2) (R(240)) 2 2

F (3)(C3) F (3)(E) i F (3)(R(120)) 2 2

Ir (3) {R(240)) = +

There are three projection operators which act upon the basis of unit

tangents.

pC1} . r{1} {g)Cg)
11 gcC3

p{2) . r {2) {g)0{g} and
11 gcC3

pC3) . FC3) Cg)O{g) where
11 gcC3
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is the linear operator corresponding to the symmetry element g By computing

the effects of the projection operators upon the unit tangents, uj we form

a new basis for our solution space and we can construct the unitary matrix U

with which we shall transform the Lagrangian.

"(1)Ul uI
+ u

3
+ u

SVll

Pll-(1)u2 u2 + u4 + u6 -a
1 i

u3+ (_iP(2)Ulll Ul + (- 2
+ US

P(2)u211 u2 + (- 2 u4 + (- + u6

(3) Ul + (_ 1
+ (_ 1 i

Pll 1 " + u3 2 us
1 i 1 i

u6P u2 u2 + (- "- u4 + (- 2

We construct the matrix U after normalizing the six orthogonal

vectors above.

1 0 1 0 1 0

0 1 0 1 0 1

1 i
0 (-/ 0U=

1 0 .( - 1 "_1 0 (-+0 1 0 -1 ) 11 0 (-+ 0 (-- 0

1 .) 10 1 0 (-+ 0 (-

and
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1 0 1

0 1 0

1 0 C-+

0 1 0

1 0 (---

0 1 0

0

1

0

0

(-2

1

0

0 1

The kinetic energy matrix is

1 0 0 0 0 0

0 M/m 0

0 0 1 0 0 0

0 0 0

-I
and UTU T

0 0 0 0 1 0

0 0 0 0 0 M/m

The potential energy matrix is

2 -I 0 0 0 -I

-I 2 -I 0 0 0

0 -I 2 -i 0 0

0 0 -I 2 -I 0

0 0 0 -I 2 -I

-I 0 0 0 -I 2

and



PROJECTION OPERATOR TECHNIQUES IN OSCILLATORS

2 -2 0 0 0

-2 2 0 0 0

o o 2 (-+ o
UVU-I

1o (- g- ---) 2 o

0 0 0 2

o o o

375

Thus if N- col(qlq2q3q4qSq6) and N* col * *(ln2n3n4nsD6) we have

1 UTU-I, 1 UVU-IN. 1 ", m3 MD4D mD5 M6)L m k (miDI
+ M2 + + + +

!k2 (2nln*1 2nln 2n2n*1 + 2n2n + 2n3n + (- + nsn4 2

The equations of motion are given by

d. 8L. L
-t--&-) 0 je{1.2,3.4,5,6}

o,,3

Thus we have

2k
+

2k and 2 2k 2k1 W ril n2 lll rl2 implying natural

1 /2k 1 1
frequencies fl 0 and f2 2-- ( + ) 3

2k
+

k
m r3

k 2k
and 4 (1 ier)n3 -4 implying natural frequencies

ml_ 1/2
f3 2 + ) (.1 1

+
m2 Mn M) and

2" / 1 1
+ 1.) 112f4 (1 + ) + Cm_2" N M2 ;fl5

2k
m n5 + (1-i) B3

k 2k
and n6 -(I + ir)5 ---n6 implying that f5 f3 and f6 f4
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EXAMPLE 2. Three identical rods of length are pivoted about a fixed

common axis at the centroid of an equilateral triangle so that the rods lie

along the angle bisectors as shown. The ends of the rods which fall on the

vertices of the triangle are connected with identical springs of force

constant k The moment of inertia with respect to the fixed axis is I

for each rod. We want to compute frequencies for very small amplitude

vibrations in the plane of the triangle.

SOLUTION. The potential energy is given by

1 E 2 2-[ 20o ,VXP E - k (x
1 x2

2 1+ (x2 xS) + (x3 Xl) cos 6 -k
is the displacement of the vertex alongwhere X col(XlX2X3) xj

uj and
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V

2 4 4

1 1 1
4 2 4

1 1 1
4 4 2

1
+ X2 + 23The kinetic energy is K.E. - I 1

2 ( T where

T

I 0 0

0 1 0

0 0 1

The symmetry group is again taken to be C
3

and the projection

operators are as in the preceding example. Their action upon the basis

{Ul,U2,U3} produces the syetry coordinates

el {Ul + u2 + u3) e2 {Ul + {- 2 2)2 + {=+

1" 1 __)" 1 i/.)Sand e3 = (Ul / (-Y + u2 +
2 Thus

1

1 1 1

(-2 (- ’+
1 + 1 i,)C= " "-) 2
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Next we obtain

-i -IUTU T and UVU

0 0 0

0 - 0

0 0 -Then the Lagrangian is given by

1 1 I 3 3
n3nL -(--)(Gln[ + G2n + }3I) -k (-n2n + -The equations of motion are

39,,2k 32k
41 rl 2

and

fl 0 f2 f3 4-

implying the frequencies

Lastly, we present a problem similar to that in the first example.

EXAMPLE 3. Eight point masses of which four have the value m and

four have the value M are symmetrically arranged about a fixed circle.

The masses are interconnected with identical springs of force constant k

Motion is again confined to the circle and we wish to find the natural

frequencies.
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SOLUTION. If we take the symmetry group to be

C
4

(E,R(90), R(180), R(270)} there are four irreducible representations"

F (1)(c4) F (1)(g) 1 ’ gC4

F C2) (C4) ‘(2) (E) r (2) (R(180)) 1

(2)(R(90)) "(2)(R(270)) 1

r (3) (C4) r (3) (.) 1 r (3) (R(90) i

F (3) (R(180)) 1 r (3) (R(270)) i

"(4)(C4) "(4)(E) 1 "(4)(R(90)) i

F (4)(R(180)) -’1 p(4)(R{270o)) i

There are four projection operators which determine the

transformation matrix U They are

pC1) y. l, (1) (g) qb (g)
11 gC4

p(2) i., (2)
11 (g)(g)

gEC4

p(3) . F(3)
11 (g) ) (g) and

gC4

p(4) . r (4) (g)qb(g)11 gC4

After the projection operators are applied to each unit tangent vector,

the resulting, distinct, nonzero vectors are normalized to give the rows in

the matrix U Thus
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1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 -I 0 1 0 -1 0

1
0 I 0 -I 0 1 0 -1

U
1 0 -i 0 -I 0 i 0

0 i 0 -i 0 -1 0 i

1 0 i 0 -i 0 -i 0

0 1 0 i 0 -i 0 -i

ml 1 VX where X--col (XlX2X3X4XsX6X7X8)The is L __T_ -k

1 0 0 0 0 0 0 0

0 M/m 0 0 0 0 0 0

0 0 i 0 0 0 0 0

Lagrang

0 0 0 0 0 0 0 M/m

0 0 0 M/m 0 0 0 0
T and

0 0 0 0 1 0 0 0

0 0 0 0 0 M/m 0 0

0 0 0 0 0 0 1 0

V

2 -i 0 0 0 0 0

-I 2 -I 0 0 0 0 0

0 -I 2 -i 0 0 0 0

0 0 -i 2 -I 0 0 0

0 0 0 -I 2 -i 0 0

0 0 0 0 -i 2 -i 0

0 0 0 0 0 -i 2 -1

-i 0 0 0 0 0 -i 2

-IThen UTU T and
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2 -2 0 0 0 0 0

-2 2 0 0 0 0 0

o 0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 (-l+i) 0

0 0 0 (-1-i) 2 0

0 0 0 0 0 2

0 0 0 0 0 (-l+i)

0

0

(-l-i)

2

The transformed Lagrangian is

1 -. + M2 + m3 + M4 + ms + 6 + m7} + 8)L -(mnIn1

l
k (2rl 2r2r.- 2rlr + 2r2r + 2r3r3 +- rl I 2r4r + 2nsr

+ (-l-i)n6n + (-l+i)ns + 26.6 + 27n7" + (-i+i)8’7

+ 2n8)+ (-l-i) n7n8

The equations of motion and natural frequencies are found in the standard

manner with the results that

1 /2k 1 1
fl 0 f2 2-’ ( + ) f3

f5 f7 + ) +
m2 M2

and

1 (i 1 (i__ 1 1/2
f6 f8 + ) m2

+ )
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