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ABSTRAC______T. In a ring R with involution whose symmetric elements S are centrl,

the skew-symmetric elements K form a Lie algebra over the commutative ring S.

The classification of such rings which are 2-torsion free is equivalent to the

classification of Lie algebras K over S equipped with a bilinear form f

that is symmetric, invariant and satisfies [[x,y],z] f(y,z)x f(z,x)y.

If S is a field of char 2, f # 0 and dim K > i then K is a semisimple

Lie algebra if and only if f is nondegenerate. Moreover, the derived algebra

K’ is either the pure quaternions over S or a direct sum of mutually

orthogonal abelian Lie ideals of dim <_ 2.
/
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1. INTRODUCTION and MAIN RESULTS.

Let R be a ring with an involution *, i.e., a map R / R such that

for all a,b R

(a + b)* a* + b*, (ab)* b’a* and a** a.

The sets of _ymetr!.c and .s.ke..W-symmetric elements of R are respectively

S {a e R[a* a}, K {a e Rla* -a}.

As usual, [x,y] xy yx denotes the commutator of x,y e R and the symbol Z

denotes the center of R.

If the symmetric elements of R are central, i.e., S Z, then for

abbreviation, R is called a cs-!in_.
For all x e R, 2x x + x* + x x* ,,.,ith x + x* e S, x x* e K and

thus 2R C S + K. If R is 2-torsion free then S K 0 and hence

1 R implies that R is a group direct sum S K. If, additionally, R is

a CS-ring then for a S, x e K, ax xa -(ax)* K and therefore K is

a Lie algebra over the commutative ring S with respect to commutation.

We have the following converse:

THEOREM i. If S is a commutative ring, K is a 2-torsion free Lie algebra

over S and f:K K / S is an S-bilinear map such that

(i) f (x,y) f(y,x) (f is symmetric)

(2) f(x,[y,z]) f([x,y],z) (f is invariant)

(3) [[x,y],z] f(y,z)x- f(z,x)y

then the group direct sum R S K can be made into a CS-ring by defining the

multiplication and the involution, for all a,b K, as follows:

(4) (a + x)(b + y) ab + f(x,y) + ay + bx + [x,y]

(5) (a+x)* a- x.

PROOF. Let a,b,c e S and x,y,z K. Multiplication in R is associative

because



RINGS WITH INVOLUTION 249

((a + x)(b + y))(c + z) (a + x)((b + y)(c + z))

f (x,y) z+f ([x,y], z)+[ [x,y] ,z]-f (y, z)x-f (x, [y,z])-[x, [y, z]

f(x,y) z- f(y,z)x- [[z,x],y] by (2) and Jacobl identity

0 by (3).

From (I), (4) and (5),

((a + x)(b + y))* (b + y)*(a + x)*.

Hence, * is an involution in R.

Since K is 2-torslon free, S and K are precisely the symmetric and

skew-symmetrlc elements of R and therefore R is a CS-rlng.

A CS-ring will, of course, satisfy identities (i) (3) if we put

f(x,y) 2(xy + yx) for all x,y e K.

Note that if K has an S-basls and f is the dot product then (2) is the

triple dot product and (3) is the "triple cross product" with opposite sign,

that is, [[x,y],z] z (x y). We must, however, recall that the cross product

of vectors is valid only for dimension _< 3 and it can also be ([3,p.61] or [5])

that CS-rings satisfy the standard polynomial of degree 4.

An example of a CS-ring is a ring of quaternlons over a 2-torslon free

commutative ring S, where admits an S-basis l,i,j,ij such that given

a,b e S

and

i2 a, j2 b, ij =-ji

i* *i* i, -i, j -j.

The skew-symmetric part K of is a Lie algebra (with respect to commutation)

of pure quaternions.

Henceforth, we shall tacitly assum__e that K is a Lie algebra over a field F

of char # 2 and that K is equipped with an F-billnear frm f satisfying

identities (I) (3) such that R F K is a CS-rlng with the multiplication

and the involution defined according to (4) and (5).
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As usual, the derived algebra and the radical of K are respectively

Z El (x,K’ [K,K], {x e K) 0} A Lie ideal I of K is a subspace of K

with [I,K] C I. It can be verified that a Lie ideal of K contained in K

is a proper ideal of R.

If x,y e K then <x,y> shall denote the F-subspace of K generated

by x and y.

PROPOSITION i. If dim K # 3 then K’ is abellan.

PROOF. We may assume dim K > 3 since the prop. is trivially true for

dimension < 3. Prom (3), we have [[x,y],z] E <x,y> for all x,y,z in K.

Thus, if x,y,z,w are linearly independent vectors of K then

[[x,y], [z,w]] e <x,y> f <z,w> O.

If w e <x,y,z> where x,y,z are linearly independent then we choose a

vector v in K such that v <x,y,z> and thus w + v <x,y,z>. Consequently,

0 [[x,y],[z,w + vii [[x,y],[z,w]].

Continuing this argument, we obtain [[x,y],[z,w]] 0 for arbitrary

x,y,z,w in K and thus [K’,K’] 0. f

PROPOSITION 2. If f 0 then K" is an ideal of R contained in K’ and

dim K/K’ 0 or I.

KPROOF. If z E then by (2), f(x,[y,z]) f([x,y],z) 0 for all

x,y E K and thus [K,z] K" KHence, is a Lie ideal of K and an ideal of

R. Since f # 0 there is a nonzero vector y in K with f(y,y) 0. If

z e K then by (3), [[z,y],y] f(y,y)z and thus z f(y,y)-l[[z,y],y] e K’.

Hence, K K’.

If dim K/K’ > i then let x,y be vectors in K which are linearly indepen-

K.dent modulo K’ By (3), [[x,y],K] <x,y> K’ 0 which forces x E

Since K K’ we have x e K’ dim K/K’ 0 or ia contradiction Hence,

Putting K’ 0, we have

COROLLARY i. If K is abellan and dim K > i then f 0 and xy 0 for
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all x,y K.

COROLLARY 2. If K’ # 0 then dim K/K’ > i - f 0 = [K’,K] -0.

PROOF. The second equivalence follows from (3). If f @ 0 then by prop. 2,

dim K/K’ < i.

Conversely, if f 0 then let x,y be vectors in K with [x,y] # 0

and thus x,y K’. If suffices to show that the images , in K/K’ are

linearly independent over F. Indeed, if -- ax_ for some a e F then

y ax e K’ and thus 0 [x,y ax] [x,y], a contradiction. Hence,

dim K/K’ > i.

For the Lie algebras that we are considering there is a simple proof of

Cartan’s criterion for semisimpllclty.

THEOREM 2. If f @ 0 and dim K > I then K has no nonzero abellan Lie

ideals if and only if f is nondegenerate.

PROOF. If K" # 0 then by prop. 2, K is a nonzero Lie ideal contained

in K’. By (3), [K’,K] 0 and hence K is abellan.

Conversely, if K has a nonzero abelian Lie ideal I then let y,z be

nonzero vectors in I and x be any vector of K such that x and y are

linearly independent. By (3), f(y,z)x- f(z,x)y [[x,y],z] e [I,I] 0

and thus f(y,z) f(z,x) O. Hence, f(z,K) 0 and

THEOREM 3. If f # 0 then K’ is either a Lie algebra of pure quaternlons

over F or a direct sum of mutually orthogonal abellan Lie ideals of K with

dim < 2.

PROOF. We may assume K’ 0 for otherwise, prop. 2 would imply that K is

of dim i. We have only to consider the two cases, dim K/K’ 0, i.

Suppose K’ K. Since [K’,K’] [K,K] # 0, dim K 3 by prop. i. If

K # 0 then let K KI V where dim V < 2 and by (3), 0 [K’,Kl] [K,Kl]

which implies that K’ [V,V] is of dim < I, contradictory to K’ K.
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Hence, K= 0. Since the bilinear form f is symmetric and nondegenerate, K

has an orthogonal basis x,,z. As K’ K, the commutators Ix,y], [y,z], [z,x]

also form a basis of K. By (2), f(x,[x,y]) f(y,[x,y]) 0 and hence [x,y]

is orthogonal to x and y. Consequently, [x,y] z, [y,z] ax, [z,x] by

where a,b e F. We can now easily derive from (3) that f(x,x) -b, f(y,y) -a

and f(z,z}= -ab. Hence, K’ K is a Lie algebra of pure quaternions over F.

Suppose dim K/K’ i. We have K K’ by prop. 2. To show K’C K z,
let x e K’ and choose 0 # y K’. By (3), f(y,z)x- f(z,x)y [[x,y],z] e K’

for all z e K and thus f(K,x) 0. Hence, x e K and K- K’. Moreover,

0 [K’, Kz] [K’, K’]. Since f # 0, there exists a nonzero vector e e K/K’

with f(e,e) # 0. Let d(x) [x,e] for all x e K’. By (3),

d2(x) [Ix,el,el f(e,e)x and hence d2 f(e,e)l where I is the identity

map of K’. Since every nonzero vector x and K’ is in the d-invariant

subspace Lx <x,d(x)>, it follows from [2,p.87] that K’ is completely

reducible as a module for d. Clearly, each Lx is an abelian Lie ideal of K

with dim <_ 2 and f(Lx,Ly) 0 for x # y. J

NOTE: This paper constitutes a part of the author’s Ph.D. thesis written

under the supervision of Professor D. Z. DJokovic at the University

of Waterloo, Ontario, Canada.
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