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ABSTRACT: In this note a result is given and proved concerning binomial

expansions modulo prime powers. In the proof congruence modulo prime powers is

generalized to the rational numbers via valuations.
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i. INTRODUCTION.

It is well known that if R is a commutative ring of prime characteristic

p, then
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(x + y)P x
p + yP (l.i).

and more generally,
n n n

(x + y)P x
p + yP

for any x and y in R. The reason that (2) holds is that

c(pn,k) {I if i < k < pn-i
n

if k 0 or p
(mod p)., (1.3)

and so the interior terms all vanish when one applies the usual binomial expansion

formula.

One cannot expect such a simple expansion with a non-prime characteristic.

However, a generalization of (1.3) leads to a recognition of the vanishing terms

in the case of a ring of prime power characteristic.

To develop this result, we use the notation v to denote the usual p-adic
P

valuation on the rational numbers Q: Vp(k) is the highest power of p dividin

an integer k and Vp(J/k) vp(j) Vp(k) for a rational number J/k. (Set

Vp(0) . Recall that Vp(X + y) min{Vp(X),Vp(y)} and Vp(Xy) Vp(X) + Vp(y)
for any x, y in Q.) For x, y e Q and positive integer m, define

x E y (rood pro) Iff v (x y) am. One can show that this defines an equivalence
P

relation on Q which reduces to the usual equivalence relation modulo pm on the

integers Z. We will need the following fact about this relation:

For all x, y e Q and J, k e Z, if x J (mod pro)
and y k (rood pm),

then xy Jk (rood pro) (1.4)

2. MAIN RESULTS

THEOREM: For p a prime, m and n positive integers with n R m-l, and

nfor 0 < k < p

if p k (ie, Vp(k) _< n-m)
c(pn’k)

(pm-l,i) if k i.p
n-’l

(rood pro) (2.1)
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PROOF: Note first that
n

(c(pn,k)) v (.F__)-- n v (k).v
p p K p

(2.2)

To see this, write

n n
C (pn,k) Y__. pn-l. P"’-2 Pn- (k-l)

k i 2 k-i

Note that PJ i iff pJ (pn-i) for I < I < k-l. Thus, Vp((pn-i)/i) 0

for 1 < i k-l, and so (2.2) follows.

Now if v (k) < n-m, then from (2.2), Vp(C(pn,k)) > n-(n-m) m, so
P

c(pn,k) 0 (rood pro), and this case is proven.

n-m+l
Now take k i.p Write C(p

n-
,i-pn-re+l) in the following form,

n-m+l
grouping the terms divisible by p to the front:

C(Pn i.pn_m+l (pn_(i_l)pn-m+l). (pn_(i_2)pn-m+l) n
P pn_j

n-m+l n-m+l n-m+l Jp 2.p i’p

n-m+l
The concluding product is taken over those J less than i-p such that

n-m+lp J. Note that the first i terms reduce to c[pm-l,i)’" when all factors

n-m+l
of p are removed. Also, since (pn_j)/j + i pn/j and

Vp(pn/j) n-v (j) > n-(n-m) m, one has (pn_j)/j -i (rood pro) for all of the
P

n-m+l n-m+l
terms in the concluding product. Since there are i.p i i(p i)

such terms in the product, by (1.4), one has

i (pn-m+l-l)c(pn,i pn-m+l) C(pm-l,l). (-i) (rood pro).

For p odd or i even, this gives the desired result.

The one remaining case is p 2 and i odd. Now by (2.2) and since i

is odd, v2(c(2n,i.2n-m+l)) v2(2n/i’2n-m+l) m-l. Thus, c(2n,i. 2n-m+l is

2m-I times some odd integer, say 2x+l. Then

c(2n,i-2n-re+l) 2rex + 2
m-I

2
m-I (rood 2m)

for any n m m-l. Equating for each such n to the special case n m-l, one

gets C(2n i.2n-m+l) C(2m-1 i) (rood 2m) which is the desired result again
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This theorem yields the following binomial expansion in rings of character-

m
istic p

m
COROLLARY: If R is a commutative ring of characteristic p and if

n > m-l, then for any x and y in R,

n m-I n-m+l n-m+l
(x + y) p P (pm-i [pro-l-i) p "Yi" p7.i:0 C ,i)-x (2.3)

m
Note that the number of nonvanishing terms depends only on the characteristic p

n
and not on the exponent p and that for m i, (2.3) reduces to (1.2). The

following reference considers some closely related questions.
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