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ABSTRACT. The problem of simple shear flow past a flat plate has been extended to

the hydromagnetic case in which a viscous, electrically conducting, incompressible

fluid flows past an electrically insulated flat plate with a magnetic field paral-

lel to the plate. For simplicity all physical parameters are assumed constant. A

series solution for the velocity field has been developed for small values of a

magnetic parameter. The equations governing this flow field were integrated nu-

merically It is found that the effect of the magnetic field is to diminish and

increase respectively, the first and second order contributions for the skin frlc-

tion.
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I. INTRODUCTION.

It has been recognised in recent times that an appropriate inviscid flow to-

gether with boundary layers, which adjust the slip velocity predicted by inviscid
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theory at solid boundaries, forms a uniformly valid leading term in the asymptotic

expansion of the solution of the Navier-Stokes equations in ascending powers of

viscosity for a wide class of problems, provided the solutions obtained do not

break down. Attempts have been made to study higher order terms in the asymptotic

expansion which take into account the second order effects related to vorticity

of the main flow, the longitudinal and transverse curvature, and others. The im-

pact of the second order effect is increasingly felt due to its considerable in-

fluence on such important fluid phenomena as skin friction and heat transfer.

The effect of external vorticity was first pointed out by Ferri and Libby

Solutions of the two dimensional boundary layer equations for flow over a

flat plate, including the boundary condition of finite vorticity at the edge of

the boundary layer, have been presented by Li [2,3] and Ting [4] and others.

These authors show that positive vortictiy increases skin friction.

The extension of this classical theory of simple shear flow past a semi-

infinite flat plate to the hydromagnetic case has been attempted here. The phy-

sical phenomena investigated is the shear flow of a viscous, electrically conduct-

ing, incompressible fluid past an electrically insulated flat plate in the pre-

senceof a uniform field parallel to the plate. All physical parameters are as-

sumed to be constants. We wish to study, specifically, the effect of the uniform

magnetic field on the second order contribution to skin friction.

2. THE EOUATIONS OF THE PROBLEM:

The classical boundary layer equations are modified so as to apply to an

electrically conducting fluid in the presence of a magnetic field. The simplifi-

cation of the hydromagnetic equations appropriate to the present problem, given

by Greenspan and Carrier [4] yield.

u + _y_v 0 H---x
x y x + ZHy (2.1)

y
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u ?u D
2

yX+ Vy -- + (Hx -- + H )
y p x y (2.2)

(uH vHx) + ’ 0 (2.3)
Y Y

The novel feature in our problem is that the free stream has a constant vort-

icity. We are particularly interested in the effect of the magnetic field on this

shear as the field penetrates the boundary layer and the concommitant effect pro-

duced on the skin friction.

Thus, the boundary conditions are

u 0, v O, Hy 0 at y 0 (2.4)

u uo + my, Hx Ho as y (2.5)

Here is the permeability of the medium, is the magnetic viscosity of

the liquid, ’ is the magnetic viscosity and the constant external vorticity.

Now we rewrite the free stream velocity distribution as follows:

u uO LI-(:O7o) Uo/2x Y) (2.6)

Two nondimensional parameters appear in equation (2.6):

y (Blasius variable) (2.7)-- (Vorticity number) (2.8)
Uo

where is the familiar variable in the boundary layer studies; : is the

parameter of external vorticity interpreted as the ratio of free stream vorticity

and the average vortictiy in the boundary layer.

Introducing the stream function (x,y) and the magnetic stream function

A(x,y) such that

U y x (2.9)
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(2.10)

We then seek solutions of equations (2.1),(2.2), and (2,3) of the form

, (x,y) 2x/R (n) + fl(n) + 0(2)

A (x,y) Eh(n)+ E hi(n) ] + 0(2)

(2.11)

(2.12)

where R is the Reynolds number referred to a characteristic length E

Substituting equations (2.7) to (2.12) in (2.1) to (2.3), we get the equa-

tions;

f’" + ff" s h h" 0 (2.13)

h" e (hf’-fh’) 0 (2.14)

fl + ffl f’fl + 2f"fl + s(h’hl 2h"hI hh) 0

fh’) 0h e(2hIf’ 2h’fl + hfl

(2.15)

(2.16)

Thus we have two pairs of coupled equations. The first pair of coupled non-

linear equations describe the first order flow and magnetic fields. The second

pair of coupled linear equations represent the flow and magnetic fields of second

order arising due to external vorticity.

--2 2
Here s Ho / uo is the ratio of the magnetic and kinetic energies and

v/q’ is the ratio of the kinematic viscosity to the magnetic viscosity.

The condition

u 0 v at y 0 (2.17)

gives

f(O) f’(O) 0 fl(O) fl (0) (2.18)

while the condition that

requires that

u / uo + my as y / . (2.19)

f’() I and f[ (m) i (2.20)
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Also, since

P’-X + Ho as y / , (2.21)

we must have

((R)) =0h’ () I hI
(2.22)

Since on the plate,

we have

A;P --- 0 (2.23)

A(x, 0) constant. (2.24)

Choosing the llne of force at n 0 in the external flow to be

A(x,0) constant, (2.25)

and, since this llne passes through the origin, we have

A(x,0) 0. (2.26)

This leads to the conditions

h(0) 0 hl(0)
Hence, the boundary conditions of the first order are

(2.27)

f(0) f’(0) 0 f’((R)) i (2.28)

(.)=h(0) 0 hI

and that of the second order are

(2.29)

’(0) 0 (-)fl (0) fl fl (2.30)

hI(0) 0 h() 0. (2.31)

There is mathematical difficulty involved in solving the coupled, non-llnear or-

dlnary differential equations for the velocity and the magnetic field with two

parameters present. Thus, we attempt a series solution for small s and the re-

suiting equations are solved on an IBM 1620 electronic digital computer.

3. SERIES SOLUTION FOR SMALL s

We look for solution, of the form

f foo + Sfol + S2fo2 +
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fl f + Sfll + s2f12 + (3.2)

h h00 + s h01 + s2h02 + (3.3)

hl hlo + shl + s2h12 + (3.4)

for small values of the magnetic parameter s.

Substituting (3.1) to (3.3) in the equation (2.15) to (2.17), we obtain for

the first order flow and magnetic field, the equations

fc0 + f00f00 0 (3.5)

fOl + foofol + foofol hooho0 0

h00 -e(hoofo0 hoofo0) 0

h01-e(f00h01 f00h01 f0h00 + h00f01) 0

(3.6)

(3.7)

(3.8)

etc.

and the equations for the secondary effect on the external vorticity are

flo + fooflo fooflo + 2flofo0 0

fll + f00fll f00fll + 2f00fll + f01fl0 f01fl0 + 2f01fl0 +

hIOhO0 2hloho0 hoohlo O.

(3.9)

(3. i0)

etc.

hlo e(2hlofo0 2hooflo + hooflo- foohlo) 0

hl- e(2hllf 2holflO + holfO- foohll) + (2hofo1 2ho1 fl+

hOlfll fOlhll) 0

he corresp6nding boundary conditions for the first order equations become

(3.11)

(3.12)
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f00(0) f00(0) 0, f00() i

f01(0) f01(0) 0, f01() 0

(3.13)

(3.14)

etc.

h00(0) O, h00(oo) 1

h01(0) 0 h01()

(3.15)

(3.16)

etc.

and, for the second order equations, the boundary conditions become

fl0(0) fl0(0) 0, fl0(m) i

fll(O) fll(O) 0 fll

"(3.17)

(3.18)

etc.

and

hl0(0) 0 hl0(m)

hll(O) 0 hII()

(3.19)

(3.20)

4. METHOD OF SOLUTION:

Now, the non-linear equation uncouples from others and reduces to the Prandtl-

Blasius problem. The equations (3.5) and (3.9), together with their boundary con-

ditions, constitute the vorticity interaction problem discussed by Li ((3) for the

field free case. For simplicity, only equations pertaining to the first power of

the magnetic parameter have been taken for investigation. All these equations

have been integrated by a Runge-Kutta fourth-order process due to Gill (4). The

essential results are given in the following tables.

Table i.

fo0 (0) fo] (0) flo(O) fll(O)

0.4696 -.2727 0. 7950 3171
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5. SKIN FRICTION:

The skin friction at the plat, given as the viscous force per unit area

acting at the plate, is given by

(5.)r --- y=O

(5.2)

The first factor within the brackets is the hydromagnetic skin friction for

irrotational flow. The second factor is the contribution to the skin friction by

interaction with external vorticity and is a measure of the kinematic effect of

external vorticity at the surface. The two factors are given for various values

of the magnetic parameter in the following table:

Table 2

s f" (0) f’ (0)

0.0 0.4696 0.7950

0.i 0.4423 0.8267

0.2 0.4250 0.8584

0.3 0.3977 0.8891

0.4 0.3704 0.9208

0.5 0.34 31 0.9526

DISCUSSION OF RESULTS:

The effect of a magnetic field on simple shear flow of a viscous,
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electrically canductlng, incompressible liquid past an electrically insulated

seml-lnflnlte flat plate has Seen considered. A series solution in powers of a

magnetic parameter has been attempted. The equations governing the flow and the

magnetic el have been integrated numerically on a digital computer.

To a first approximation, it is clear that the effect of the magnetic field

on the boundary layer is to reduce skin friction. The correction to the first

order skin friction for small values of the magnetic parameter s is given by

(i .5806 s.
The magnetic field tends to +/-ncrease the shear at the surface over that due

to external vortlclty. For the fi’eld free case, the kinematic effect of the shear

associated with external vortlcity at the surface is 80% of that just outside

the boundary layer. There ’s a correction of (i + .3988s) to this part of the

shear for small values of the magnet’c parameter.

Thus, it appears that a uniform magnetic field parallel to the plate tends

to increase the second order contriSution, while reducing the first order con-

trlbutlon to the value of skin friction. It is easily noted that the first order

term is affected more the the second order term. The above analysis is valid

only for small values of s, and the results are given in tabular form.
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Table 3

First order velocity and magneitc field functions

fo () fo () fo (n) ho (n) ho ()

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6

3.9

4.2

4.5

4.8

5.1

5.4

5.7

6.0

6.3

0. 0000 0. 0000 0.4696

0.2115 0.1408 0.4686

0. 0844 0. 806 0. 4617

0.1891 0.4167 0.4436

0.3337 0.5452 0.4106

0.5151 0.6615 0.3618

0. 7289 0. 7610 0. 3004

0.9697 0.8411 0.2330

1.2315 0.010 0.1676

1.5085 0.9426 0.iiii

i. 7956 0.9690 0.0677

2.0888 0.9845 0.0379

2.3856 0.9929 0.0194

2. 6842 0.9969 0.0091

2.9836 0.9989 0.0039

3.2833 0.9996 0.0016

3.5832 0.9998 0.0006

3.8832 0.9999 0.0002

4.1832 0.9999 0.0001

4.4832 1.0000 0.0000

4.7832 1.0000 0.0000

5. 0832 i. 0000 0. 0000

0.0000

0.1537

0.3079

0.4647

0.6266

0.7969

0.9794

1.1773

1.3925

1.6255

i .8753

2.1401

2.4166

2.7019

2.9933

3.2885

3.5859

3.8837

4.1841

4.4839

4.7838

5. 0838

0.5120

0.5127

0.5772
0.5292

0.5517

0.5861

0.6323

0.6874

0.7471

0.8060

0.8594

0.9039

0.9381

0.9624

0.9785

0.9884

0.9941

0.9972

0.9988

0.9996

0.9999

i. 0000
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Table 4

First order velocity and magnetic field functions

fol (n) fol (n) fol (r]) hol (]) hol ()

0.0 0. 0000 0.0000 -.2727 0.0000 -.1455

0.3 0123 -.0817 -.2714 -.0427 -.1460

0.6 -.0489 -.1621 -.2624 -.0879 -.1499

0.9 -.1090 -.2375 -.2372 -.1345 -.1601

1.2 -.1905 -.3021 -.1893 -.1849 -.1785

1.5 -.2885 -.3487 -.i177 -.2422 -.2048

1.8 -.3971 -.3710 -.0294 -.3082 -.2357

2.1 5084 -.3661 0.0614 -.3835 -.2654

2.4 -.6142 -.3357 0.1376 -.4665 -.2861

2.7 7079 -.2863 0.1859 -.5535 -.2912

3.0 7850 -.2274 0.2014 -.6393 -.2776

3.’3 -.8443 -.1682 0.1884 -.7183 -.2467

3.6 -.8867 -.1161 0.1567 -.7861 -.2039

3.9 -.9151 -.0748 0.1179 -.8402 -.1567

4.2 9328 -.0449 0.0811 -.8804 -.1118

4.5 9331 -.0253 0.0513 -.9081 -.0741

4.8 9488 -.0132 0.0229 9258 -.0541

5.1 9516 -.0065 0.0162 -.9298 0741

5.4 -.9529 -.0029 0.0082 -.9363 -.0258

5.7 -.9536 -.0011 0.0039 -.9429 -.0133

6.0 -.9538 -.0004 0.0017 -.9448 -.0059

6.3 -.9538 -.0001 0.0007 -.9459 -.0020

6.6 9538 -.0000 0.0002 -.9460 -.0005

6.9 -.9538 -.0000 0.0000 -.9460 -.0001
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Table 5.

Second order velocity and magnetic field functions

flo (n) flo (n) flo (n) hlo (n) hlo ()

0.0 0. 0000 0. 0000 0. 7950 0. 0000 0. 2866

0.3 0.0358 0.2348 0.7933 0.0861 0.2877

0.6 0.1429 0.4750 0.7818 0.1733 0.2952

0.9 0. 3203 0. 7057 0. 7525 0.2644 0.3148

1.2 0.5652 0.9244 0.7029 0.3637 0.3496

1.5 0.8732 1.1260 0.6399 0.4756 0. 3983

1.8 i. 2389 I. 3086 0.5799 0.6033 0.4535

2.1 i. 6569 1.4763 0.5443 0. 7470 0.5027

2.4 2.1243 i. 6391 0.5489 0.9028 0.5316

2.7 2.6413 1.8098 0.5965 .0628 0.5293

3.0 3. 2122 i. 9998 0.6752 I. 2168 0.4922

3.3 3.8439 2. 2156 0. 7649 i. 3551 0.4259

3.6 4. 5444 2. 4576 0.8468 1.4706 0. 3425

3.9 5. 3208 2. 7216 0.9101 1.5604 o. 2561

4.2 6.1789 3. 0014 0.9524 1.6252 0.1783

4.5 7.1226 3.2911 0.9772 1.6689 0.1157

4.8 8.1541 3. 5864 0.9901 i. 6963 0.0699

5.1 9. 2747 3. 8845 0.9961 i. 7122 0.0393

5.4 10.4819 4.1838 0.9986 1.7208 0.0203

5.7 ii. 7849 4.4835 0.9996 I. 7249 0.0093

6.0 13.1750 4. 7835 0.9999 I. 7267 0.0034

6.3 14.6551 5.0835 1.0000 1.7270 0.0010

6.6 i. 7270 0.0005

6.9 i. 7270 0.0001
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Table 6.

Second order velocity and magnetic field functions.

fll () f
ii

(]) fll () hll (]) hll ()

0.0 0.0000 0.0000 0.3171 0.0000 0.3623

0.3 0.0136 0.0886 0.2736 0.1087 0.3630

0.6 0.0519 0.1646 0.2345 0.2183 0.3681

0.9 0.1113 0.2305 0.2062 0.3305 0.3818

1.2 0.1844 0.2897 0.1919 0.4870 0.4092

1.5 0.2849 0.3461 0.1841 0.5781 0.4573

1.8 0.3968 0.3985 0.1606 0.7260 0.5339

2.1 0.5228 0.4379 0.0929 0.9019 0.6446

2.4 0.6566 0.4479 -.0371 1.1159 0.7868

2.7 0.7866 0.4103 -.2208 1.3756 0.9445

3.0 0.8967 0.3141 -.4211 1.6812 1.0879

3.3 0.9897 -.0303 -.6786 2.0233 1.1813

3.6 0.9693 -.1395 -.6780 2.3819 1.1957

3.9 0.9498 -.2359 -.6010 2.7317 1.1212

4.2 0.8496 -.4295 -.5989 3.0472 .0.9708
4.5 0.6957 -.5917 -.4735 3.3097 0.7742

4.8 0.4990 -.7143 -.3372 3.4097 0.5670

5.1 0.2715 -.7981 -.2166 3.5108 0.3791

5.4 0.0386 -.8503 -.1243 3.6521 0.2279

5.7 -.2358 -.8796 -.0616 3. 7422 0.1181

6.0 -.5017 -.8942 -.0226 3. 7931 0.0451

6.3 -.7706 -.9002 -.0062 3.8167 0.0092

6.6 1.0412 -.9004 -.0009 3.8172 0.0010

6.9 1.3124 -.9004 -.0001 3.8172 0.0000
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