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ABSTRACT. Let f(z) be holomorphc in the strip o < y < o < and satisfy

the conditions for having an expansion in an Hermitian series

_% e-1/2Z
2

f(z) f hn(Z) hn(Z) (71/2
2
n

n. H (z)
n=O n n

absolutely convergent in the strip. Two meanvalues

I -kx2 f(x+iy) 12 dz}1/2
k 0 ik (f y) {- e

are discussed, directly using the condition on f(z) or via the Hermitian

series. Integrals involving products hm(x+iy) hn(x-iy) are discussed.

They lead to expansions of the mean squared in terms of Laguerre functions

of y2 when k 0 and in terms of Hermite functions h (21/2iy) when k i. The
n

suunctions are holomorphic in y. They are strictly increasing when lYl



408 EINAR HILLE

increases.
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i. BASIC FORMULAS.

The functions

_% 1/2z 2 d
n 2

h (z) (-i)
n (1/2 2

n
n.’) e (e-z (I.i)n

dz
n

form a closed orthonormal system in L2(- ). If x f(x) is such that
2

e-x % L2(- ) for some Y, 0 _<_= Y < 1/2, the%the Fourier-Hermite coefficients

exist

fn I f(s) hn(s) ds

and f(x) has a formal Hermitian series

(1.2)

f(x) f h (x).
n--0 n n

(1.3)

Here we consider only the case where f(x+iy) is a holomorphic function of

z x+iy in a strip o < y < < and the series is absolutely convergent.

The author has shown [i] that this will be the case if for every 8, 0 < 8 < o,

there is a finite B(8) such that

If(x+iy) < B() exp [-IxI(82 y2)1/2] (1.4)

for < x < , 0 <= Yl < B. This implies and is implied by

f < A(a) exp [-a(2n+l) 1/2]
n

for 0 < a < o and a finite positive A(e).

The function z)h (z) is a solution of the Hermite-Weber differentialn

equation
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w" + [2n + i z23 w 0 (1.6)

also known as the equation of the parabolic cylinder which is moreover

satisfied by h_n_l(iz) and h_n_l(-iz). For further properties of these

functions see E. Hille [i 2 3, 4]

We shall also encounter Laguerre polynomials in the discussion. Here

the polynomial L
n

(a) (u) of order and degree n is defined by

-u e (a) l d
n

-u un+a]e u L (u) ., [e
n du

n
(1.7)

or explicitly

n

(n+) (-u)JL
(e) (u) 7. n-jn j=0 j’.

See G. Szeg8 [5, pp. 96-98, i02]. We note that

(1.8)

H2n (u) (-4) n (-)
n. L .u2..n

Here we set u i 21/2 y and use (I.i) to get

(-I)n [(n+l) ]
1/2 (-1/2) 2

h2n(i 21/2 y) (n1/2") Ln (-2y2) ey

(1.9)

(i.i0)

(c)For u < 0, -1 < the function u>L (u) is positive, strictly decreasing
n

and its graph is concave upwards. Formula (i.i0) shows that h2n(i 2
1/2 y)

has similar properties for y > 0.

Both the Hermite and the Laguerre functions are essentially special cases

of confluent hypergeometric functions, that is solutions of a second order

linear differential equation of the form

z w" + (c z) w’ a w-- 0. (i.ii)

The equation is satisfied by the entire function

iFl(a, c; z)= i + [ a(a+l) (a+j-l) zj
j=l j’ c(c+l) ..(c+j-l) (1.12)
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For a -n, c i+ we get

iFl(-n, I+; z)= (n + IL()(Z).nn

The Hermite polynomials are constant multiples of

(1.13)

3 2
iFl(-n, 1/2; z2) or of ZlFl(-n ; z (1.14)

according as n is even or odd.

We shall need the asymptotic behavior of these functions for large values

of n and fixed, non-real negative, values of z. Here the basic results are

due to Oskar Perron [6. p.72].

LEMMA i: For large positive values of @ and complex, non-real negative

values of z, we have the asymptotic expansion

lFl(a+n c; z) F(c) e1/2Z (zn)-1/2c e2(Zn)
1/2

n-1/2J[i + ipj ], (1.15)
2"2

j

where the powers and roots take their principal values. If the series is

th
replaced by its m partial sum the error committed is of the order of

magnitude of the last term.

Here n / + . In the Laguerre case n +- instead and we get (see G.

Szeg8 5], p. 193)

LEMMA 2: Let be an arbitrary real number. Then

1/2z -k-1/2 -1/4 2(-nz)L () (z) -1/2 e (-z) n en

1/2 p-i. Cj (z)n-1/2J+o (n-1/2p)
j=0

(1.16)

Here Co(Z) 1 and Cj’s are independent of n and are holomorphic in the plane

cut along the positive real axis. The powers must be taken real positive

for z real negative. The bound for the remainder holds uniformly in any

closed region having no point in common with x > 0.

The Hermitian case is discussed in Section 5. We shall use (i.i0) a lot
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(k)
and this makes it desirable to have comparison formulas for L

n

n

LENNA 3: For all non-negative integers k and n and all u > 0

(-u) with

L
(k)

(-u)<
F (1/2) F (k+n+l) L (-1/2)(-u).

n F(k+l) F (n+) n

PROOF. Formula (1.8) shows that inequality is trivially true if for

j 0, i, 2 n we have

F (1/2) F (k+n+l)
with Q F(k+l) F(n)

or equivalently

(n+k) (n+k-l)... (k+j+l) =< Q (n-1/2) (n)... (1/2+j)

(1.17)

(z .zs)

This is true with equality for j 0 by the choice of Q. If this equality

is divided, the left member by

(k+l) (k+2) (k+j+2)

and the right member by the smaller quantity

1/2(1/2+i) (1/2+j+l)

the inequality results.

2. FORMbAS OF FELDHEIM.

In 1940 Ervin Feldheim prod.uced a paper 7 which has an important bearing

on our problem. As a matter of fact it serves as the point of departure of

this work. Several of his formulas figure in earlier papers of mine, but I can

lay no claim to his formulas (20), (20’) and (51) which are basic for the

following. Formula (20’) on p. 244 reads for m > n

2-1/2 I e-t Hm(t + v) Hn(t -v) dt 2m n.’ vm-n Ln(m-n) (2 v2). (2.1)

Here we set t x, v iy and express the upper case H’s in terms of the

lower case h’s to obtain
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hm(x+iy hn(x-iy) dx 2
1/2 (iy)

2
m-n L(m-n) (_2y2) e

y (2.2)
n

Feldheim’s formula (51) on p. 243 is quite complicated. It involves

two positive parameters, and , an arbitrary variable v and the variable of

integration t. Here we set

1/2 21/2iyi, t 2 x, v

and introduce the h’s to obtain

n-1/2 e
-x

hm(x+iy) hn(x-iy) dx

’] 1/2 2-1/2(m+n+l) 1/2[.(m,!.. hm+n (2 iy). (2.4)=(-l)n - [ m.n.

It should be noted that the right member of this formula is positive when-

ever m+n is even, in particular for m n.

3. THE MEANVALUES.

Let us form

|*’k f; y) {-1/2 I e-kx2 If(x+iy) 12 dx}1/2, k 0, I (3.1)

where z >f(z) f(x+iy) is supposed to satisfy condition (1.4) so that f(z)

can be expanded in an Hermitian series absolutely convergent in the strip

-o < y < o < oo. Formula (1.4) ensures the existence of the meanvalues and

for k 0 gives the estimate

L,o (f; y) < B(8) [R8(y)]-%
with

RB(y) (82 y2)1/2 (3.3)

for every y, 0 _< IYl < 8 and 8, 0 < 8 < . For every fixed admissible 8

this is obviously an increasing function of IYI" That the bound is increasing
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evidently does not imply that the meanvalue is increasing. This question will

be examined later.

I,l(f y) is more complicated. Here (1.4) implies that

[|,(f; y)-I
2 < 2 [B(13)]2 exp 1-- x 2 Bg(y) x-I dx

The right member is obviously a bound decreasing function of IYl for fixed

We can expand the integrand in powers of RB(y). The integral is an entire

function of RB(y); as a matter of fact the Mittag-Leffler function

n
w

F(w) F(1/2n + i)
w 2 R(y).

n=0

Here Fa(w) is of order 2 and normal type.

4. THE FUNCTION h (iv).

In the first paper of this series [ 2] it was shown that h (z) is the
n

unique solution of the Volterra integral equation

w(z) c (z) + N
-1 j’z 2

t sin IN(z-t)] w(t) dt
n

O

where

N (2n+l) 1/2
c (z) C(n) cos (Nz 1/2 n)
n

(4.2)

while C(n) depends on the parity of n so that

-1/2 -2 [rCk)1/2C(2k) IH2k(0) [1/2 22k (2k).’] Lr(+) (4.3)

C(2k+l) IH2k+l(0) l(4k+3

In both cases we have

2k+l-1/2 2 -1/2 -2 r(k#)] 1/2(2k+l)’.] Lj

C(n) n-The method of successive approximations applies to (4.1) and leads to

rapidly convergent series of the form

(4.4)

(4.5)



414 EINAR HILLE

where

h (z)= c (z) . Pm(NZ) N-4m + s (z) . Qm(NZ) N
-4m

n n m=0
n

m=0
(4.6)

s (z) C(n) sin (Nz 1/2 n).
n

The factors P and O are polynomials in z with rational coefficients. P is
m m m

even and is odd and they are of degree 3m or 3m-i whichever has the right

parity. We have

2 1 3 1
eo(Z) i, el(z) 1/2 z i, Qo(Z) o, Ql(Z) - z z

For large values of zl and n we have

h (z) Cn(Z). (4.7)

Suppose now that z iv with v > 0. We have then (see 3] pp. 81-82)

0 < i-n h (iv) gn(V) < C(n) e [exp (y3/6N) l]
n

where

gn(V) 1/2 C(n) e
Nv + (-i)

n e-NV].
i

If v o(n6) it is seen that the quantity within brackets in (4.8) is

o(i). For our purposes a weaker result suffices:

LEMMA 4. There is a finite quantity M(), depending only on , such

that for all n and 0 =< Yl =< - Nv0 < i-n h (iv) < M(O) n e
n

(4.8)

(4.9)

(4.10)

Combining Lemma 3 and 4 with formulas (i.i0) and (2.2) we obtain

LEMMA 5. For all non-negative integers k and n and 0 __< y <

2 -1/4F (8n+2)1/21yl
L (k)(_2y2) ey < M() n (k + n + i)

e
n

r(k+l)[ r(n .)r(n+l) ]1/2
We note also (see Theorem 1.4, p. 883 of [3])

(4.11)
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LEMMA 6. For y # 0

h (x+iy)
+ Nx i + 0(I/N)

e-- h (iy)
n

(4.12)

Here the sign in the exponent is the same as that of y. The relation holds

uniformly with respect to x and y in the regions I/E < x < i/e, 0 < <

IYl <= i/.
5. ESTIMATE OF [I, (f; y)]2.

o

We have

If,, (f; y) ]2 -1/2 I {roT=0 fm hm(x+iy) }{n=0[ n hn(x-iy) } dx

m=0 n=0 m n %(x+iy) hn(x-iy) dx.

We split this double series into three parts. S involving the terms whereo

m n, S
1

the terms where m > n and S_I those where n > m. A moment’s

reflection shows that S_I must be the complex conjugate of S
1

so no separate

estimate is needed.

Now by (2.2)

2
S [ Ifnl 2

L (o)(_2y2) ey
o nn=0

(5.2)

Here we use (1.4) and Lemma 5 to obtain

S < M(e) [ exp [-(s-lyl)(8n+2) 1/2]
O

n--O
(5.3)

which converges for IYl < - The sum of the majorant series is

0 (e-lyl)-2].
This is a rather poor estimate. Formulas (3.2) and (3.3) suggest that the

exponent should be-1/2 rather than-2.
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For IYl > > 0 Lemma 2 gives a slightly better result. We set k 0

and get

2 -1/2 n-1/4 (gn) 1/2y[L (0)(_2y2) e
y C y e i + O(n-1/2)].

n

This introduces the factor y-1/2 n
-1/4

in (5.3) and gives

(5.5)

S < C(, ) y-1/2 I n-1/4 exp [- (-lyl)(8n+2) 1/2]
0

n=0
(5.6)

and the estimate

3

S 0 [y-1/2 (_[y[)2].
o

The series S
l

presents greater difficulties. Here we set m n+k and

note that

(5.7)

2
SI 7. f n.’ 7. 2

n+k (ly)k L (k)
e
y

n=O n k=l n+k n
(-2y2)

Here we naturally think of Lemma 5. It turns out to be too weak to give

absolute convergence of the series (5.8) in the whole strip lyl < a < o. using

it and later also Lemma i we can prove convergence in a strip of width about

but omitting the real axis. This result clearly indicates that the argument

has to be based on the asymptotic formula of Lemma 2. The neighborhood of the

origin is not accessible by this method but will be taken care of by consider-

atlons of analyticity. We use formula (1.5) to obtain

-% -e (2n+l) 1/2
lSl[ < A2(a) 7. (1/22n n.’) n.’ e

n--0

x ;. [ 1/2 2
k+n

(k+n) ]-% e
-a (2k+2n+l)

k--’l

1/2 2
2
k+n y] k L(k) (_2y2) ey

n
(5.9)

This we simplify and use formula (1.16). Thus

-% -2a(2n+l) 1/2 + [Yl (gn) 1/2
TISll < B(a, ) y . n-1/4 e n

n=l

(5.0)
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where

Tn 1 2.k [(k+n)’n ]
1/2 n1/2k e’U[ (2k+2n+l) 1/2 (2n+l) 1/2]

k--I

Here the last factor is < i and may be neglected. Further

so that

(k+n) (nl) (n+2 (n+k) < i (5.2)

Hence

T < [ 2-k= i.
n

k:l

ISll < B(a, T) ly1-1/2 [ n
-1/4

exp (e-lyl)(Sn+2) 1/2]
n:l

(.z3)

which converges for O < IYl < and has a sum satisfying (5.7). Thus

3, (f; y) O [lyl - (=-lyl) 43.o
(5.14)

which holds for every a, O < a < o and for every y, O < E =< IYl < < O < .
The constant implied by the order symbol of course depends on and E.

6. ESTIMATE OF [ |i,
I (f y) ]2.

With the same assumptions of f(z) as above we have by formula (2.4)

[i,l(f; y)]2 . (-l)n f 2-1/2(m+n+l) h (i21/2y)
m--O n=O m n m+n

[ [ (-i)
n

f ]2-1/2(k+l) 1/2

k=0 m+n=k m n (i2 y).

(6.1)

This series will be shown to be absolutely convergent for O __< y < < o. Let

us first estimate the finite sum where m+n k. By (1.5)
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A2ISk I= " (-l)n fm fn < () I
m+n=k m+n=k

(2m+n m.’ n.’ )-1/2 x

exp (2re+l) 1/2 + (2n+l)]} (6.2)

A2()2-1/2k [ k’ I 1/2

m=0
m’ (k-m).’ T

m,n

where

T exp {-e (2m+l)
1/2 + (2n+l) 1/2]}

mn
(6.3)

We now apply Cauchy’s inequality and find that

m=0
m.’ (k-m)

k2 k.’
< " (k-m)’ " T

2
T
m

m.
n m=0 m+n=k m,n

(6.4)

Here the first sum equals 2k. In the second sum the largest term corresponds

to m 1/2k and this term is approximately

exp [-2(4k+2) 1/2] (6.5)

so that the second sum is at most

(k+l) exp -2 (4k+2’) 1/2] (6.6)

Hence

-1/2ISkl < A2() 2-1/2k F(k+l)] (k+l) 1/2
exp [-e(4k+2) 1/2] (6.7)

Thus by (6.1), (6.7) and Lemma 4

Fh.l(f; y)]2 A
2 -1/2 )1/2 (1/2k+)< () (2) . (k+l

k=l (k+l) ]% exp -(- ly I) (4k+2)1/23. (6.8)

Using the duplication formula for the Gamma function we see that this simplifies

to an expression of the form

2-k[ (1/2k + i) exp [- (a-ly[)(4k+2)1/23
k=0

(6.9)

Here
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2-k
e
s (4k+2) 1/2

G(s) z. r(1/2k + i)k=0
(6.10)

is an entire function of s of order 2 and minimal type. The Dirlchlet series

(6.10) converges for all finite values of s. Compare formula (3.5) where

the majorant is of order 2 and normal type.

7. ANALYTICITY OF THE SUARED MEANS.

The functions

Y [|,o(f y)]2 (7.1)y >[I,(f; y)]2
are actually analytic functions of y. To see this we consider the corre-

sponding Laguerre series in the first case, the Hermltian series in the

second. In the first case we consider the series

2
F(z) E . I [fk+n n + (-l)k z

k (k) 2 -z
fk+n f L (2z) e (7.2)

n n
k:0 n:0

which for z iy reduces to [. (f; y)]2 and represents the analytic continuation
o

of the mean square function in any bounded domain in the strip -o < y < o in

which the series converges uniformly with respect to z. The variable parts of

the two series are

2
k (k) z

2
(iy)

k L(k)(-2y2) e
y

and z L (2z2) e- (7.3)
n n

respectively. Now Lemma 2 shows that for fixed k and n the ratio of the

absolute values of the two expressions tend to the limit ly/zl 1/2
which is

bounded away from 0 and if z is restricted to a finite domain D in the

strip -o < y < o < having a positive distance from the lines y -o, O, .
It follows that the series (7.2) converges uniformly in D and thus represents

a holomorphic function in D.

Actually F(z) is holomorphic in the whole strip 0 _< IYl < o. This may

be concluded from an application of formula (2.1) where we set v z" A
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simple calculation gives

F(z) -1/2 I f(t + z) f(t z) dt (7.4)

valid for any z in the strip 0 __< IYl < o < . It follows, in particular, that

the maximum modulusof F(z) for the substrip IYl -< < o is an increasing

function of .
Similar considerations apply to the square of the second mean as we see

from formulas (2.3) and (2.4) where we replace iy by z and set.
e_t

2
G(z) -1/2 I f(t + z) f(t z) dt (7.5)

which for z iy reduces to [(f; y)32. While the latter function of y has

an expansion

C [,l(f; y) 32 . gn hn(i 21/2y)
n--O

(7.6)

we have

G(z) [ gn h (2% z).
n=O n

(7.7)

By the virtue of Lemma 6 the absolute convergence of the series (7.6) for

a y , < o, implies the absolute convergence of (7.7) for any z with

Im (z) and the convergence is uniform in every finite subinterval of the

line. Thus G(z) is holomorphic in the basic strip and is actually an entire

function of z. The properties of the maximum modulus are the same as in

the first’ case, that is an increasing function of .
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