Intennat. J. Math. & Math. Sci. 445
Vof. 3 No. 3 (1980) 445-454

OPERATOR REPRESENTATION OF WEAKLY CAUCHY SEQUENCES IN
PROJECTIVE TENSOR PRODUCTS OF BANACH SPACES

J.M. BAKER

Department of Mathematics
Western Carolina University
Cullowhee, North Carolina 28723

(Received August 22, 1979)

ABSTRACT. It is shown that the above sequences always determine linear trans-
formations and if the sequences are bounded under the least cross norm, that the
transformations are continuous. Such operators are characterized to within
algebraic isomorphism with the weak-star sequential closure of the tensor product
space in its second dual, and consequently certain classes of weakly sequentially
complete projective tensor products are exhibited.
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1. INTRODUCTION.
Let E and F be normed linear spaces and G and H subspaces of their duals E*
and F*, respectively. Let ) be the least cross norm [ 8] (operator norm, norm

giving the inductive topolgy), and consider E OXF’ the A-completion of the tensor



446 J. M. BAKER

product E QAF' Then G ® H is algebraically isomorphic to a subspace of
* -

(E OA F)* by (i 84 ® hi)(g xj ) yj) jijgi<xj)hi(yj) where g€ G,hj»e H,

xj € E, yj ¢ F. As such, G ® H carries the dual norm Ao of A which is itself

a cross norm different, in general, from the greatest cross norm y[8] (nuclear

norm, norm giving the projective topology).

It is easy to show that in order for E 8 F to be o(E ex F, G 8 0 H)-

A A
sequentially complete (or sequentially complete in its weak topology) it is
necessary that E and F be (weakly) sequentially complete in their respective
weak topologies o(E,G) and o(F,H). To motivate our work, let E = 11, the
space of absolutely summable sequences, G = c, the space of convergent
sequences embedded in the bounded sequences, and F a weakly sequentially
complete Banach space. Then Kléx F is sequentially complete in its

0([1 6 A F, ¢ 6)\0 F*) topology, and the canonical mapfz1 OAF + L(c,F) is
surjective, where L(c,F) is the space of bounded linear transformations from

c into F. This example and others of A-tensor products which are sequentially
complete under a weak topology and coincide with an associated operator space
are found in [1]. Similar examples exist where the sequential completeness 1is
under the weak topology. For instance, let E and F be reflexive Banach spaces
with bases such that every operator from E* into F is compact. Then E SA F is
reflexive [4, p. 188], whence E GA F 1s weakly sequentially complete. Moreover,
since F has a basis it also has the approximatiom property (a.p.) [7, p. 115]

so that the canonical injection E @, F » L(E*,F) = C(E*,F) is surjective,

A
where C(E*,F) is the space of compact operators from E* into F.

Thus, we will show that the above examples are special cases of more
general properties enjoyed by weakly Cauchy sequences in projective tensor

product spaces and that the equivalence class of such a sequence (definition

follows) always defines a linear transformation from G into H* (Theorem 1)
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which is continuous 1if the equivalence class is, in a sense, bounded (Theorem

3). Further, if G and H contain the extreme points of the unit cells SE* and
SF*’ we show that these equivalence classes are, algebraically, precisely the
functionals in the weak star sequential closure of E OA F in 1its second dual

and 1f H 1s norm-closed that these functionals are operators from G into H*
(Theorem 5). Consequently, for reflexive spaces E and weakly sequentiallycomplete
spaces F such that every operator from E* into F is compact, we obtain that

E GA F is weakly sequentially complete if E or F has the a.p. (Corollary 6).

In addition to notation already introduced, J will be the usual embedding
of a normed linear space F in its second dual. If H is a subspace of F*,
¢ = F > H* 15 defined by ¢(y)h = h(y), y € F, h € H. K(F) will be the weak-
star (9(F**, F*)) sequential closure of JF in F**, and K, (F) the o(B*,H)~
sequential closure of ¢F in H* (this last space arising in a natural way in
our work). Thus, KF*(F) = K(F) and KH(F) =F if F is O(F,H)-sequentially
complete. The sense of the last equality (algebraic isomorphism, homeomorphism,
isometric isomorphism) depends on results in [10] and its bibliography which
can be used to generate corollaries to Theorems 1,3 and 5.

RESULTS:

It is simple to show that G and H are total subspaces (Go = {0}) of the
duals of the normed linear spaces E and F, respectively, if and only if o(E @ F,
G 8 H) 1s Hausdorff on E @ F. Also, if at least G is total over E, then
E 8 F is algebraically isomorphic to a subspace of the linear transformations
from G into F by

(T x; 8y.)g =Tglx)y,
where X, € E, v, € F, g € G.
We define w(E,F,G,H) to be the set of equivalence classes of

o(E ® F, G 8 H) - Cauchy sequences in E @ F where equivalence of sequences
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means agreement in the limit at points of G 8 H. This becomes a vector space
when given the natural addition and scalar multiplication and as such contains
a copy of E @ F:

E ® F + w(E,F,G,H)
defined by

t -+ z where (t,t,t, ***) € z

THEOREM 1: Let E and F be normed linear spaces, G a total subspace
of E* and H a norm-closed total subspace of F*, Then w(E,F,G,H) is
algebraically isomorphic :5 a subspace of the linear transformations from
G into KH(F).

PROOF: Let {zi}e z ¢ w(E,F,G,H), where

s
i

z, =L X

150 Mot ® Y,1

for x e E, vy e F, 1i=1,2,--«, Then if ¢ > 0, g € G and h € H there
k,1 k,1

exists N > 0 such that

8 S

n m
Ih( I gx, Dy, ) -h(I glx y, )] <e
k=1 *k,n"k,n k=1 *k,m Yk, m

for m,n > N. Fixing g € G and varying ¢ and h, we see that for each g ¢ G
8

n
the sequence {I g(xk i)yk i} in F is o(F,H) - Cauchy.
el O

Thus
8y
h* = o(H*,H) - lim ¢[F g(x, )y, ]
’ L ker 617k

is uniquely defined since H is total, is independent of the choice {zi} € z,
and lies in KH(F). Define (U(z))g = h*. It 1s straight forward that U(z) is
a linear (not necessarily continuous) map from G into KH(F) and that U is

linear.



WEAKLY CAUCHY SEQUENCES IN BANACH SPACES 449

Put U(z) = 0, z ¢ w(E,F,G,H). Then for all g € G, and consequently for

every h € H, s

1
lim I g( Jh(y, ) =0
P 17k, 1

s
showing that { I X ® y, .} converges to the null sequence in the o(E © F,
S S R |
G ® H) topology. Thus, z = 0 and U is injective.
The following points out that if G = E* and H = F*, every functional in

K(F) can be reached by a Uw map.

PROPOSITION 2: Let E and F be normed linear spaces. Then U has the

property that given y** ¢ K(F) there exists z € w(E,F,E*,F*) and

x* ¢ E*, Il <*|| =1, such that (U(z))x* = y**. Further, there exists a

sequence {z,}ez such that for all cross norms t on E 8 F, t(z,) =|| y**|| ,
1i=1,2,.-+ .,
PROOF: Let {yn} € F converge o(F** F*) to y** e K(F), fix x ¢ E,

[ x]|=1, and 1et z, = x @ y;+ Then {z;} is o(E @ F, E* 8 F*) - Cauchy in

i
E @ F. There exists x* ¢ SE*’ | x*|| =1, such that x*(x) = 1, whence
U(z))x* = y**, Since [5, Lemma 2] holds for normed linear spaces, we may

**Il for any cross

assume ||y**|| = ||y || so that =(z) =l x|l |y Il = Iy
norm t.
Below, wl(E,F,G,H) will denote the subspace of those z ¢ w(E,F,G,H) such

that sup A(z,) < + = for some {z,} € z.
1 i i

THEOREM 3: Let G and H be total over the normed linear spaces E and F
and H be norm closed in F*. Then mA(E,F,G,H) is algebraically isomorphic to
a subspace of L(G,KH(F)) by the mapping U, and

lu)||< 1inf sup A(z,).
{zi} ez 1
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PROOF: Let {zi}e z € mA(E,F,G,H), with

s

i oo
zy =3I xk,i ® yk,i’ i=1,2, . Then

k=1
51
sup || W)gll =sup sup 1im | T glx 0y, P
»1 k,1

geSG geSG hsSH i k=1

[

sup sup 1lim A(zi)

geSG heSH i
< sup A(z,)
1 i

The central result, Theorem 5, provides an algebraic characterization
of the weak-star sequential closure of E OA F in (E OA F)** (i.e. in the
dual of the space of integral bilinear forms on E x F [3]). The proof keys
on [6] and [9] , and we cite [6] explicitly:

LEMMA A: (Rainwater): Let {xn} be a norm bounded sequence in a normed

linear space X and M the set of extreme points of S_x. If {xn} is M-Cauchy,

X
then {xn} is weakly Cauchy.
LEMMA 4: Let X be a normed linear space and W a total subspace of xX*

which contains the extreme points of S and {xn}, {yn} two norm bounded

X*’
0(X,W)-Cauchy sequences in X such that lim f(xn) = 1im f(yn) for every f € W.

Then {Jx } and {Jy_} are o (X** X*) - convergent to the same functional in X**.

PROOF: Both sequences converge in x** to the same limit as the weakly

Cauchy sequence {wk}, where Vor-1 = X Vou = Yo k=1,2, -+ .

THEOREM 5: Let E and F be normed linear spaces with G and H total
subspaces of E* and F*, respectively. If G and H contain the extreme points
p*o then wx(E,F,G,H) is algebraically isomorphic to K(E 81 F).
If also H is norm closed in F*, R(E GA F) is algebraically isomorphic to a

of SE* and S
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subspace of L(G,KH(F)) by a mapping T which is continuous with||T||:_1. If
G and H determine the norm in E and F (i.e. have Dixmier characteristic one),

thenIIT” =1.

PROOF: The extreme points of the unit ball of (E OA F)* are precisely

those functionals of the form x* 8 y*, where x* and y* are extreme points of

SE* and SF*’ respectively [9]. Let z ¢ q%E,F,G,H) and choose {zi} € z SO
that sup l(zi) < + o, By Lemma A, {zi} is weakly Cauchy in E 8, F. Define
i

V: wx(E,F,G,H) + K(E Ol F) by V(z) = 1lim J(zi), where the limit is in the
weak-star topology of (E GA F)**. By Lemma 4, V is well-defined, and clearly
it is linear and injective. Moreover, V is surjective. For if z**c R(E OA F)
then z** is the weak-star limit of a weakly Cauchy, hence norm bounded,

sequence {zi} in E®, F. Thus, for some z, {zi} €z € q“E,F,G,H), and V(z) = Z*%

A
To establish the second claim, consider that V"1 is an algebraic

isomorphism of K(E GA F) onto mA(E,F,G,H), and by Theorem 3 U is injective

from w(E,F,G,H) into L(G,KH(F)). We take T = UV '. Thus, T is the required

isomorphism, and we claim that T when restricted to J(E OA F) is J-1 (consider-

ing E 8)t F algebraically embedded in L(G,KH(F))). Let t € J(E 8A F). Now

V! (£) =z, where (37" (t), 371 (), ++-}ez. Consider U(z) € L(G,Ky(F)).

Recalling that the action of U(z) on g € G is independent of the choice of

sequence {zi} € z, we choose {J—l(t),J-l(t), ++}ez. Then if

t=J(Ix 8y), (U(Z)g = o(E,H) - lim ¢[Ig(x )y, ] = (Ix ©y)e

for each g € G, whence T(J(Z X ® yk)) = Exk ® Yy for eve;y Exk (] Yy € E 8A F.

Let {zi} € E 8, F converge weak-star to z** in K(E OA F). We may take

A
l(zi) = ||z**|| [5] and from Theorem 3 obtain
||Tz**||=||UV-lz**||§J'z**II, whence ”Tllf_l. If G and H determine the norms

in E and Fand x 8y e E O F,



452 J. M. BAKER

| T@Ex @ ) || = sup|| (x ® y)g|
geSG

= sup|| g(x) ¢ M|
geSg

= sup sup | g(x) h(y)]
8eSG heSH

=sup sup | g(x) h(y)]
geSE* heSF*

A(x 8 y)

loxe n] .

whencelIT” =1.

COROLLARY 6: Lat E and F be Banach spaces such that every operator
from E* into F is compact with E or F having the a.p. Then if E is reflexive

and F is weakly sequentially complete, E 8 F is weakly sequentially complete.

A

PROOF: The a.p. insures that E 8 F coincides with the space of

A

compact operators from E* into F [7, p. 113], whence L(E*,F) = E ék F. In

Theorem 5 use G = E* and H = F*. Since the weak-star sequential closure of

a normed linear space is equal to that of its norm completion, K(E &, F)

A

is algebraically isomorphic under T to a subspace of L(E*,F). Since T, when
restricted to J(E 8& F), 1s the canonical map j of E 8& F into L(E*,F), it
follows that T, when restricted to the subspace E 6A F of K(E QA F), is j

extended to E &X F. Thus,

I(E ;’x F) C TR(E & F) ¢ LEYF) = E o, F

where each inclusion is isometric. It follows that T is an isometric
isomorphism of K(E éx F) onto E 6A F, completing the proof.
Theorem 5 and Corollary 6 give information in a variety of special cases.

For instance, every operator from a reflexive space E 1nto.zlis compact

[2, p. 515], and-ll, by having a Schauder basis, has the a.p. Thus,
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E exli is weakly sequentially complete by Corollary 6. In particular,

the spaces Eq OAII are weakly sequentially complete (q > 1). For

E—g_i—->r > 1, the spaces ﬁq Gx‘ﬂr are reflexive [4, p. 189], and thus

weakly sequentially complete. However, if p = E—%—I—3§ r, the spaces

Z QA jr are not reflexive and there exists a non-compact operator from fp

intolfr [4, p. 189]. Thus L(l;,l;) + Zq 6x,lr. But by [3, p. 122] we have
- o - x - .

N d, e, Lot L(L,»{)) so that K(lq 8, L) L(Ip,lr).

Therefore,,[q ekfr is not weakly sequentially complete, q <r
q-1 =77

Following Theorem 5 one naturally seeks conditions under which T is
a homeomorphism. Among the more interesting questions is that of K(E ex F)
being homeomorphic to the whole of L(G,KH(F)). Aside from Corollary 6, in
dealing with some of the possibilities surrounding G and H we obtain results
which are accessible through the piecing together of several theorems in [3].
For instance, let E be a Banach space with separable dual E and F a separable
reflexive Banach space. Put G = E* and H = F*. If E* or F* has the a.p. one
can show via Theorem 5 or [3] that K(E OA F) is linearly homeomorphic to L(E*,F).

The author wishes to acknowledge his major professor, Dr. R.D. McWilliams,
for his continuing encouragement and support since graduation from Florida

State University, 1969.
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