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ABSTRACT. A study is made of the properties on X which characterize when C (X)

is a k-space, where C (X) is the space of real-valued continuous functions on X

having the topology of pointwise convergence. Other properties related to the

k-space property are also considered.
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1 INTRODUCTION

If X is a topological space, the notation C(X) is used for the space of all

real-valued continuous functions on X. One of the natural topologies on C(X) is

the topology of pointwise convergence, where subbasic open sets are those of the

form

x,v {fc(x)If(x) v]
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for x X and V open in the space of real numbers, , with the usual topology.

The space C(X) with the topology of pointwise convergence will be denoted by

c (x).

For a completely regular space X, C (X) is first countable, in fact metrlz-

able, if and only if X is countable [2]. The purpose of this paper is to show

to what extent this result can be extended to properties more general than first

countability, such as that of being a k-space. Throughout this paper all spaces

will be assumed to be completely regular Tl-.Spaces.
We first recall the definitions of certain generalizations of first count-

ability. The space X is a Frchet space if whenever x A = X, there exists a

sequence in A which converges to x. The space X is a s.equentia.l space if the

open subsets of X are precisely those subsets U such that whenever a sequence

converges to an element of U, the sequence is eventually in U. Also X is a k-

space if the closed subsets of X are precisely those subsets A such that for

every compact’subspace K X, A N K is closed in K. Finally X has countable

tightness if whenever x A = X, there exists a countable subset B = A such that

x B. The following diagram shows the implications between these properties.

first countable

Frchet sequential

countable tightness

k-space

We will show that the Frchet space, sequential space, and k-space proper-

ties are equivalentfor C (X). In order to characterize these properties for

C (X) in terms of internal properties of X, we will need to make some additional

definitions. Let (X) be the set of all nonempty finite subsets of X. A collec-

tlon I of open subsets of X is an open cover for finite subsets of X if for every

A (X), there exists a U such that A = U. If [n is a sequence of collec-

tions of subsets of X, a strin from [Un} is a sequence [Un} such that Un Un
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for every n 6 IN (I is the set of natural numbers). In addition, we will say

that [Un] is residually coverin$ if for every x 6 X, there exists an N 6 1 such

that for all n N, x 6 U
n

THEOREM I. The following are equivalent.

(a) C (X) is a Frchet space.

(b) C (X) is a sequential space.

(c) C (X) is a k-space.

(d) Every sequence of open covers for finite subsets of X has a residually

covering string.

PROOF. (d) = (a). Suppose that every sequence of open covers for finite

subsets of X has a residually covering string. Let F be a subset of C (X), and

let f be an accumulation point of F in C (X). Then for every n q and A

Ix I Xk 6 (X), we may choose an

F x (f(x) _I f +i) .N .xk (f(xk)
i

f +i)f
n,A I’ 1 n (Xl n (Xk n

1Also define U(n,A) [x 6 X Ifn,A(X) f(x) < }, which is an open subset of X.

Then for each n , define n [U(n’A) IA6(X)}’ which is an open cover for

finite subsets of X. Now [Un} has a residually covering string [U(n,An so

that for every n IN, we may define f f
n n,A

n
We wish to establish that If converges to f in C (X). So let x X, and

n
Ilet > 0. There is an N E IN with N - such that for every n N, x 6 U(n,An).

But then if n >_ N,

i i
f (x) f(x) Ifn,A (x) f(x) < <
n n INn

Therefore {fn(X)} converges to f(x) for every x 6 X so that {f converges to f
n

in C (X). Hence C (X’) must be a Fr6chet space.

(c) = (d). Suppose X has a sequence [n of open covers for finite subsets

such that no string from {n3 is residually covering. Let FI 41, and for each

n > I, let Ir be an open cover for finite subsets of X which refines both Vn n-i
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and n" For every n E lq and A E (X), let U(n,A) fn such that A = U(n,A), and

let f C(X) be such that f (A) } f (X\U(n,A)) [n and
n,A n,A n,A

f (X) [ n]. Then define
n,A

F If In 1 and A (X)}n,A

and also define F* F\[Co in C (X), where c is the constant zero function.
o

First we establish that F* is not closed in C (X) by showing that c is an
I o

accumulation point of F in C (X). To do this, let W= Xl,Vl N... O Xk,Vk
be an arbitrary basic neighborhood of c in C (X). If A xI, Xk} and

o

n E IN such that
i

VI N NVk, then f WNF.
n,A

We will then obtain that C (X) is not a k-space, as desired, if we can show

that the intersection of F* with each compact subspace of C (X) is closed in that

compact subspace. To this end, let K be an arbitrary compact subspace of C (X).

Then for every x X, the orbit [f(x) If K is bounded in . For every x E X,

define M(x) sup [f(x)If K, and also for every m q define X
m

Ix XIM(x) < m. Note that X [Xmlm q, and that for every m, Xm c Xm+I.
Suppose, by way of contradiction, that for every m, n E q, there exists a

k n and V Fk such that X c_ V. We define by induction, a string [Un} from
m

[n]. First there exists a k I i and VI Fkl such that X I
_c VI. For each

i I, kl, choose U E so that VI = U Now suppose k and UI, ,U
ki i i m
m

have been defined. Then there exists a km+I > k + i and V Fk such that
m m+l

m+l

Xm+I
c_ Vm+I. For each i km + I, km+I, choose Ui i so that Vm+I

c Ui.

This defines string [U ], which we know to not be residually covering. Let
n

x E X be arbitrary. There is an m 6 such that x 6 X Let n k There is
m m

a j m such that kj_ I + I < n < kj. Then x Xm c Xj c Vj c Un. But this says

that [Un] is residually covering, which is a contradiction.

We have just established that there exist m, n I such that for every

k >_ n and for every V Fk, X V. Then define M max [m n, let x E X be
m o



K-SPACE FUNCTION SPACES 705

i i
arbitrary, and define W Xo,(-, ) which is a neighborhood of c in

o

C (X). Suppose f E W NF. Then there exists a k E lq and A (X) such that

i I
f fk,A" Since < f(xo) < , then k M n. Thus Xm U(k,A), so that there

exists an xI Xm\U(k,A). But then f(xI) k > M > m M(Xl) so that f K.

Therefore WOFNK , so that c is not an accumulation point of F*NK in K.
o

Hence F*NK must be closed in K. Since K was arbitrary, we obtain that C(X)
is not a k-space.

THEOREM 2. C (X) has countable tightness if and only if every open cover

for finite subsets of X has a countable subcover for finite subsets of X.

PROOF. Suppose that every open cover for finite subsets of X has a count-

able subcover for finite subsets of X. Let F be a subset of C (X), and let f

be an accumulation point of F in C(X). Then for each n and A Ix I Xk
(X), choose

fn,A E F xI, (f (Xl) l’f(Xni +) N Xk’ (f (Xk) ’i f (xk) +)]]
i

Also let U(n,A) Ix 6 X If (x) f(x) < } which is an open subset of Xn,A

Then for each n E IN, [U(n,A) IA (X) is an open cover for finite subsets of

X. So for each n 6 IN, there exists a sequence [A(n,i) li ] from (X) such

that [U(n,A(n,i))li E is a cover for finite subsets of X. Then define G

{f In, i E I
n,A(n, i)

To see that f 6 G, let W [ Xl,Vl N... N[ Xk,Vk be a neighborhood of

f in C (X). Let A Ix I, Xk and choose n 6 IN so that (f(xj)
i
n

f(x.) + I) c_ V. for each j i, k. Then there is an i 6 ]q such that
3 n 3

i
fn,A <n--A c_ U(n,A(n,i)). So for each x A, (n,i)(x)- f(x) and hence

f 6Wn,A(n, i)

Conversely, suppose that C (X) has countable tightness, and let N be an

open cover for finite subsets of X. For each A 6 (X), let U(A) E N be such

that A c_ U(A). Also for each n 6 IN and A 6 (X), let f 6 C(X) be such that
n,A
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[l,n]. Then define Ff (A) [ fn (X\U(A)) In} and f (X) c_
n,A ,A n,A n

If In and A (X).
n,A

Since the constant zero function, c is an accumulation point of F, then
o

there is a countable subset G of F such that c G. There are sequences
o

[ni = q and [Ai} = (X) so that G If lini,A i
To see that [U(Ai) li } is a cover for finite subsets of X, let A

Ix i, Xk (X). Then there exists an i IN such that fni,Ai xi’
(-i,i) 0 N xk,(-l,l) But this means that A = U(Ai), so that

[U(Ai) li IN} is indeed a cover for finite subsets of X.

Let us now give names to the two properties of X which are expressed in

Theorems 1 and 2. We will call X k-countable whenever C (X) is a k-space, and

we will call X T-countable whenever C (X) has countable tightness. We state

some immediate facts about these properties.

PROPOSITION 3. Every countable space is k-countable.

PROPOSITION 4. Every k-countable space is -countable.

PROPOSITION 5. Every q-countable space is Lindelf.

PROOF. Let X be T-countable, and let be an open cover of X. Let If be the

family of all finite unions of members of I. Then F is an open cover for finite

subsets of X, so that it has a countable subcover [D for finite subsets of X.

Each member of is a finite union of members of B, so that since , covers X,

then I has a countable subcover.

This means that if C (X) has countable tightness, X must be Lindelf. In

particular, C(o) does not have countable tightness, where o is the space of

countable ordinals with the order topology This is in contrast to C (), which

we see from the next proposition has countable tightness, where o I [i.
PROPOSITION 6. If X

n
is Lindelf for every n q, then X is -countable.

PROOF. Let X
n
be Lindelf for every n IN, and let be an open cover for

finite subsets of X For each n IN, let n Un xnc IU . Since I is an
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is an open cover of X
n

So foropen cover for finite subsets of X, then each n
X
n

each n

_
IN, has a countable subcollection If such that {unlu E F ] covers

n n

But then J [Fnln E IN] is a countable subcollection of I which is a cover for

finite subsets of X. []

COROLLARY 7. Every compact space is q-countable, and every separable metric

space is q-countable.

We now examine some properties of k-countable spaces.

PROPOSITION 8. Every closed subspace of a k-countable space is k-countable.

PROOF. Let X be a k-countable space, and let Y be a closed subspace of X.

Let {Fn} be a sequence of open covers for finite subsets of Y. For each n lq,

let Un [V U (X\Y) IV E fn}’ which is an open cover for finite subsets of X. Now

[Un} has a residually covering string [Vnj (X\Y)], where each Vn Fn" But then

{Vn] is a residually covering string from {fn]"

PROPOSITION 9. Every continuous image of a k-countable space is k-countable.

PROOF. Let X be k-countable, and let f’X Y be a continuous surjection.

Let {Irn] be a sequence of open covers for finite subsets of Y. For each n E IN,

-I
let n {f (V) IV fn]’ which is an open cover for finite subsets of X. Now

-i
[n] has a residually covering string {f (Vn)]’ where each Vn fn" But then

{Vn] is a residually covering string from {Vn].
In the next proposition, we use the term covering string, by which we mean

a string which is itself a cover of the space.

PROPOSITION i0. If X is k-countable, then every sequence of open covers of

X has a covering string.

PROOF. Let [n} be a sequence of open covers of X. For each n lq, let

f [Un. !fUn+k+II kE IN and each U U ]
n i i

which is an open cover for finite subsets of X. Thus [Vn] has a residually

covering string [Vn}. Now VI U I tl...IUk for some kI IN. Also Vkl+li
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Ukl+l U. (JUk2 for some k
2 E lq with k

2 > kI. Continuing by induction, we can

define an increasing sequence [ki} such that each V
k +l=Uk +IU" UUk
i i i+l

This defines Un for each n E . To see that [Un} is a covering string from

let x X. Then there exists an N such that for all n m N, x V Since
n

ki is increasing, there is some i such that k.l N. Then x Vk.+l

Uk.+IU" (JUki+l, so that x is indeed in some Un.
We next give an important example of a space which is not k-countable.

EXAMPLE II. The closed unit interval, I, is not k-countable.

PROOF. For each n E q, let be the set of all open intervals in I having
n

i
diameter less than 2- Suppose [Un were to have a covering string Un_" Then

,..., U } from 0 to I.since I is connected, there would be a simple chain [Unl nk
That is, 0 Unl, I U and for each i < i < k I, there is a t. U O Unn

k n i+l
But then

i < Ii tk_ll + Itk_l- tk_21 +. + It2 tll +Itll
1 1 + + 1 + 1

< 2- + 2nk_l 2n--
i i i

This is a contradiction, so that [n} cannot have a covering string. Therefore,

by Proposition I0, I is not k-countable. 3

The next three results are consequences of Example II.

EXAMPLE 12. The Cantor set, , is not k-countable.

PROOF. Since there exists a continuous function from ( onto I, then

cannot be k-countable because of Proposition 9 and Example II. J

Our next proposition then follows from Example 12 and Proposition 8.

PROPOSITION 13. No k-countable space contains a Cantor set.

PROPOSITION 14. Every k-countable space is o-dimensional.
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PROOF. Let X be k-countable, let x E X, and let U be an open neighborhood

of x in X. Since X is completely regular, there exists an f E C(X) such that

f(x) 0, f(X\U) [I, and f(X) = I. -Snce I is not k-countable by Example ii,

and since f(X) is k-countable by Proposition 9, then there exists a t lf(X).
-i

Thus [O,t) N f(X) is both open and closed in f(X), so that f ([0,t)) is an

open and closed neighborhood of x contained in U. []

With all these necessary conditions which k-countable spaces must satisfy,

one might wonder whether there exists an uncountable k-countable space. This is

answered by the next two examples.

We will call a space X virtually, countable if there exists a finite subset

F of X such that for every open subset U of X with F = U, it is true that X\U

is countable. Notice that a first countable virtually countable space is

countable.

PROPOSITION 15. Every virtually countable space is k-countable.

PROOF. Let F be a finite subset of X such that every open U in X with

F = U has countable complement, and let [4n} be a sequence of open covers for

finite subsets of X. First let UI 41 be such that F = UI. Then X\UI is

countable; say X\UI [Xll, x12, x13,... ]. Let U2 42 be such that

F U [Xll] = U2- Now X\U2 is also countable; say X\U2 Ix21, x22, x23, .
Let U3 U

3
be such that F U [Xll, x12, x21] = U3- Continuing by induction,

we may define string [Un] from [ln} such that for each n, U
n X\[Xnl,Xn2,

Xn3, ] and

Fll[Xll, ,Xln, x21, ,X2,n_ I, ,Xnl=Un+I.

To see that every elment of X is residually in [Un], let x E X. If x U
n=l n

then x is residually in [Un]. If x nO__l Un, then let i be the first integer

such that x U.. Then x x.. for some j, so that for every n i + j, xU
i 13 n

Therefore x is residually in [Un}.
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EXAMPLE 16. The space of ordinals, , which are less than or equal to the

first uncountable ordinal is k-countable.

PROOF. It is easy to see that is virtually countable. []

EXAMPLE 17. The Fortissimo space, IF, is k-countable, where IF is I with

the following topology: each It] is open for t # O, and the open sets containing

0 are the sets containing 0 which have countable complements. Also ]2 is not

Lindelf, which shows that the converse of Proposition 6 is not true.

PROOF. Obviously IF is virtually countable. However, an alternate proof

can be obtained from known properties of this space. In particular, it follows

from [I] that C () is homeomorphic to a Z-product of copies of , and from

[3] that a E-product of first countable spaces is a Frchet space.

The spaces in the previous two examples are not first countable. This

raises the following question.

QUESTION 18. Is every first countable k-countable space countable?

One well studied example of an uncountable first countable space which is

also a o-dimensional Lindelf space and which does not contain a Cantor set is

the Sorgenfrey line. However, in our last example we show that this space is

not k-countable, and in fact is not even T-countable.

EXAMPLE 19. The Sorgenfrey line, S, is not q-countable. This shows that

the converse of Proposition 5 is not true.

PROOF. For each A E (S), let 6(A) " min [la-a [a,a E A, with a #a

and let U(A) U[a,a+6(A))la A}. Then define U [U()IA(S), where

A Il[-ala A}. Clearly I is an open cover for finite subsets of S. Then

{U21UI’ is an open cover of S 2. But each U2, for U E l, intersects the set

[(x,y) S2!x+y O on a finite set, so that [U21U U} has no countable sub-

cover of S2. Therefore no countable subcollection of l can cover all doubleton

subsets of S.
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