Internat. J. Math. & Math. Sci. Vol. 3 No. 4 (1980) 701-711

K-SPACE FUNCTION SPACES

R. A. McCOY

Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061 U.S.A.

(Received January 28, 1980)

<u>ABSTRACT</u>. A study is made of the properties on X which characterize when $C_{\pi}(X)$ is a k-space, where $C_{\pi}(X)$ is the space of real-valued continuous functions on X having the topology of pointwise convergence. Other properties related to the k-space property are also considered.

<u>KEY WORDS AND PHRASES</u>. Function spaces, k-spaces, Sequential spaces, Fréchet spaces, Countable tightness, k-countable, τ -countable.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. Primary, 54C35; secondary, 54D50, 54D55, 54D20.

1. INTRODUCTION.

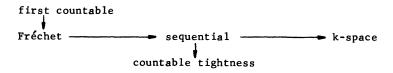
If X is a topological space, the notation C(X) is used for the space of all real-valued continuous functions on X. One of the natural topologies on C(X) is the topology of pointwise convergence, where subbasic open sets are those of the form

$$\llbracket \mathbf{x}, \mathbf{V} \rrbracket \equiv \{ \mathbf{f} \in \mathbf{C}(\mathbf{X}) \mid \mathbf{f}(\mathbf{x}) \in \mathbf{V} \}$$

for $x \in X$ and V open in the space of real numbers, \mathbb{R} , with the usual topology. The space C(X) with the topology of pointwise convergence will be denoted by $C_{-}(X)$.

For a completely regular space X, $C_{\pi}(X)$ is first countable, in fact metrizable, if and only if X is countable [2]. The purpose of this paper is to show to what extent this result can be extended to properties more general than first countability, such as that of being a k-space. <u>Throughout this paper all spaces</u> will be assumed to be completely regular T_1 -spaces.

We first recall the definitions of certain generalizations of first countability. The space X is a <u>Fréchet space</u> if whenever $x \in \overline{A} \subseteq X$, there exists a sequence in A which converges to x. The space X is a <u>sequential space</u> if the open subsets of X are precisely those subsets U such that whenever a sequence converges to an element of U, the sequence is eventually in U. Also X is a <u>k</u>-<u>space</u> if the closed subsets of X are precisely those subsets A such that for every compact subspace $K \subseteq X$, $A \cap K$ is closed in K. Finally X has <u>countable</u> <u>tightness</u> if whenever $x \in \overline{A} \subseteq X$, there exists a countable subset $B \subseteq A$ such that $x \in \overline{B}$. The following diagram shows the implications between these properties.



We will show that the Fréchet space, sequential space, and k-space properties are equivalent for $C_{\pi}(X)$. In order to characterize these properties for $C_{\pi}(X)$ in terms of internal properties of X, we will need to make some additional definitions. Let $\pi(X)$ be the set of all nonempty finite subsets of X. A collection u of open subsets of X is an <u>open cover for finite subsets of X</u> if for every $A \in \pi(X)$, there exists a $U \in u$ such that $A \subseteq U$. If $\{u_n\}$ is a sequence of collections of subsets of X, a <u>string from</u> $\{u_n\}$ is a sequence $\{U_n\}$ such that $U_n \in U_n$ for every $n \in \mathbb{N}$ (\mathbb{N} is the set of natural numbers). In addition, we will say that $\{U_n\}$ is <u>residually covering</u> if for every $x \in X$, there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, $x \in U_n$.

THEOREM 1. The following are equivalent.

- (a) C_(X) is a Fréchet space.
- (b) C_(X) is a sequential space.
- (c) C_{_}(X) is a k-space.
- (d) Every sequence of open covers for finite subsets of X has a residually covering string.

PROOF. (d) \Rightarrow (a). Suppose that every sequence of open covers for finite subsets of X has a residually covering string. Let F be a subset of $C_{\pi}(X)$, and let f be an accumulation point of F in $C_{\pi}(X)$. Then for every $n \in \mathbb{N}$ and $A = \{x_1, \dots, x_k\} \in \mathcal{F}(X)$, we may choose an

$$\begin{split} &f_{n,A} \in F \cap [\mathbb{T} x_1, (f(x_1) - \frac{1}{n}, f(x_1) + \frac{1}{n})] \cap \ldots \cap [\mathbb{T} x_k, (f(x_k) - \frac{1}{n}, f(x_k) + \frac{1}{n})]] . \\ & \text{Also define } U(n,A) = \{x \in X \mid |f_{n,A}(x) - f(x)| < \frac{1}{n}\}, \text{ which is an open subset of } X. \\ & \text{Then for each } n \in \mathbb{N}, \text{ define } u_n = \{U(n,A) \mid A \in \mathcal{F}(X)\}, \text{ which is an open cover for finite subsets of } X. \\ & \text{Now } \{u_n\} \text{ has a residually covering string } \{U(n,A_n\}, \text{ so that for every } n \in \mathbb{N}, \text{ we may define } f_n = f_{n,A}. \end{split}$$

We wish to establish that $\{f_n\}$ converges to f in $C_n(X)$. So let $x \in X$, and let $\varepsilon > 0$. There is an $N \in \mathbb{N}$ with $N \ge \frac{1}{\varepsilon}$ such that for every $n \ge N$, $x \in U(n, A_n)$. But then if $n \ge N$,

$$\left|f_{n}(x) - f(x)\right| = \left|f_{n,A_{n}}(x) - f(x)\right| < \frac{1}{n} \le \frac{1}{N} \le \epsilon$$

Therefore $\{f_n(x)\}$ converges to f(x) for every $x \in X$, so that $\{f_n\}$ converges to f in $C_{\pi}(X)$. Hence $C_{\pi}(X)$ must be a Fréchet space.

(c) \Rightarrow (d). Suppose X has a sequence $\{u_n\}$ of open covers for finite subsets such that no string from $\{u_n\}$ is residually covering. Let $V_1 = u_1$, and for each n > 1, let v_n be an open cover for finite subsets of X which refines both V_{n-1} and U_n . For every $n \in \mathbb{N}$ and $A \in \mathcal{F}(X)$, let $U(n,A) \in V_n$ such that $A \subseteq U(n,A)$, and let $f_{n,A} \in C(X)$ be such that $f_{n,A}(A) = \{\frac{1}{n}\}$, $f_{n,A}(X \setminus U(n,A)) = \{n\}$, and $f_{n,A}(X) \subseteq [\frac{1}{n}, n]$. Then define

 $F = \{f_{n,A} | n \in \mathbb{N} \text{ and } A \in \mathcal{F}(X)\},\$

and also define $F^* = \overline{F} \setminus \{c_0\}$ in $C_{\pi}(X)$, where c_0 is the constant zero function.

First we establish that F* is not closed in $C_{\pi}(X)$ by showing that c_0 is an accumulation point of F in $C_{\pi}(X)$. To do this, let $W = \llbracket x_1, V_1 \rrbracket \cap \cdots \cap \llbracket x_k, V_k \rrbracket$ be an arbitrary basic neighborhood of c_0 in $C_{\pi}(X)$. If $A = \{x_1, \dots, x_k\}$ and $n \in \mathbb{N}$ such that $\frac{1}{n} \in V_1 \cap \cdots \cap V_k$, then $f_{n,A} \in W \cap F$.

We will then obtain that $C_{\pi}(X)$ is not a k-space, as desired, if we can show that the intersection of F* with each compact subspace of $C_{\pi}(X)$ is closed in that compact subspace. To this end, let K be an arbitrary compact subspace of $C_{\pi}(X)$. Then for every $x \in X$, the orbit $\{f(x) | f \in K\}$ is bounded in **R**. For every $x \in X$, define $M(x) = \sup \{f(x) | f \in K\}$, and also for every $m \in \mathbb{N}$, define $X_m =$ $\{x \in X | M(x) \le m\}$. Note that $X = \bigcup \{X_m | m \in \mathbb{N}\}$, and that for every $m, X_m \subseteq X_{m+1}$.

Suppose, by way of contradiction, that for every m, $n \in \mathbb{N}$, there exists a $k \ge n$ and $V \in V_k$ such that $X_m \subseteq V$. We define, by induction, a string $\{U_n\}$ from $\{u_n\}$. First there exists a $k_1 \ge 1$ and $V_1 \in V_{k_1}$ such that $X_1 \subseteq V_1$. For each $i = 1, \ldots, k_1$, choose $U_i \in U_i$ so that $V_1 \subseteq U_i$. Now suppose k_m and U_1, \ldots, U_{k_m} have been defined. Then there exists a $k_{m+1} \ge k_m + 1$ and $V_{m+1} \in V_{k_{m+1}}$ such that $X_{m+1} \subseteq V_{m+1}$. For each $i = k_m + 1, \ldots, k_{m+1}$, choose $U_i \in U_i$ so that $V_{m+1} \subseteq U_i$. This defines string $\{U_n\}$, which we know to not be residually covering. Let $x \in X$ be arbitrary. There is an $m \in \mathbb{N}$ such that $x \in X_m$. Let $n \ge k_m$. There is a $j \ge m$ such that $k_{j-1} + 1 \le n \le k_j$. Then $x \in X_m \subseteq X_j \subseteq V_j \subseteq U_n$. But this says that $\{U_n\}$ is residually covering, which is a contradiction.

We have just established that there exist m, $n \in \mathbb{N}$ such that for every $k \ge n$ and for every $V \in V_k$, $X_m \not \subset V$. Then define $M = \max \{m,n\}$, let $x_o \in X$ be

arbitrary, and define $W = \begin{bmatrix} x_0, (-\frac{1}{M}, \frac{1}{M}) \end{bmatrix}$, which is a neighborhood of c_0 in $C_{\pi}(X)$. Suppose $f \in W \cap F$. Then there exists a $k \in \mathbb{N}$ and $A \in \mathfrak{F}(X)$ such that $f = f_{k,A}$. Since $\frac{1}{k} \leq f(x_0) < \frac{1}{M}$, then $k > M \ge n$. Thus $X_m \notin U(k,A)$, so that there exists an $x_1 \in X_m \setminus U(k,A)$. But then $f(x_1) = k > M \ge m \ge M(x_1)$, so that $f \notin K$. Therefore $W \cap F \cap K = \emptyset$, so that c_0 is not an accumulation point of $F^* \cap K$ in K. Hence $F^* \cap K$ must be closed in K. Since K was arbitrary, we obtain that $C_{\pi}(X)$ is not a k-space. \Box

THEOREM 2. $C_{\pi}(X)$ has countable tightness if and only if every open cover for finite subsets of X has a countable subcover for finite subsets of X.

PROOF. Suppose that every open cover for finite subsets of X has a countable subcover for finite subsets of X. Let F be a subset of $C_{\pi}(X)$, and let f be an accumulation point of F in $C_{\pi}(X)$. Then for each $n \in \mathbb{N}$ and $A = \{x_1, \dots, x_k\} \in \mathcal{F}(X)$, choose

 $f_{n,A} \in F \cap [[x_1, (f(x_1) - \frac{1}{n}, f(x_1) + \frac{1}{n})]] \cap \dots \cap [[x_k, (f(x_k) - \frac{1}{n}, f(x_k) + \frac{1}{n})]]$ Also let $U(n,A) = \{x \in X \mid |f_{n,A}(x) - f(x)| < \frac{1}{n}\}$, which is an open subset of X. Then for each $n \in \mathbb{N}$, $\{U(n,A) \mid A \in \mathcal{F}(X)\}$ is an open cover for finite subsets of X. So for each $n \in \mathbb{N}$, there exists a sequence $\{A(n,i) \mid i \in \mathbb{N}\}$ from $\mathcal{F}(X)$ such that $\{U(n,A(n,i)) \mid i \in \mathbb{N}\}$ is a cover for finite subsets of X. Then define $G = \{f_{n,A}(n,i) \mid n, i \in \mathbb{N}\}$.

To see that $f \in \overline{G}$, let $W = [[x_1, V_1]] \cap \ldots \cap [[x_k, V_k]]$ be a neighborhood of f in $C_{\pi}(X)$. Let $A = \{x_1, \ldots, x_k\}$, and choose $n \in \mathbb{N}$ so that $(f(x_j) - \frac{1}{n}, f(x_j) + \frac{1}{n}) \subseteq V_j$ for each $j = i, \ldots, k$. Then there is an $i \in \mathbb{N}$ such that $A \subseteq U(n, A(n, i))$. So for each $x \in A$, $|f_{n, A(n, i)}(x) - f(x)| < \frac{1}{n}$, and hence $f_{n, A(n, i)} \in W$.

Conversely, suppose that $C_{\pi}(X)$ has countable tightness, and let u be an open cover for finite subsets of X. For each $A \in \mathcal{F}(X)$, let $U(A) \in u$ be such that $A \subseteq U(A)$. Also for each $n \in \mathbb{N}$ and $A \in \mathcal{F}(X)$, let $f_{n,A} \in C(X)$ be such that

 $\begin{array}{l} f_{n,A}(A) \ = \ \{\frac{1}{n}\}, \ f_{n,A}(X \setminus U(A)) \ = \ \{n\}, \ \text{and} \ f_{n,A}(X) \ \subseteq \ [\frac{1}{n},n]. \end{array} \ \text{Then define } F \ = \ \{f_{n,A} \ | \ n \ \in \ \mathbb{N} \ \text{and} \ A \ \in \ \P(X)\}. \end{array}$

Since the constant zero function, c_0 , is an accumulation point of F, then there is a countable subset G of F such that $c_0 \in \overline{G}$. There are sequences $\{n_i\} \subseteq \mathbb{N}$ and $\{A_i\} \subseteq \mathcal{F}(X)$ so that $G = \{f_{n_i,A_i} \mid i \in \mathbb{N}\}$.

To see that $\{U(A_i) \mid i \in \mathbb{N}\}$ is a cover for finite subsets of X, let A = $\{x_i, \ldots, x_k\} \in \mathcal{F}(X)$. Then there exists an $i \in \mathbb{N}$ such that $f_{n_i, A_i} \in [x_i, (-1,1)] \cap \ldots \cap [x_k, (-1,1)]$. But this means that $A \subseteq U(A_i)$, so that $\{U(A_i) \mid i \in \mathbb{N}\}$ is indeed a cover for finite subsets of X. \Box

Let us now give names to the two properties of X which are expressed in Theorems 1 and 2. We will call X <u>k-countable</u> whenever $C_{\pi}(X)$ is a k-space, and we will call X <u>T-countable</u> whenever $C_{\pi}(X)$ has countable tightness. We state some immediate facts about these properties.

PROPOSITION 3. Every countable space is k-countable.

PROPOSITION 4. Every k-countable space is T-countable.

PROPOSITION 5. Every -countable space is Lindelöf.

PROOF. Let X be τ -countable, and let U be an open cover of X. Let V be the family of all finite unions of members of U. Then V is an open cover for finite subsets of X, so that it has a countable subcover U for finite subsets of X. Each member of U is a finite union of members of U, so that since U covers X, then U has a countable subcover. \Box

This means that if $C_{\pi}(X)$ has countable tightness, X must be Lindelöf. In particular, $C_{\pi}(\Omega_{O})$ does not have countable tightness, where Ω_{O} is the space of countable ordinals with the order topology. This is in contrast to $C_{\pi}(\Omega)$, which we see from the next proposition has countable tightness, where $\Omega = \Omega_{O} \cup \{\omega_{1}\}$.

PROPOSITION 6. If X^n is Lindelöf for every $n \in \mathbb{N}$, then X is τ -countable.

PROOF. Let X^n be Lindelöf for every $n \in \mathbb{N}$, and let u be an open cover for finite subsets of X. For each $n \in \mathbb{N}$, let $u_n = \{U^n \subseteq X^n | U \in u\}$. Since u is an

open cover for finite subsets of X, then each u_n is an open cover of X^n . So for each $n \in \mathbb{N}$, u has a countable subcollection v_n such that $\{U^n | U \in v_n\}$ covers X^n . But then $\bigcup \{V_n | n \in \mathbb{N}\}$ is a countable subcollection of u which is a cover for finite subsets of X. \Box

COROLLARY 7. Every compact space is τ -countable, and every separable metric space is τ -countable.

We now examine some properties of k-countable spaces.

PROPOSITION 8. Every closed subspace of a k-countable space is k-countable. PROOF. Let X be a k-countable space, and let Y be a closed subspace of X. Let $\{V_n\}$ be a sequence of open covers for finite subsets of Y. For each $n \in \mathbb{N}$, let $u_n = \{V \cup (X \setminus Y) | V \in V_n\}$, which is an open cover for finite subsets of X. Now $\{u_n\}$ has a residually covering string $\{V_n \cup (X \setminus Y)\}$, where each $V_n \in V_n$. But then $\{V_n\}$ is a residually covering string from $\{V_n\}$. \Box

PROPOSITION 9. Every continuous image of a k-countable space is k-countable. PROOF. Let X be k-countable, and let $f:X \rightarrow Y$ be a continuous surjection. Let $\{v_n\}$ be a sequence of open covers for finite subsets of Y. For each $n \in \mathbb{N}$, let $u_n = \{f^{-1}(V) | V \in v_n\}$, which is an open cover for finite subsets of X. Now $\{u_n\}$ has a residually covering string $\{f^{-1}(V_n)\}$, where each $V_n \in v_n$. But then $\{V_n\}$ is a residually covering string from $\{V_n\}$. \Box

In the next proposition, we use the term covering string, by which we mean a string which is itself a cover of the space.

PROPOSITION 10. If X is k-countable, then every sequence of open covers of X has a covering string.

PROOF. Let $\{u_n\}$ be a sequence of open covers of X. For each $n \in \mathbb{N}$, let $v_n = \{U_n \cup \cdots \cup U_{n+k+1} | k \in \mathbb{N} \text{ and each } U_i \in U_i\},$

which is an open cover for finite subsets of X. Thus $\{V_n\}$ has a residually covering string $\{V_n\}$. Now $V_1 = U_1 \cup \ldots \cup U_{k_1}$ for some $k_1 \in \mathbb{N}$. Also $V_{k_1+1} = U_1 \cup \ldots \cup U_{k_1}$.

 $\begin{array}{l} \mathbb{U}_{k_{1}+1}\cup\cdots\cup\mathbb{U}_{k_{2}} \mbox{ for some } k_{2}\in\mathbb{N} \mbox{ with } k_{2}>k_{1}. \mbox{ Continuing by induction, we can define an increasing sequence } \{k_{i}\} \mbox{ such that each } \mathbb{V}_{k_{i}+1}=\mathbb{U}_{k_{i}+1}\cup\cdots\cup\mathbb{U}_{k_{i+1}}. \mbox{ This defines } \mathbb{U}_{n} \mbox{ for each } n\in\mathbb{N}. \mbox{ To see that } \{\mathbb{U}_{n}\} \mbox{ is a covering string from } \{\mathbb{U}_{n}\} \mbox{ let } x\in\mathbb{X}. \mbox{ Then there exists an } \mathbb{N}\in\mathbb{N} \mbox{ such that for all } n\geq\mathbb{N}, \mbox{ } x\in\mathbb{V}_{n}. \mbox{ Since } \{k_{i}\} \mbox{ is increasing, there is some i such that } k_{i}\geq\mathbb{N}. \mbox{ Then } x\in\mathbb{V}_{k_{i}+1}=\mathbb{U}_{k_{i}+1}\cup\cdots\cup\mathbb{U}_{k_{i+1}}, \mbox{ so that } x \mbox{ is indeed in some } \mathbb{U}_{n}. \mbox{ } \end{array}$

We next give an important example of a space which is not k-countable.

EXAMPLE 11. The closed unit interval, I, is not k-countable.

PROOF. For each $n \in \mathbb{N}$, let u_n be the set of all open intervals in I having diameter less than $\frac{1}{2^n}$. Suppose $\{u_n\}$ were to have a covering string $\{U_n\}$. Then since I is connected, there would be a simple chain $\{U_{n_1}, \ldots, U_{n_k}\}$ from 0 to 1. That is, $0 \in U_{n_1}$, $1 \in U_{n_k}$, and for each $1 \le i \le k - 1$, there is a $t_i \in U_{n_i} \cap U_{n_{i+1}}$. But then

$$1 \le |1 - t_{k-1}| + |t_{k-1} - t_{k-2}| + \dots + |t_2 - t_1| + |t_1|$$

$$< \frac{1}{2^{n_k}} + \frac{1}{2^{n_{k-1}}} + \dots + \frac{1}{2^{n_2}} + \frac{1}{2^{n_1}}$$

$$\le \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^k} < 1.$$

This is a contradiction, so that $\{u_n\}$ cannot have a covering string. Therefore, by Proposition 10, I is not k-countable. \Box

The next three results are consequences of Example 11.

EXAMPLE 12. The Cantor set, K, is not k-countable.

PROOF. Since there exists a continuous function from \mathbb{K} onto I, then \mathbb{K} cannot be k-countable because of Proposition 9 and Example 11.

Our next proposition then follows from Example 12 and Proposition 8.

PROPOSITION 13. No k-countable space contains a Cantor set.

PROPOSITION 14. Every k-countable space is o-dimensional.

PROOF. Let X be k-countable, let $x \in X$, and let U be an open neighborhood of x in X. Since X is completely regular, there exists an $f \in C(X)$ such that f(x) = 0, $f(X \setminus U) = \{1\}$, and $f(X) \subseteq I$. Since I is not k-countable by Example 11, and since f(X) is k-countable by Proposition 9, then there exists a $t \in I \setminus f(X)$. Thus $[0,t) \cap f(X)$ is both open and closed in f(X), so that $f^{-1}([0,t))$ is an open and closed neighborhood of x contained in U. \Box

With all these necessary conditions which k-countable spaces must satisfy, one might wonder whether there exists an uncountable k-countable space. This is answered by the next two examples.

We will call a space X <u>virtually countable</u> if there exists a finite subset F of X such that for every open subset U of X with $F \subseteq U$, it is true that X\U is countable. Notice that a first countable virtually countable space is countable.

PROPOSITION 15. Every virtually countable space is k-countable.

PROOF. Let F be a finite subset of X such that every open U in X with $F \subseteq U$ has countable complement, and let $\{u_n\}$ be a sequence of open covers for finite subsets of X. First let $U_1 \in U_1$ be such that $F \subseteq U_1$. Then $X \setminus U_1$ is countable; say $X \setminus U_1 = \{x_{11}, x_{12}, x_{13}, \dots\}$. Let $U_2 \in U_2$ be such that $F \cup \{x_{11}\} \subseteq U_2$. Now $X \setminus U_2$ is also countable; say $X \setminus U_2 = \{x_{21}, x_{22}, x_{23}, \dots\}$. Let $U_3 \in u_3$ be such that $F \cup \{x_{11}, x_{12}, x_{21}\} \subseteq U_3$. Continuing by induction, we may define string $\{U_n\}$ from $\{u_n\}$ such that for each n, $U_n = X \setminus \{x_{n1}, x_{n2}, x_{n3}, \dots\}$ and

 $F : \{x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2,n-1}, \ldots, x_{n1}\} \subseteq U_{n+1}$

To see that every element of X is residually in $\{U_n\}$, let $x \in X$. If $x \in \bigcap_{n=1}^{\infty} U_n$, then x is residually in $\{U_n\}$. If $x \notin \bigcap_{n=1}^{\infty} U_n$, then let i be the first integer such that $x \notin U_i$. Then $x = x_{ij}$ for some j, so that for every $n \ge i + j$, $x \in U_n$. Therefore x is residually in $\{U_n\}$. \Box EXAMPLE 16. The space of ordinals, Ω , which are less than or equal to the first uncountable ordinal is k-countable.

PROOF. It is easy to see that Ω is virtually countable. \Box

EXAMPLE 17. The Fortissimo space, \mathbf{F} , is k-countable, where \mathbf{F} is \mathbf{R} with the following topology: each {t} is open for t $\neq 0$, and the open sets containing 0 are the sets containing 0 which have countable complements. Also \mathbf{F}^2 is not Lindelöf, which shows that the converse of Proposition 6 is not true.

PROOF. Obviously **F** is virtually countable. However, an alternate proof can be obtained from known properties of this space. In particular, it follows from [1] that $C_{\pi}(\mathbf{F})$ is homeomorphic to a Σ -product of copies of **R**, and from [3] that a Σ -product of first countable spaces is a Fréchet space. \Box

The spaces in the previous two examples are not first countable. This raises the following question.

QUESTION 18. Is every first countable k-countable space countable?

One well studied example of an uncountable first countable space which is also a o-dimensional Lindelöf space and which does not contain a Cantor set is the Sorgenfrey line. However, in our last example we show that this space is not k-countable, and in fact is not even τ -countable.

EXAMPLE 19. The Sorgenfrey line, S, is not π -countable. This shows that the converse of Proposition 5 is not true.

PROOF. For each $A \in \mathfrak{F}(S)$, let $\delta(A) = \frac{1}{2} \min \{ |a-a'| |a,a' \in A, \text{ with } a \neq a' \}$, and let $U(A) = \bigcup \{ [a,a+\delta(A)) | a \in A \}$. Then define $u = \{ U(\hat{A}) | A \in \mathfrak{F}(S) \}$, where $\hat{A} = A \cup \{ -a | a \in A \}$. Clearly u is an open cover for finite subsets of S. Then $\{ U^2 | U \in u \}$ is an open cover of S^2 . But each U^2 , for $U \in u$, intersects the set $\{ (x,y) \in S^2 | x + y = 0 \}$ on a finite set, so that $\{ U^2 | U \in u \}$ has no countable subcover of S^2 . Therefore no countable subcollection of u can cover all doubleton subsets of S. \Box

710

REFERENCES

- H. H. Corson, <u>Normality in subsets of product spaces</u>, Amer. J. Math. 81 (1959), 785-796.
- 2. R. A. McCoy, <u>Countability properties of function spaces</u>, to appear in Rocky Mountain J. Math.
- N. Noble, <u>The continuity of functions on Cartesian products</u>, Trans. Amer. Math. Soc. 149 (1970), 187-198.