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ABSTRACT. It is proved that an integral domain R is locally divided if and

only if each CPI-extension of B (Ira the sense of Boisen and Sheldon) is R-flat

(equivalently, if and only if each CPI-extension of R is a localization of

R) Thus, each CPI-extension of a locally divided domain is also locally

divided. Treed domains are characterized by the going-down behavior of their

CPI-extensions. A new class of (not necessarily treed) domains, called CPI-

closed domains, is introduced. Examples include locally divided domains,

quasilocal domains of Krull dimension 2, and qusilocal domains with the QQR-

property. The property of being CPI-closed behaves nicely with respect to the

D + M construction, but is not a local property.
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i. INTRODUCTION.

In [3], Boisen and Sheldon recently introduced the notion of a CPI-extension

of a (commutative integral) domain. For the reader’s convenience, we recall

the definition of this type of overring and summarize salient results from [3]

at the beginning of section 2. Boisen and Sheldon [3, p. 729] have noted that

a proper CPI-extension may be integral. Indeed, by combining [6, Corollary 2.6]

and [7, Proposition 2.1], it follows that each CPl-extension of a domain R is

integral if and only if R is a quasilocal going-down ring, in the sense of [5].

Since a proper integral overring cannot be flat [14, Proposition 2], one might

expect a rather different class of domains R to be characterized by the property

of having each CPl-extension of R being R-flat. The main result of section 2,

Theorem 2.4, establishes that the domains %hus characterized are the locally

divided domains introduced in [6]. Prefer domains are perhaps the most natural

examples of locally divided domains. It was shown in [6] that any locally divided

domain is a (not necessarily quasilocal) going-down ring, and that the converse

holds in the root-closed case. As byproducts, Proposition 2.3 establishes that

a CPI-extension T of a domain R is R-flat (if and,) only if T is a local-

ization (in the sense of "ring of fractions" in [h, p. 5?]) of R and Coro-

llary 2.6 establishes that each CPI-extenslon of a locally divided domain is

also locally divided. The final result in section 2 shows how going-down behavior

of CPI-extensions serves to characterize treed domains.

Divided domains are precisely the domains which coincide with each of their

CPI-extensions. More generally, section 3 is devoted to studying domains R

which are "CPI-closed," in the sense that each CPI-extension of a CPI-extension

of R is itself a CPl-extensiQn of R (A more useful characterization of

CPl-closed domains is given in Proposition 3.2.) Examples of CPl-closed domains

include the locally divided domains; the quasilocal domains of Krull dimension 2;
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and quasilocal domains with the QQR-property (see Corollary 3.3, Remark 3.5 and

Proposition 3.7, respectively). Despite expectations raised by the first-cited

example, the second family of examples illustrates that a CPl-closed domain

need not be treed. The quasilocal, treed CPl-closed domains are characterized

in Proposition 3.9 and Remark 3.10(a). As shown by Example 3.6, being CPl-closed

is not a local property, since the ring of polynomials in two variables over a

field is not CPl-closed. Examples of non-CPl-closed domains with arbitrary

Krull dimension exceeding 1 then result from the D + M-construction (see

Proposition 3.11). In Remarks 3.8 and 3.10(5), (c), we raise some open questions

relating divided domains, domains with the QQR-property, certain types of CPl-

closed domains, and the A-domains of Gilmer and Huckaba [i0].

2. LOCALLY DIVIDED DOMAINS.

As defined by Boisen and Sheldon [3], a CPl-extenslon of the domain R is

an overring of R of the form R + P for some prime ideal P of R The

terminology "CPI" stands for "complete pre-image," and is well chosen inasmuch

as R + P is easily shown to be (canonically isomorphic to) the pullback, in

the category of commutative rings with unit, of the diagram

where the vertical map is the canonical surjection and the horizontal map is the

inclusion. Reasoning as in [ii, Remark 3.9], we find that applying the contra-

variant functor Spec to the above diagram produces a pushout diagram in the
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(dual) category of afflne schemes. In particular, Spec(R + P) may be viewed

set-theoretlcally as the quotient space of the disjoint union of Spec() and

Sp&c(R/P) in which the prime P of is identified with the zero prime

P/P of R/P We next summarize some more precise order-theoretlc information

gleaned from [3, Section 2]. The method used in the proof of [6, Lemma 2.4] to

study the case in which R + P is integral over R also extends to yield the

same facts.

LEMMA 2.1. (Bolsen and Sheldon). Let T R + P be the CPl-extenslon of

the domain R corresponding to the prime P of R Then the eontractlon map

Spec(T) + Spec(R) sets up an isomorphism of partially ordered sets (with respect

to inclusion) between Spec(T) and the set of primes of R which are comparable

to P If Q is a prime of R which is contained in P then Q corresponds

to Q Spec(T) If Q is a prime of R which contains P then Q

corresponds to Q + P Spec(T)

The next result collects some facts which will be used below.

LEMMA 2.2. Let P and Q be comparable primes of the domain R Let T

be the CPl-extenslon of R with respect to P i.e., T R + P Then:

(a) If Q c P then TQ RQ
(b) If P c Q then TQ RQ + P TQ + p
PROOF. (a): As noted in Lemma 2.1, Q N R Q if Q c P Hence,

RQ = TQ For the reverse inclusion, observe T c so that

TQ c ()Q RQ the final step coming from [8, Corollary 4.3].

(b): Let P c Q As the inclusions TR\Q = TQ + p and RQ+ P c TQ
are obvious, it remains only to prove that TQ + p c RQ + P To this end,

-1 -1
consider a typical element x of the left hand side. Now, x t(r + pz

for some t T r. R\Q p P and z R\P As T R + P and P
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is the set of nonunits of it follows that, in order to prove x E + P,
-1we may assume t E R A short calculation reveals that x tr + y when

_ptr-l(rz + p)-i Since tr
-I E RQ and y E P the proof isY complete.

Before presenting the main result of this section (Theorem 2.4), we isolate

a fragment which is of some independent interest.

PROPOSITION 2.3. Let T R + P be the CPl-extenslon of the domain R

corresponding to the prime P of R Then T is a flat R-module if and only

if T is a localization of R

PROOF. The "if" half is immediate, as any localization is flat [4, Theorem i,

p. 68]. Conversely, let T be R-flat. As any domain (in particular, T) is the

intersection of its localizations at maximal ideals and the maximal ideals of

T are classified in Lemma 2.1, [14, Theorem 2] yields T f where M ranges

over the set of maximal idaals of R which contain P If S R\(UM), it is

clear that RS c T and so it suffices to prove that T c RS

To that end, let t q T and consider the conductor I {x q R: xt q R}.

Note that, for each maximal ideal M of R which contains P we have I M

since T c If t RS then I N S and, by Zorn’s lemma, I is

contained in a prime ideal N which is also disjoint from S If P + N were

contained in a maximal ideal Q of R then Q would be an M of the above

type (since P c Q) whence I Q by the above argument, although I c N c Q

Consequently, P + N R and so p + n 1 for some p q P and n E N

Since N c R\S there exists a maximal ideal W of R such that P c W and

n W Then

I=p+nP+WcW+W=W

the desired contradiction, to complete the proof.

Recall from [6] that a domain R is said to be divided in case P P
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for each prime ideal P of R (This notion was introduced in [1] by Aklba who

termed such objects "AV-domains.") Any divided domain is quasilocal (cf. [i,

Theorem i]). A domain R is called l.ocally divided if is divided for each

maximal ideal M of R (equivalently, by [6, Remark 2.7(b)], for each prime

M of R). As noted in [6, Remark 2.7(b)], any localization of a locally divided

domain is itself locally divided; and any locally divided domain is a going-down

ring, in the sense of [5, p. 448]. (While the converse of the preceding assertion

is false [6, Example 2.9], any root-closed going-down ring must be a locally

divided domain [6, Corollary 2.8].) Thus, by either [i, Theorem I] or [5,

Theorem 2.2], any locally divided domain R is treed, in the sense that no maxi-

mal ideal of R contains incomparable prime ideals.

THEOREM 2.4. For any domain R the following six conditions are equivalent:

(i) R is locally divided;

(2) For each prime P of R the CPl-extension R + P is R-flat;

(3) For each prime P of R the CPl-extenslon R + P is a localization

of R

(4) For any comparable primes P c Q of R the corresponding CPl-exten-

sions satisfy R + P c R + QRQ
(5) For any comparable primes P c Q of R the containment P c PRQ

holds;

(6) For any comparable primes P c Q of R the containment P c RQ
holds.

PROOF. (5) = (i): Establishing (i), i.e., that RQ is a divided domain

for each maximal (equivalently, for each prime) ideal Q of R amounts to

showing, for each prime P of R which is contained in Q .that PRQ coin-

cides with (PRQ) (RQ)pR
Q

By the result cited in the proof of Lemma 2.2 (a),

the latter prime is lust (PRQ) which, since RQ = , simplifies to e
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As P c Q also forces PRQ c P it is now clear that (5) = (i).

(i) = (2): Let T R + P for some prime P of R To show that T

is Rvflat, it is enough, by [4, Proposition 15, p. 91], to establish that

TR\M is -flat for each maximal ideal M of R If P c M then Lemma 2.2(b)

gives TR\M + P while the hypothesis (I) [with the aid of the impli-

cation (i) = (5) established above] leads to P P so that

TRM + P which is, indeed, -flat. Finally, in case P M the

hypothesis (I) is not needed:

TRM +P + R? ()R\P

the second equality arising since P RM Thus, if P M then TRM is

a localization of (and, hence, is flat over) RM

(2) = (3): Apply Proposition 2.3.

(2) = (4): Assume, by (2), that the primes P c Q of R induce R-flat

CPl-extenslons S R + P and T R + QRQ As in the proof of Proposition

2.3, S M and T where M (resp., N) ranges over the set of maxi-

mal ideals of R which contain P (resp., Q) Since P Q each ideal

(index) of the form N is also of type M whence S c T as desired.

Finally, observe that the implications (4) = (6) and (6) = (5) are straight-

forward, and the proof is complete.

The remainder of this section analyzes further the nonreversible implica-

tions

locally divided domain = going-down ring = treed domain.

(The simplest known example of a treed domain which is not a golng-down ring is

due to W.J. Lewis and appears in [12, Example 6.4].) As motivation for the

next result, note that the examples in [5, Corollary 4.4(ii)] combine with



126 D.E. DOBBS

[6, Lemma 2.2(b)] to show that, for each positive integer n there exists

a divided domain which has Krull dimension n and possesses an overring which

is not treed.

PROPOSITION 2.5. Let T be an R-flat overrlng of a domain R If R

is locally divided (resp., a going-down ring; resp., treed), then T has the

corresponding property.

PROOF. It suffices to prove that TN has the appropriate property for

each maximal ideal N of T" Let M N N R As inherits the appro-

priate property from R and R-flatness of T forces RM [14, Theorem 2],

the proof is complete.

COROLLARY 2.6. Let T R + P be the CPl-extension of a domain R

arising from a prime P of R If R is locally divided (resp., a going-

down ring; resp., treed), then T has the corresponding property.

PROOF. If R is locally divided, thn the implication (i) = (2) in Theorem

2.4 assures that T is R-flat, and so Proposition 2.5 applies, showing that

T is also locally divided.

The assertions about going-down rings and treed domains are not corollaries

of Proposition 2.5, but are instead simple consequences of Lee 2.1. Details

may be safely omitted.

It should be noted that it is possible to give a proof of the assertion

in Corollary 2.6 concerning locally divided domains without recourse to the

notion of flatness. Indeed, one may show that T inherits from R the pro-

perry of satisfying condition (5) in Theorem 2.4. There are three cases to

consider, determined by the nature of the containments between the prime defining

T and the primes figuring in (5). Each case is treated with the aid of appro-

priate parts of Lemma 2.2. Details are left to the reader.
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In view of the example of Lewis mentioned above, it is somewhat interesting

that treed domains may be characterized by appropriate going-down phenomena: as

Proposition 2.7 indicates, the CPl-overrings hold the key. Another consequence

of Proposition 2.7 is that, if the "flat" property in condition (2) of Theorem

2.4 is weakened to the "going-down" property, then the class of domains thereby

characterized is enlarged from the locally divided domains to the treed domains.

Finally, we note that (2) =(i) in Proposition 2.7 may be viewed as a general-

ization of [i, Theorem i].

PROPOSITION 2.7. For any domain R the following are equivalent:

(i) R is treed;

(2) R c T has the going-down property for each CPl-extension T of R

PROOF. (i) = (2). Suppose that T R + P for some prime P of R

Verifying that R c T has the going-down property amounts to showing that

whenever P2 c PI are primes of R and QI is a prime of T such that

QI R P1 then there exists a prime Q2 of T such that both Q2 c QI
and Q2 N R P2 Given QI we infer from Lemma 2.1 that P1 is comparable

to P To produce a satisfactory Q2 vi__a the recipe in Lema 2.1, it is

enough to show that P2 is also comparable to P As P2 c P1 we may

suppose that PI P in which case P c PI Then, if R is treed, P2 and

P must be comparable, for they both lie within (any maximal ideal containing)

(2) = (i): Let P and Q be prime ideals of R which are each contained

in a given maximal ideal M of R Let T R + P the CPl-extension of

R with respect to P Recall that Q1 M + P is a prime ideal of T such

that Q1 N R M As Q c M the requirement that R c T have the going-down

property produces a prime Q2 of T such that Q2 R Q (and Q2 c Q1
Since Q is in the image of the contraction map Spec(T) / Spec(R) Lemmm 2.1
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yields the comparability of Q and P to complete the proof.

3. CPI-CLOSED DOMAINS.

The definition of this section’s main object of study is motivated by the

observation that it is possible to iterate the process of taking CPl-exten4ions.

More precisely, we shall say that a domain R is CPl-closed if each CPl-extension

of each CPl-extension of R is itself a CPl-extension of R Trivally, any

divided domain is CPl-closed. Indeed, so is any locally divided domain, but the

proof of this and the furnishing of more examples must await the next two results.

LEMMA 3.1. Let P and Q be comparable primes of a domain R and let

T R + P the CPl-extension of R with respect to P Let W be the prime

of T such that W N R Q (By Lemma 2.1, W Q if Q c P and W Q + P
if P c Q.) Then the CPl-extension of T with respect to W is R + P + QRQ

PROOF. One need merely simplify T + WTW with the help of the appropriate

part of Lemma 2.2. Details are left to the reader.

As an immediate consequence, we have:

PROPOSITION 3.2. A domain R is CPl-closed if and only if, whenever P

and Q are comparable primes of R the sum of the CPl-extension of R with

respect to P and the CPl-extension of R with respect to Q is itself a CPl-

extension of R

COROLLARY 3.3. Any locally divided domain is CPl-closed.

PROOF. Observe that condition (4) of Theorem 2.4 implies the criterion

given in Proposition 3.2.

Similar reasoning also establishes the next result.

COROLLARY 3.4. If a domain R is such that the set of CPl-extensions of

R is totally ordered with respect to inclusion, then R is CPl-closed.

As mual, dlm(R) will denote the Krull dimension of R
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REMARK 3.5. Each of the following two conditions is sufficient for a domain

R to be CPl-closed:

(a) dim(R) < i

(b) R is quasilocal amd dim(R) 2

Accordingly, a CPl-closed domain need not be treed; a treed CPl-closed domain need

not be a going-down ring; and a CPl-closed going-down ring need not be locally

divided.

PROOF. The fact that (a) and (b) are each sufficient follows, as the triter-

ion in Proposition 3.2 is easily ’seen to be satisfied in these cases. (Moreover,

() is a special case of Corollary 3.3.) As for the final assertion; consider

the (quasilocal) nontreed domain R in [13, Example 2.28]; the (quasilocal) example

of Lewis [12, Example 6.4] of a treed domain which is not a going-down ring; and

the (quasilocal) going-down ring which is not a divided domain, constructed by

Boisen and Sheldon [2, Example 1.6] and studied further in [6, Example 2.9]. By

(b), each of these three rings is CPl-closed, completing the proof.

We pause to present an example of a domain which is no___t CPl-closed. By

combining Remark 3.5(b) and the observations to be made in Example 3.6, we shall

see that a domain R need not be CPl-closed even when is CPl-closed for

each prime P of R

EXAMPLE 3.6. Let X and Y be algebraically independent indeterminates

over a field K Then the polynomial ring R K[X, Y] is not CPl-closed.

PROOF. Deny. Then, if we consider the comparable primes P Xli and

Q XR + YR Proposition 3.2 supplies a prime W so that

R + P + QRQ R + W

As W n (R + P) is a prime of R + P whose intersection with R is W

Lemma 2.1 shows that W and P are 9omparable. Similarly, W and Q are
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comparable. Thus, since Q is maximal and has height 2 either W P or

Wm Q

Assume that W P Then

Y(I + Y + X)-I f + Xgh
-I

for ’some elements f, g and h of R such that h W Crossmultiply and

substitute X 0 If F
0

denotes the result of substituting X 0 into a

polynomial F the result may be written as

h0Y f0h0(l + Y)

Since h W we have h
0 # 0 and so cancellation yields Y f0(l + Y) a

contradiction since R is a unique factorlzation domain.

The resulting case, W Q is handled similarly. Write

Xy-I f + we
-I

for some f R w W and e. R\W Multiply by Ye and then set Y 0

If e
0

results from e by setting Y 0 we thus obtain e0X 0 whence

e
0

0 and e YR c W the desired contradiction. This completes the proof.

Before pzesenting another family of CPl-closed domains, we recall from [9]

that a domain R is said to have the QQR-propert in case each overrlng of R

is an intersection of localizations of R It is known that a domain R is a

Prefer domain if and only if R is integrally closed and has the QQR-property

[9, Corollary 1.7]. There exist (quasilocal) domains with the QQR-property

which are not Prefer domains [9, Example 4.3]; by a result of Davis (cf. also

[9, Theorem 1.4]), any such domain R satisfies dim(R)

PROPOSITION 3.7. Let R be a quasilocal domain with the QQR-property. Then

R is CPl-closed. Indeed, if P and Q are comparable primes of R such that
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P # P and QRQ # Q then R + PRp R + QRQ
PROOF. The proof consists of applying some results of Gilmer and Heinzer [9].

Since valuation domains, being divided, are CPl-closed, we may suppose that R

is not a valuation domain. Then R’ the integral closure of R is a Pr’fer

domain [9, Corollary 1.7]; and R’ is contained in each proper overrlng of R

[9, Theorem i.i0]. In view of Proposition 3.2, it suffices to establish the

final assertion, i.e., that R + P R + QRQ under the stated conditions. Ob-

serve that A R + P is a valuation domain, for it is quasilocal (by Lemma 2.1)

and it is an overrlng of the Prefer domain R’ As B R + P + QRQ is a

CPl-extenslon of A (by Lemma 3.1) and A is divided, it follows that A B

and, in particular, R + QRQ c A To establish the reverse inclusion, reverse

the roles of P and Q in the preceding argument. This completes the proof.

REMARK 3.8. We have seen that the class of valuation domains may be properly

extended in (at least) two ways: to the class of divided domains, and to the class

of quasilocal dmains having the QQR-property. It is easily seen that the former

of these "extended classes" is not contained in the latter. Indeed, Gilmer and

Huckaba [i0, Example 3] construct a quasilocal domain D which does not have

the QQR-property, although [6, Lemma 2.2 (b) reveals that D i__s divided. As

for the reverse (non)containment, we do not know of a quasilocal domain with the

QQR-property which is not divided (but we suspect that such exists). In any

event, it should be noted that the class of quasilocal CPl-closed domains properly

contains the "union" of the two "extended classes, as the result of [9] quoted

just prior to the statement of Proposition 3.7 shows that the final example in

Remark 3.5, which has already been seen to be a quasilocal nondivided CPl-closed

domain, also fails to have the QQR-property.

While it was natural in section 2 to consider embedding the class of locally

divided domains in the class of treed domains, Example 3.6 reveals that, in
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passing from the class of locally divided domains to the larger class of CPl-closed

domains, some nontreed domains (e.g., K[X, Y]) have been introduced. The next

result interposes a class of quasilocal treed domains properly between the divided

domains and the CPl-closed domains, and incidentally generalizes Corollary 3.4.

PROPOSITION 3.9. Let the domain R be such that each sum of two CPl-exten-

sions of R is itself a CPl-extension of R Then R is CPl-closed, quasi-

local and treed.

PROOF. Proposition 3.2’s criterion clearly holds, and so R is CPl-closed.

It remains only to show that any two primes of R .say M and N are comparable.

Suppose, instead, that M N and N M By hypothesis, R + M + N is a

ring, in fact of the form R + P for some prime P of R The incomparability

assumptions give M and M respectively, so that (M) (N) N"
Thus, R + P RS where S {ab E R: a E R\M b R\N} Since P is a

prime of Rs which intersects R in P we have P N S and so P c M N N

Since P and M are therefore comparable, Lemma 2.1 implies that some prime of

Rs intersects R in M whence M G S However, M G S D M (R\N) #

the desired contradiction.

REMARK 3.10. (a) It is clear from Proposition 3.2 that the converse of

Proposition 3.9 is also valid.

(b) The second of the three mples in Remark 3.5 shows that the "treed"

conclusion in Proposition 3.9 cannot be strengthened to "going-down ring," and

hence certainly cannot be strengthened to "divided." Note that this example

satisfies the hypothesis of Proposition 3.9 since it satisfies the ostensibly

more stringent assumption of Corollary 3.4. We say "ostensibly," for we do not

know (but doubt) whether, conversely, "the sum of any two CPl-extensions of the

domain R is itself a CPl-extension of R" implies "the set of CPl-extensions

of R is totally ordered by inclusion." Of course, the implication hold
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if dim(R) < 3

(c) Despite (b), one ca__n strengthen the hypothesis in Corollary 3.4 in order

to get a "going-down" conclusion. Indeed, Paplck [12, Lemma 2.41] has shown,

with the aid of [i0, Theorem 4], that if the set of all the overrlngs of a domain

R is totally ordered by inclusion, then R is a quasilocal i-domaln (in the

terminology of [13]) and, hence, R is a going-down ring. The crucial point is

that such an R is a A-domain. (Following Gilmer and Huckaba [i0], we say that

a domain R is a A-domain in case each sum of two overrings of R is a ring.)

It should be noted that a quasilocal i-domaln need not have its overrings forming

a totally ordered set, since [i0, Example 4] presents a quasilocal i-domaln which

is not a A-domain; and [i0, Propositions i0 and ii] exhibits a A-domain whose set

of overrings fails to be totally ordered.

Apart from the semantic similarity between the criterion in Proposition 3.2

and the definition of A-domain, one should note that any quasilocal QQR-domain

is both CPl-closed and a A-domain (by Proposition 3.7 and [I0, Theorem 5]).

We do not know of a A-domain which is not CPl-closed. However, a CPl-closed

domain need not be a A-domain; indeed, a divided domain need not be a A-domain.

For a quasilocal example of Krull dimension i, use either the ring D
6

in

[i0, Proposition i0] or the ring D in [I0, Example 4]; an integrally closed

example may be fashioned from [5, Theorem 4.2], by recalling that any integrally

closed A-domain must be a Prefer domain [i0, Theorem 4(2)]. What makes all these

examples work is the phenomenon that the property of being a A-domaln is not pre-

served by the D + M construction. (Neither is the QQR-property: see [I0, Example

3].) Our final result will establish quite different behavior for CPl-closed

domains. Besides this point of contrast, Proposition 3.11 also produces eHam-

pies, with arbitrary Krull dimension exceeding I of the behavior described

in Remark 3.5:and Example 3.6.
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PROPOSITION 3.11. Let K + M be a valuation domain with nonzero maximal

ideal M such that K is a field. Let D be a (proper) subring of K Then

D + M is CPl-closed if and only if D is CPl-closed.

PROOF. As the primes of R D + M and the localizations of R at those

primes have been catalogued [8, Theorem A, p. 560], one readily verifies the

following. If P is a prime of D the CPl-extenslon of R with respect to

P + M is E + M where E is the CPl-extension of D with respect to P

moreover, R is the CPl-extension of R with respect to each prime which is not

of the form P + M Since the "+" in K + M is a direct sum, the conclusion

now follows easily from Proposition 3.2.

Finally, observe that each of the following five types of rings is detectable

locally: locally divided domain; going-down ring; treed domain; domain having the

QQR-property (by [9, Theorem 1.9]); and A-domain (by [i0, Theorem 3]). However,

as shown by Remark 3.5(b) and Example 3.6, being a CPl-closed domain is not a

local property. We close by asking whether one can find an interesting new class

of domains for which CPl-closedness would be detectable locally. One c=iterion

for "interesting" might be that, as is the case with all the above classes, the

new class be required to include all PrHfer domains.

NOTE ADDED IN PROOF (AUGUST 20, 1979). By reasoning as in the proofs of Pro-

position 2.3 and Theorem 2.4, one sees that the following three conditions are

equivalent for an integral domain R. (i) R is locally divided and each non-

zero prime ideal of R lies in a unique maximal ideal of R (2) For each

nonzero p E Spec(R), there exists a prime ideal Q of R such that

R + P RQ (3) For each nonzero P E Spec(R), there exists a (uniquely

determined) maximal ideal M of R such that R + P--
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