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ABSTRACT. The problem of a uniformly propagating finite crack in an infinite

medium is solved within the llnearized couple-stress theory. The self-equill-

brated system of pressure is applied to the crack surfaces. The problem is

reduced to dual integral equations and solved by a serles-expanslon method. The

dynamic stress-lntenslty factor is computed numerically.
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i. INTRODUCTION.

The classical theory of elasticity is based on the assumption that matter is

continuously distributed in any elastic body. Therefore, it is an approximation

for polycrystalline metals, granular materials, porous materials, discrete mate-
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rials, steel-fiber reinforced concrete and so on, which are generally known as

materials with microstructures. An attempt to drop the continuity of matter as-

sumption is bound to make the analysis for the modified theory extremely diffi-

cult. Therefore, for materials with microstructures, some models of continua .are

constructed in such a way as to represent a better approximation. Among the sev-

eral theories available, the linearized couple-stress theory, which was developed

by Mindlin and Tiersten (1), is the simplest. In the context of this theory, a

large number of analytical solutions have been published as shown in Ref. (2).

On the other hand, some research has been carried out regarding the experimen-

tal evaluations of the new material constant which was introduced in the couple-

stress theory. In Refs. () and (4), bending tests were performed on aluminium

alloy plate and low-carbon steel and the upper limits of the material constant

are presented. Later, Savin and his coauthors accurately determined the constant

by measuring the velocity of the transverse ultrasonic wave (5). The results

showed that the value for falls within the limits from I0
-2 to I0-S mm for

brass, bronz, duralmin and aluminium. In this case, was approximately one

order of magnitude less than the mean grain size. This means that couple-stresses

do not significantly affect the stress concentrations caused by the existense of

circular holes or inclusions. However, the effect of couple-stresses is serious

in fracture mechanics.

According to the linear theory of elasticity, the stresses in the vicinity of

the ends of the cracks are inversely proportional to the square root of r, the

distance from the end of the crack. Stress-intensity factor Ki is defined from

the coefficient. If the plastic zone is very small relative to the size of the

crack, we can assume that K is proportional to the applied tensile load and

is a function of the crack and specimen sizes.

In linear fracture mechanics, it is considered that when the stress-intensity
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factor K reaches critical value K& , which is called the fracture toughness

value and is characteristic of the material, an unstable crack propagation occurs.

This idea was established by Irwim (6) and is equivalent to Griffith’s original

concept (7), that a crack will begin to propagate if the elastic energy released

by its growth is greater than the energy required to produce the fractured sur-

faces.

The stress-intensity factor calculated according to the couple-stress theory

is always larger than the classical solution, and furthermore, it becomes larger

as the new material constant decreases (8)(9). For this reason, crack problems

in the theory of couple-stresses are very important physically (10). Nevertheless,

few studies have been carried out to reveal the effects of couple-stresses on the

stress-intensity factor (2), because of the severe mathematical complexity en-

countered in finding the solutions fit to the geometries.

In the present paper, Yoff’s model (11) is solved by the two-dimensional

linearized couple-stress theory. The crack propagates only to the right, main-

taining its constant length. Such an idealization will affect the magnitude of the

local stress field to some extent, but does not alter the qualitative features of

the stress solution (12). Application of the Fourier transformation technique

reduces the problem to that of solving two dual integral equations. To solve

these equations, a very simple method is used, namely, the displacement and rota-

tion on the crack’ s surfaces are expanded by a series of Jacobi polynomials

with the Schmidt method being employed.

Numerical calculations are carried out and compared to those given by Yoff

to clarify the influence of couple-stresses on the dynamic stress-intensity

factor.

With respect to the fixed rectangular coordinate system (, , ), the



168 S. ITOU

equations of motion in the plane state of strain of the linearized couple-stress

theory are

with

(2ol)

(2.2)

where c, ((& +2#2 )/}w cv (%z/ )w are the dilatational and shear wave

velocities, respectively. The Lam constants are represented by J4 and % , is

the density of the material, is time, is the new material’s constant, u= and

w are defined as the and components of the displacement, respectively, and

the indices following a coua indicate the partial differentiation with respect

to the variable, e.g. , */0 . Consider the problem of an infinite elastic

solid which contains a crack with a length represented by 2a along the x axis as

shown in Fig. 1. It is assumed that the crack is opened at one end and colsed at

the other with constant speed U. For a constant velecity crack, it is convenient

to introduce the Galilean transformation

x=-, y=, z=, t=E, (2.)

with (x, y, z) being the translating coordinate system attached to the moving

crack. In the moving coordinates, the equations of motion become independent of

the time variable t,

(2.4)
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of the moving crack with respect to longitudinal and transversal elastic waves,

respectively, and is the Poisson ratio.

The displacements, rotation, force-stresses and couple-stresses are expressed

by the following

1/2(/,= + /,= ),

(2.8)

The boundary conditions for the problem to be studied are

"7"i/v(+= -p(x), for z o, Ixl < a,

J/= o, o= z o, Ixl< a,

@ o, for . O, Ix > a,

I O, for z O, Ix >a,

"z’ o, _o" z o, Ixl<’.
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ANALYSIS

To find the solutions for the wave equation (2.4), we use the Fourier trans-

folNns

P( f(x)xp(i a x),
f(x) ( exp(-i x)d.

Using this theory, we can reduce equation (2.4) in x and z to the following

ordinary equation in z

Due to the symmetry conditions in equation (2.9), it is possible to consider only

the problem for the half-space, z _0. The solutions to equation (.2) appropriate

to z _0 will take the following forms,

; A( )expC-gz),

B( )exp(-. z)+C( )exp(-,z),

with

(3.4)

where A(), B(), C() are independent of z.

Then, it can be shown that the mixed boundary value equation (2.9) yields the

following four integral equations
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(

J-
c|’ k.()+iJ k2()} exp(-ix)d =-p(x),2
@

i@ks )+(e k( )} exp(-i x)d O, for Ixl< a, (3.5.1)

with

@exp(-i x)d - oo exp(-i x)d O, for Ixl > a, (.5.2)

where o eJ are the transformed displacement and rotation on z O, respectively.

If we assume that p(x) is an even function of x, the solutions can be repre-

sented by the series

.,..(v.) (x/a)( 1-x/a )Vw a- 2q-2
11=1

,/2) (xla)(1_la ) for Ixl< a,

w eJ O, for Ixl > a,

where a, b are the coefficients to be determined and p(V,)(x) is a Jacobi

Polynomial. The Fourier transformations of equation (3.7) are (I 3)

o 2,,/,’ a..(-1 )"’-’ r-’(2n..,-) Jz’n-,
=i (2n-2), 2- i b(- )"/’
-i (2n-1)! J2 (a), (.8)
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where (), J are the Gamua and Bessel function, respectively. Equation (3.7)

already satisfies equation (3.5.2). Substituting equation (3.8) into equation

(3.5.1), we obtain for

with

.(x)+,a.F (x) p(x)x,
=, bG(x)+ -,E s.,H(x) O,

ECx) 2(-I) - C2n+) [ {k, C )-2}/’J C a)sin( x)d+2Cl-x’/a )

xsin{2n sin-’ Cx/a)}/C4n:-1 )-(x/a)cos{2n sin-’ (x/a)}/{n(4-I )I ) ’

() 2(-’)’-’ F (2n-) ,.
(2n-2).v o{k’ ()/’ -k, }/ J,_, ( a)sin(, x)d

+k/(2a-1) sin{(2n-1 )sin-’(x/a)}),

e(x) (2n-)

sin( x)d-2sin{2n sin-’ (x/a)}-(4-M%)/(4 z)E (1-xZ/a ){ sinI2n
x sin-’ (X/a)}/C4n:-1)-x/a consin-’ (x/a)}/(2n(4n’-1 )I)

(2n-2)

-1/z
sin {(2n-I )sin-’ Cx/a)}/C2n-I )), (3.so)

and

where the first equation in (3.9) has been integrated with respect to x.

The functions

flC) kC)-2} J2Ca)/,
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(..2)

behave as

t, ()--o(-’),

t, )-- o( -" ),

t, )-- o( -" ),

t’, (a)---o(-"), for large , 3.13

so that the semi-infinite integrals in equation (3.10) can easily be evaluated

numerically by Filon’s method. Equation (3.9) can be solved for the coefficients

a, b by a modified version of Schmit’s method (14). Once the displacement and

rotation at the boundary are found, this analysis is considered to be complete.

4. STRESS-INTENSITY FACTOR

The coefficients a, b, are known, so that the entire stress field is obtain-

able. In the fracture theory, however, the significant quantity to be calculated

is the direct stress acting across the radius from the tip of the crack. It can

be written as

x a+r cos(e)

z r sin(O (4.1)

and the stresses for the small value of r can be considered. The required stress

’ is given by
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Te= Tx sin (e)+z cs ()-(Tz + zx)sin( )cos() ). (4.2)

For the small value of r, it is shown

J_,( a)exp{-(1-m )V z } cos( x)d

(-1) (cos e +(l-re’ sin" e )v }{ / { 2(1-m’ sin’ +O(r ),

/" J,n_, a)exp{-(1-m" ){ z } sin( x)d

(-1)"*’ {-COS e +(1- sin’@ )v-} / { 27 (l-re’ sin’ ) } +O(r ).

(4.)

Using equations (4.2) and (4.), we obtain the stress-intensity factor Ki

K (e r/a/ r- 0

(2n-2)!
(M-2) (2+M-2Mt) s O +q"M ( 1-MI )* co sin e )/q

with

cos(e )+qcos(e )/+ M4#+cos(e (s+/-n’ e-cos’e+

8 41-cose sin(e )cos(4(M-2) Jq-cos( e sin( e )cos(e )/qM
(4.4)

5. NUMERICAL EXAMPLES AND RESULTS

Numerical calculations arecarried out for # 0.25 and p(x) P (constant).

The semi-infinite integrals which occur in equation (3.10) can easily be evaluated

numerically, because the values for f ), f2 ), fs ), f4 decay rapidly

when- becomes large, as shown in Table 1. Adopting the first five terms of the

infinite series of equation (3.9), we utilize the Schmidt procedure. In order to
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check on the accuracy, the values for the left-hand side in equation (3.9) are

given in Table 2 for /a 0.1, 0.5 and MT 0.6. From this, it is clear that

the accuracy of Schmidt’s method is satisfactory. In Table 3, the stress intensity

factor KI/P for = 0@, M= 0.01, 0.6, 0.8, 0.9 is shown, in which the values put

in the circular-type brackets are those obtained from the diagram in Ref. (8) and

the results given by Atkinson and Leppington (9) are also written in the square-

type brackets. The values for My 0.01 coincide well with those corresponding to

the static solutions. In Figs. 2 and 3, the stress-intensity factor K2 is

plotted against MT for /a 0.1, 0.5 and 9= 0", 27 , 54 In Fig.4, Ki at

e 0 is plotted against /a. It is difficult to carry out numerical calcula-

tions in the /a<0.1 range, because we cannot expect that the integrands in

equation (3. 0) to rapidly decay when becomes large for a small value of /a.

In Fig. 4, the broken lines are likely curves drawn suitably. Figure 5 shows

stress-intensity factor Ki versus for /a 0.2 and My= 0.01, 0.8, 0.9.

As a result of the above calculations, we are able to deduce the following

information.

i) In contrast to the classical solution, the stress-intensity factor K at =0

is dependent on the propagating speed and becomes larger as the speed increased.

i) The maximum value of the stress-intensity factor K occurs at 0 even

though the crack speed is increased. Therefore, the crack branching does not occur

for materials which take a nonzero value for

iii) The moving velocity of the crack has less of an effect on stress-intensity

factor K% when the value for increases.

iv) Variations of the stress-intensity factor KI with the angle is much

different from that of the classical solution.
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Table

0.1

Values of f, (), f2(), fs(), f4() for n I, MT= 0.6 and

/a 0.I, 0.5 against a.

0.01
0.21

40.0

-0.24950x.10 0.11099x10’ 0.11.350x10 0.49899x102
-0.2880x10 O. 1067x-10 O. 10821:x10: 0.4767210:

-0..047610-’ 0.96084x10-’* 0.1259x10-6 0.3944210
-2

80.01

0.01
0.21

40.)1

80.01

-0.6740010- -0.55057x10- 0.27258xI0- -0.22575x10-
-0.24751x10 0o11012x10’ 0.45002x10’ O. 19801x10’
-0.2011610 0.90954x10 0.35930210 0o160610

-0.12456x10- 0.9156x10- 0.95798’10-’ 0.649910-
-0.2715410-" -0.21915x10- 0.84226x10-" -0.,56254x10-

Table 2

0.1

Values of ., bE(x)+,, aF (x) /P and h.G(x)+.=(x) /

for My 0.6 d /a 0.1 0.5.

a { (x)+nF(x)}/P { b(x)+,a(X)}/p
0.001
0.1

0.9
0.999

0.001
0.1

0.9
0.999

-0.9996835xI
-0.9997904xl 0-’

-0.499997010

-0.899998x10
-o.9989995,1 o

-0.9999725x 0-’
-0.999988xl 0-’

-0.49999981 o"

-0.899998?xl 0
-0.998999210=

O. 149504310-’
0.113874x10-

-0.5581461,,10-4

0.3729001x10’’4

-0.434080’10-:

-0.4316153x10--0.6969440xl 0-e
-0.5124155x10-
-0. 884164xl 0-8

-0.131438010-e
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Table 3 Stress-intensity factor Ki/P at @ 0for
MT= 0.01, 0.6, 0.8, 0.9 and /a 0.1,
0.2, 0.5, 1.0.

/a 0.1 0.2 0.5 1.0

MT 0.01

0.6

1.22 1.199

( .2,1) ([ .202
1.3}1 1.279
1.553 1.418
2.097 1.626

1.121 1.056
) (1.120) (1.06])

1.15 .o7
1.193 .o85

1.2.5 1.096

’Z

Fig. Geometry and coordinate system.
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0
0o0 0.5 MT

Fig 2 Stress-intensity factor K for 2/a 0.1, e= 0
2? 54 versus MT.

, la=0.5

27

0
0.0 0.5 MT 1.0

Fig 5 Stress-intensity factor Ki for /a 0.5,
27, 54" versus M-r.
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Ki/P
MT-0.9

F/g. 4 Stress-intensity factor
0.9 versus /a.

j/a 1.0

at g= 0for MT= 0.01, 0.8,

K/P MT=0.9

,/a=0.2

0.01

Fig. 5 Stress-intensity factor K
0.8, 0.9 versus . for

90"
/a 0.2, M= 0.01,
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