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ABSTRACT. In the references [i, 2, 3] a perturbed iterative scheme PIS) has

been studied both theoretlcally and computatonally to solve nonlinear equations.

In this article a more general analysis of its convergence properties has been

done

i. INTRODUCTION.

A perturbed iterative scheme (PIS) has been developed in [1, 3] to solve

nonlinear equations. It is a functional iterative scheme obtained by adding a

predetermined perturbation parameter to nonlinear Gauss-Seidel iterations. PIS

has a simple algorithm. Other similar iterations [6, 7, 8] had more restricted

applications and complicated algorithms. Theorems on convergence properties of
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PIS, derived in [I] for one nonlinear system, were modified in [3] for coupled

nonlinear systems. In this article more generalized convergence properties of

PIS have been analyzed by applying decaying matrices [5]. A practical demonstra-

tion of this concept is also given. Theorems on convergence of PIS derived in

[1, 2, 3] may be interpreted as particular cases of those derived in this paper.

2. ALGORITHM OF PIS [I].

Let us consider a nonlinear system:

Fi(Xl, x2,...xn} 0, i i, 2,...n (2.1)

This equation may be expressed as F6xl 0 where x 6xI x
2

x )T

F D C Rn / Rn (Rn is the real n-dimensional space). We assume that (2.1)

admits a root x x* E D. Our objective is to develop a perturbed iteratlve

scheme LPIS) to solve (2.1) and cmpute x*. If (2.1) is written as:

xi Gi(x1, x2,...xn), i 1, 2,...n

nonlinear Gauss-Seidel iteration at sme kth step is:

(2.2)

(2.3)

where x value of x at the kth not exponent) iteration and

G Gi’ 2 i 1
x’-I xk-l)"
1 n

(2.4)

Let G D x D C Rn x Rn / D. Then 2.3) may be expressed as

xk G6xk, xk-l)

* * x*and, x G

(2.5)

(2.6)

DEFINITION I: In such a case, x* is called a fixed image of G on D x D.

Now (2.3) may be perturbed as follows:

To compute the perturbation parameter , we assume that V i,k: (i) i’s are

small, such that terms of the order (i)2 may be neglected, (ll} (G
i / xi)k i,

and (iii) (2Gi / x)k is bounded.
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*-i x. x.. Then,If (2.7) converges after (k-l) iterations,
i i

Taylor’s series and using the above assumptions we get

where i Gi(xkl k’ i’ k-i -i)xi_1 xi+I and

iG {Gi / xi)l i-l’ G, i n-l.

(2.8)

Thus in (2.7), w.’s are computed in terms of quantities known apriorl. The
1

convergence criterion is:

(2.9)

where E is positive and arbitrarily small.

3. ANALYSIS OF CONVERGENCE.

*By convergence we mean lim xk x Now {2.7} may be expressed as:
k

xk wk + G(xk, xk-l)

where wk {i n)T E Rn. Let G be continuous on D x D.

THEOREM 1: A necessary condition for convergence is that, for some norm

II w ll o

PROOF: Assuming that (2.7) converges to x*, limxk=x*
k

and

lim Gk, Xk-l) G(X* *x*) x Then, (3.1) gives lira wk , which implies
k k

(3.2).

To prove that (3.2) may also be a sufficient condition for convergence, the

following concept is used:

DEFINITION 2: A sequence of commuting square matrices AI, A2,...An is

called a sequence of decaying matrices or simply D-matrices if

(3.3)
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Each is called a D-matrix. Obviously, the eements of are variable and

they change as k changes. Several properties of D-matrlces are given in [5].

The one we need is:

LEMMA 1: A sufficient condition such that Ak is a D-matrix is that for

some par.t.i.cu.l.ar norm and k > K,

PROOF: For any norm, IIA1 A2 Akll < II AIII II A211 ---II II Also,

llAkl 0 iff A-- @. Proof is now rather trivial.

Let H D x D C Rn x Rn / D xk, yk), [u, 8) D x D. Let us express

where , are square matrices (n x n) and, ai,j an element of

i,j y u, S); bi,j an element of b ,j y u, 8). As k changes,

xk, and hence a,j, b,j change. Let xl (IXll Ix21 Xnl )T"

DEFINITION 2: If (xk, ), (a, B} D x D, Ak, are continuous,

l(I Ak)-ll (3.6}

is bounded, and

is continuous and form a sequence of D-matrlces, the mapping H D x D c Rn x Rn

/ D is called a D-mapping on D x D.

THEOREM 2: If in (3.1)G is a D-mapping and (3.2) is true, PIS [3.1)will

converge to x*, a fixed image of G on D x D. Furthermore, if P k (the spectral

radius of ) < 1 Vk > K, x* is the unique fixed image of G on D x D.

PROOF: Subtracting (2.6| from (3.1| and using (3.5) we get xk -x, + kk x* + xk- x*.
Then, Ixk x*[ <_ Cklwkl + EklXk-I x* (3.8)

where Ck and Ek are defined in (3.6) and (3.7} respectlvely. Now, using (3.8}

recurrently,
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k

j-1
ko

(Ek Ek-i Ek0+l)j=l (Ek0 Ek0-1 EJ+I) Cj lwJl
k

+ Z c _.... 9+.} c Il +

_
I ’I. (.9}

jffik0+l

(3.2) lies tt for se k k0+l < . Also, since is a

i E1 E2 d I 0+I 0+2 . Hence Cj berg ded j,
k k

from (3.9) we get lira Ixk x* @ which establishes convergence.
k

*In order to prove uniqueness, we assume that x y is a second root. Then,

* * y* Cx* Cx* y*x y G(x* x*) G(y*, A, Y*I + B, ThUS

Ix* y*l I( ’.- ,.1 I* y*t "., I* ,*1-s.o p(> < , ,
Ek

/ E, as k /-, pCE,) < i. This gives CY- E,}.-I Z E3, > " Hence

(I E, llX* Y*I @, implies x y

It may be observed that and are respectively lower and upper trlangu-

lar matrices with variable elements. If + is a tridiagonal matrix it is

rather easy to check when G is a D-mapping [9]. However, in general (I )-i
is not quite simple to find. In such cases, theorem 2 cannot be used and the

following approach may be taken.

THEOREM 3 Let Vk,

G(xk xk-l) G(x*, x*) Akk x*) + k-I x*} (3.lO)

where (I Ak)-i is bounded. Let for some particular norm and Vk K,

II II + II II <_ u < i Furthermore if (3.2) is true, PIS given by (3.1} will

* X*converge to x and is the unique fixed image of G on D x D.

PROOF: Let Mk (I Ak)-i Bk. Since II Akll _+. II Bkll <_ u < I,

II AII <_ ( < a,,( (( II ",11( II A,II- < (- Ao,
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< a < 1. Hence is a D-matrlx. Subtracting (2.6) fr (3.1) and using {3.10)

* x* -i x*

< II -11 II ,.11 + II .’11 II ----’ll ( . II (I ,-ll,
k

II -" II <_ II ,,11 +. I! - " II (3.11)

recurrently we get:

II =*II s * .k-ko . (zko-J II ,, II + a .i-t + -kll x x" II

prove iess, let x y* or rt. , x y

e’, X*) GCy*, y*) A,* y*) + B,* y*} or a I!-,11 II =* :11 o.

X y.

It may be easy to prove:

THIX)REM 4: A sufficient condition such that nonlinear Gauss-Sedel itera-

,
tions - Gk, -i) wll converge to x- x is that - [(I Ak}-i Bkl is a

D-matrix where Ak and Bk are defined in (3.5}.

PROOF: In (3.9) we set wk 0 and the proof follows.

4. AN APPLICATION.

Solve: 0.25x2 xI + 0.75x2 0, 0.5XlX2 x2 + 0.005 0. In

[-0.5, 0.5] x [-0.5, 0.5], ths system has a root given by xI 3.7606 x 10-3 and

x 5.00942 x 0"3. We express the system as xI G1 (xI, x2) x2 G2 (xI, x2)
2

where GlxI, x2) 0.25x + 0.75x2; G2xI, x2) 0.5XlX2 + 0.005. Denoting the

* *

.
/ o.

+ o..[- =_. h,, GC, - GO=’, =’ - =’ + kC- =’
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0.75

o,o.y, (, @ , , -o.s, o.s, II II.
_

*xI 0). u, is contuous and a ix. Also, since Ck l(I Ak}-iI is

ded, G is a pping. Hence, iterations will converge iff (3.2)

e algori, now, rires e following to be cuted seentially at y

iteration: _) - 0o25(x-i) 2 + 0.75-i; (ii) [eI / Xl], -I "0.5
(i) - 0.25() 2 + 0.75-I (iv) - (- ) / {I- [G1 / Xl]G
(v) - + (vi) 0.5-I + 0.005 (vii) [e2 / X2]x
( 0. + o.oo, ( - (- /(- /’I, ’10-5If

-1,2, x) D x D, PIS converges in 5 iterations. s sidle ple lalns

e oonvergenoe prinoiple as develope in eor 2. It shs at in oe to

prove that Ek is a D-matri some prior knowledge of the roots is required.

5. DISCUSSIONS.

PIS has some limitations [I]. In order to prove that G is a D-mapping some

apriori knowledge of x* is required (as is evident in section 4). PIS is not

quite effective to solve equations with multiple roots. For example the system:

x sin(x) cosCy) + sin(z), y sln(y) cos(z) + sln(x), z sin(z) cos(x) +sin(y)

has three roots: (0, 0, 0), (1.249, 1.249, 1.249) and (-1.249,-1.249, -1.249).

With (x0, y0, z0) (i, i, I) (9999, 9999, 9999), (0. 1, -0.1, 0.005), (-9.0,

-9o0, 0.00003), (76, 900, 8000), (-3, -3, 3) it converged to the second root, with
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(x0 y0, z0} (5555, 3333, 1111}, (56, 92, -9}, C-l, -I, 13), (49, 78, i00) it

converged to the third root but the first root was not found. The reason for

this is still under investigation. If, in some cases, s are identically equal

to zero, PIS becomes less effective [I]. PIS may be interpreted as a cmbinatlon

of Gauss-Seldel and Lieberstein’s methods [I]. It was compared with other

similar methods in [1, 3]. Although Newton’s method has a quadratic rate of

convergence it requires in general initlal estimates to be close to the root and

evaluations of Jacoblans at each iteration. PIS requires none. Thus for large

systems whereas Newton’s method is not practical to use, PIS can be easily used

[1, 3]. In [1] it has been proved that PIS has a quadratic rate of convergence.

Also, since PIS-algorlthm is relatlvely simple, computer programming is rather

easy. Since no matrices are stored, requirement for computer memory storage is

also small.
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