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ABSTRACT. A lattice K(X,Y) of continuous functlonson space X is associated to

each compactlflcatlon Y of X. It is shown for K(X,Y) that the order topology is

the topology of compact convergence on X if and only if X is realcompact in Y.

This result is used to provide a representation of a class of vector lattices with

the order topology as lattices of continuous functions with the topology of corn-

pact convergence. This class includes every C(X) and all countably universally

complete function lattices with i. It is shown that a choice of K(X,Y) endowed

with a natural convergence structure serves as the convergence space completion

of V with the relative uniform convergence.
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1 INTRODUCTION.

In this paper we will study a broad class of real function lattices which we

call "2-unlversally complete." For this class we will show that the order top-

ology To(also called the order bound topology and the relative uniform topology)

is the topology of compact convergence in an appropriate representation (Theorem2).

We will show (Proposition 3) that the 2-universally complete lattices include the
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lattices "C(X), all continuous real-valued functions on X, and all countably

universally complete lattices containing i. (An example of this latter type is

discussed in Example i.)

The proof of Theorem 2 requires a construction which is studied independently

in i. In particular, sublattlces K(X,Y) of C(X) for compactifications

Y of X are investigated. Theorem i states that the order topology for K(X,Y)

is the topology of compact convergence on X if and only if X is realcompact

in Y. (Th/s concept of realcompactness was studied in [I0].

Since the order topology is the finest locally convex topology in which

every relatively uniformly convergent net converges (see [5]), in 3 we

consider the 2-universally complete function lattice V wth relative uniform

convergence as a convergence function lattice Vp, rlthout reference to its

associated order topology. We show (Theorem 4) that K,Y) endowed with a

natural convergence structure serves as the completion in the convergence space

sense of Vp.
We remark that (assuming without loss of generality that X is realcompact)

it can be seen directly that the order topology is the topology of compact

convergence for the lattice C(X). This follows from [13, p. 124] since every

positive linear functional is continuous with respect to the topology of compact

convergence (see [6]) and since CCX) with the topology of compact convergence

is barrelled (see [11]).

2. THE ORDER TOPOLOGY FOR

Let Y be a compact Hausdorff space and X a dense subspace. We denote

by F(X,Y) the set of all nonnegative extended real-valued continuous functions

on Y which are finite on X. For f in F(X,Y) we let Af be the set in

Y X where f is infinite. We set

K(X,Y) {C(Y%Af): f e F(X,Y)}.

Since X is dense in each YAf, by restricting the functions in K(X,Y) to

X we can vew K(X,Y) as a sublattice (and also a subalgebra) of C(X).
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LEMMA i. For each function g in K(X,Y) there is a function f in

F(X,Y) such that g < f.

PROOF. Given g in K(X,Y) there is a function h > 0 in F(X,Y) such

that g is in C(Y’Ah). We consider the compact subsets

A h
-I [n-l,n]n

and B h
-I [0,n-2]2 h-l[n+l, =]

n

of Y (n 1,2,...) with the understanding that BI h-I [2, ]. Using

separating functions on Y, one can construct for each n a continuous function

f such thatn

f (x) sup {g(z): z e An} for x in An n

and f (x) h(x) for x in Bn n

On Y the function f defined by

fOc) sup {in(X): n 1,2,...}

is continuous, since at each point x in Y" there is a neighborhood of x

on which f is the supremum of finitely many functions f Moreover, f > hn

on Y and hence extends continuously to Y(i.e., f(x) for x in ).
Thus f is in F(X,Y), and g < f.

For Y a compact Hausdorff space and X a dense subspace of Y, we will

say that X is _realc..ompac.t i__n Y if

X / {YAf: f F(X,Y)}

This concept has been considered by Lorch in [i0]. Where 8X denotes the

Stone-ech compactlflcatlon of X, we note that X is realcompact if and only

if X is realcompact in 8X. If X is realcompact in Y it follows that X

is realcompact, since Y is a quotient of 8X. On the other hand, the real llne

X with its discrete topology is realcompact but not realcompact in its one-point

compactification Y: The set Af is empty for each f in F(X,Y) since X is

not o- compact, implying

{YAf: f e F(X,Y)} Y.

We note that the following proposition is also a consequence of work done in
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PROPOSITION i. A completely regular space X is realcompact in each of its

compactiflcatlons if and only if it is Lindelf.

PROOF. Suppose X is Lindelf, Y is a compactlflcatlon of X and

p YX. Arguing as in [9, for each x in X we define a Urysaln function

hx on Y such that hx(x) 1, hx(p) 0 and 0_< hx_< 1. Then {hx-1 (,oo):

X c X} is an open cover of X having a countable subcover corresponding to

functions {hn}:=1 Let h I hn 12n, a non-negatlve member of C(Y) which is

strictly positive on X and zero at p. Thus p is in Al/h, showing that X

is realcompact in Y. Conversely, if X is not Lindelf, by [9] there is a

compact set K in ’X which is not contained in a zero set in D[X. Let

Y be that quotient of X obtained by identifying the points of K. Since the

image of K in Y cannot be contained in a zero set in Y’X, X is not

realcompact in Y.

The subscript co will denote the topology of compact convergence and the

subscript T
O

will denote the order topology. For a completely regular space X

with realcompactlflcatlon X, as noted in the introduction, C
T (X) Cco(X).
o

Since Cco (X) Cco (X) if X is not realcompact, we conclude that

cT (x) Cco (x)
o

if and only if Is realcempact (in X). We provide the following general-

izatlon, noting that K(X,X) is C(X).

THEORE 1. Let Y be a compact Hausdorff space and X be a dense subspace

of Y. Then in K(X,Y) the order topology coincides with the topology of compact

convergence on X if and only if X is realcompact in Y.

PROOF. Setting

z-Ct{A: fe(x,)},

we note that

K(,X,Y) K(Z,Y).

We abbreviate K(E,Y) and F(X,Y) to K and F. The subscript p will denote

the relative uniform convergence structure. To complete the proof, we show that
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the topology of is the topology of compact convergence on Z. Let {fa} be
o

a net convergent to zero in K (As noted in the Introduction, T is thep o

finest locally convex topology in which every net convergent in K
0

converges.

There is a g > 0 in K such that for all n,

Iful < i__.g ( > %1.
Clearly {_.l g} converges to zero in C (A) nd hence in C (Z).

n co g co

Since C (Z) is a topological vector lattice {fe} converges in C (Z).
CO CO

Thus the map from into C (Z) is continuous. To show that T is
co o

o
coarser than the topology of compact convergence on Z, let U be a closed,

absolutely convex, solid neighborhood of zero in We remark that for f F,
o

the inclusion map from C (YAf) into is continuous. This follows from
co o

the fact that the map from C0(YAf) and hen.ce from CT (YAf) into
o o

is continuous. (As noted in the introductlon, C
T (g-Af) is Cco(YAf.
o

Since C (Y) is C (YAI) and U is solid
CO CO

U

_
{g K: II gll Z < }

where "denotes the supremum on Z, and is a fixed positive number.

The following argument uses techniques found in [ii]. We will call a compact

set G in Y a support set for U if for f in F, f is in U whenever its

restriction to G vanishes. For example, Y is a support set for U and,

assuming U does not contain F (if U F then U K by Lemma I), the

empty set is not a support set for U. We note several properties of support

sets for U which will be needed.

(a) Let G be a support set for U. If f is in F with

[[fll G < /2 then f is in U.

To see this, consider the function g (f /2)V0. Although-F is not a

vector lattice, g is clearly in F. Since

[]2g[[G 0, 2g is in U; since l[2(f-g)[[ Z
< , 2(f-g) is in U. Thus by

the convexity of U, f is in U.
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(b) Let G be a compact subset of Y. If for h

in F, h is in U whenever h vanishes on a

neighborhood of G, then G is a support set for U.

To see this, suppose f e F vanishes on such a set G. The function

-I
g (f 6/2)v0 vanishes on f (-/2,/2), a neighborhood of G. Thus 2g

is in U. Since again 2(f g) is in U we obtain f e U.

(c) The intersection of two support sets for U is a

support set for U.

To see this, let G and H be support sets for U and let f in F vanish

on a neighborhood W of G/ H. If f is bounded there is a g in C(Y)/ F

such that IIgll G 0 and g(x) > f(x) for x in H’--W. Since

lg fll G 0, 2(g ^f) is in U, and since l(f g)v 0 IIH 0, 2[(f -g) v 0]

is in U. Thus by the convexity of U, f is in U. Now suppose f is not

bounded. Then f is the limit in K of the bounded functions {f ^ nl} since
o

this sequence converges to f in C (YAf). Each f^nl is in U and U is
co

closed, so that f is in U.

(d) The intersection S of all support sets

for U is a support set for U.

To see this, let f in F vanish on a neighborhood W of S. Since Y’-W is

compact it is covered by the complements of finitely many support sets for U.

Thus f vanishes on the intersection of these finitely many support sets and is

in U by(c).

We prove that the intersection S of all support sets for U is contained

in Z. Let p be in YZ. Then h(p) + for some h in F. Since the

inclusion map from C (YAh) into is continuous there is a compact
co

o
subset D of Y.A

h such that U contains {g C(YAh):[[gll D
< e) for some

e > 0. Thus if g is in C(YAh)/%F and vanishes on D, then g is in U.

For any f in F which vanishes on D, since f^nl is in C(Y’) we have

f^nl e U. It follows from the fact that U is closed that f is in U. Thus

D is a support set for U not containing p. We conclude that S is contained

< 6/2).
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Let g be any member of K having llglIs < /2" Then g is in C(Y) for

some h in F. By Lemma I we can assume h _> gl- There is a number N large

enough so that the closed set h-l[N,) in Y’ is disjoint from S. Since

Y is normal there is a function k in C(.Y-) which equals Igl on S

and h on h-I[N,). Letting f be kvlg on Y and on , we conclud

that f is in F since f > h on h-l[N,). Since f gl on S, f is in

U. Since f _> gl and U is solid, g is in U. Thus,

U_ {g e K: llgll S
<6/2},

a neighborhood of zero in the topology of compact convergence on Z. This completes

the proof.

3. THE ORDER TOPOLOGY FOR A 2-UNIVERSALLY COMPLETE LATTICE

We recall that an element e in a vector lattice V is said to be a

weak order unit if for each v in V

v V{v ne: n 1,2,3,...}.

We will assume that V is a vector lattice having a weak order unit e and

that the real lattice homomorphlsms on V separate the points of V. We let X

be the set of lattice homomorphlsms x on V such that x(e) i with the

topology of polntwlse convergence. We map V into C(X) by the usual Gelfand

map (x) x(v) for all x in X. We will refer to X as the carrier space of

V. The proof of the following proposition uses the techniques of Lemma 2 in [3].

PROPOSITION 2. The Gelfand mapping of V into C(X) is inJectlve.

PROOF. Suppose @ 0 for v in V; thus, x(v) 0 for all x in X.

For each lattice homomorphlsm on V either (e) 0 or /#(e) is in X,

so that

(v^ne) (v)^n(e) 0.

Since the lattice homomorphlsms separate X, v^ne 0 for all n. Thus

v- V{v^ne: n-- 1,2,...} --0.

We will henceforth identify V with its image in C(X) and refer to it

as a function lattice with i (the image of e). We also will not distinguish

between functions in C(X) and their extensions to functions from the
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Stone-ch compactlflcatlon X of X to the extended real numbers.

We will have need for an additional condition. In a function lattice V

with 1 we will aay that a collectlon {Vn}:.1 is 2-dls_olnt_ if

indices k distinct from n, and

2. for each x in the carrier space X of V there is a vn

such that Vn(X) O.

We will say that V is 2-universally c._omplete if each 2-dlsJolnt collection

has a supremum in V.

For what follows we recall that a countably vnlvsally Gomlete lattice

is one in which the supremum exists for each collectlon {Vn}n=1 satisfying

PROPOSITION 3. (a) The lattice C(Y) for any completely regular space Y

is 2-universally complete. (b) Each countably universally complete function

lattice with i is 2-universally complete.

PROOF. For (a), since the carrier space of C(Y) is the realcompactificatlon

of Y we may as well assume that Y is realcompact. Given a 2-disjoint

collection {fn} in C(Y), at any point y in Y there is a function fn
with Ifn(x) > 0 for all x in a neighborhood N of y. The pointwise

supremum of the collection {f } on N thus involves at most three functions;
n

one concludes that the_pointwise supremum of {fn} is continuous, and thus the

supremum of {fn} in C(Y).

The proof of (b) follows from the observation that a 2-disjoint

collection can be decomposed into three collections, each having a supremum by

countable universal completeness.

We note that CR) (R the reals) is 2-universally complete but not

countably universally complete: Letting fn be a continuous function which

vanishes off [n+ --] and has value i at some point Xn, we obtain a

collection {fn)n I satisfying [fn[ fj[ 0 for n J whose supremum f

would clearly vanish on (-, 0) and yet f (0) lira f(xn) >- fn(Xn) i.
n-
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For a function lattice V with i, we let X denote the quotient space of

the Stone-Cech compactification X of the carrier space X which is induced by

the equlvalance relation p q if v(p) v(q) for all v in V. The space

X is compact and (since V separates 8X) Hausdorff. Note that X is real-

compact in 8X. Since V+ is contained in F(X,X), V is a sublattice of

K(X, SX). Of course, if V separates 8X then K(X,) K(X, SX) C(X).

We will provide an example of a 2-unlversally complete function lattice

with i which is not uniformly dense in any function space C(S). For other

such examples see [7]. Furthermore, for the carrier space X in this example,

X # 8X and K(X, SX) . For this purpose we will need the following lemma.

We recall that a $-algebra is an archimedean lattice-ordered algebra over

the reals with identity i which is a weak order unit.

LEM}I 2. Let V be a -algebra. Thn every lattice homomorphism on V is

an algebra homomorphism.

PROOF. Let 8 be a lattice homomorphism on V. Then is a lattice

homomorphism on the order ideal I(i) generated by i, hence an extremal

element in the continuous dual I(i)’ of I(i) in the order unit topology. For

g in I(i) 0 < g < i, we define 8 (f) 8(fg). Since for f > 0 in I(i)

< 8 Thuswe have 8g(f) < 8(fg) < 8(f), it follows that 0 < 8g_
for a scalar l which can be easily evaluated to be 8(g), so thatg

8(fg) 8(f)8). Th/s argument can be extended by standard means to show that

is an algebra homomorpkism on I(i). We next consider nonnegative elements g

in I(i) and f in V. To facilitate computations if 8) 0, we let

the third step being valid because f ^ nl and g* are in I(i). Thus

8 (fg) 8 (f)8(g). The argument can now be repeated without the restriction
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that g is in (/). The standard extension establlshes that 0 is an algebra

homomorphism on V.

EXAI@LE 1. The -algebra of all real-valued measurable functions on [0,13

is countably unlversally complete (hence, 2-universally complete) and is

complete in the uniform topology. It is known (see [73) that J is not isomorphic

as a -algebra to any function space C(S). It follows from Lemma 2 that is

not isomorphic as a lattlce to any C(S). Thus is not a uniformly dense sub-

lattlce of any C). Furthermore, if separated the points in X then the

space of bounded functions in would be C(X) by the Stone-Welerstrass

theorem. But since as a -algebra is closed under inversion, this would imply

CX). Thus X 8X. To show= K(X,X), consider f in K(X,). Then

f is in C0XAh) for some h in F(X,X). Since 8X’Ah is Q-compact, the

topology of C (X) is metrlzable. By the Stone-Welerstrass theorem there
co

exists a sequence of functions in convergent to f in C (SX). Thus f
co

on [0,1] is a pointwse limlt of a sequence of measurable functions, and so in

We remark that X here is [0,i] in the discrete topology and

consists of Just those continuous extended realalued functions on 8X which are

finite on a dense subset.

LEMMA 3. Let V be 2-unlversally complete. For each function g in

K(X,X) there is a function f in V such that g <_ f.

PROOF. We begin by showing that for compact sets K1
and in X them

is a function v in V which is zero on , one on and satisfies

0 <_ v <_ i. Given p in K1 and x in , since V is a vector space and

separates X there is a function v in V such thatx
0 < v (p) < 1 < v (x).x x

Clearly, 0 < v (q) < 1 < v (y)x x

for all points q in some neighborhood U of p and all points y in some
x

neighborhood N of x. Let v be the supremum of functions v correspondingx p x

to a finite subcover {Nx} of . Then

O < v (q) < 1 < v (y)p P
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for all y in and q in a neighborhood of Wp of p. Letting W be the

inflmum of functions vp corresponding to a finite subcover {Wp} of KI we

obtain

0 < wCq) < i < < w(y)

for all q in y in K2 and some real number uo The function

e,.ll

F (w-l)vO]} A 1

has the desired properties. Now let g be a function in K(X. BX). By Lemma 1

there is a function h in F(X, BX) such that h _> g. Consider the compact

subsets

A h-l[2n-2, 2hi

and B h-l[0, 2n-3] %2 h-l[2n+l, =]
n

of’ 8X (n 1,2,...) with the understanding that B1
h-l[3,=]. It follows

from the first part of this proof that there is a function v
n

in V with

Since {v
n
} is a0 < vn < 2n which has value 2n on An and is zero on Bn

2-dlsjoint collection, its supremum is a function in V greater than or equal to

h (and hence g).

Given u in V+, we consider the ideal

[u]V {v V: Iv %u for some in }

and we set, for each v in [u],
+/-f{ > 0: !] < u}

It is easy to verify that the normed spaces

{([u3v, II flu): u v+}
form an inductive system ordered by inclusion, whose locally convex inductive

limit is VT (see, e.g., [13,p.122]).
o

PROPOSITION 4. Let B be a 2-unlversally complete function lattice with I

and having carrier space X. Then

VT V CX, 8X).
o o

PROOF. We recall that VT is the locally convex inductive limit of the

factors {u]v, II flu): u eV+}, where [u]v is the ideal in V generated by

u. It follows frL 3 that (X, ) s the locally convex inductive

limit of t factors {u]K, II flu): u e V+}, wre [u]K is the
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ideal in K(X,X) generated by u. It is easy to verify that the topology of

V is finer than that of V K (X, SX). For the converse, let U be a solid
o o

neighborhood of zero in VT
Then for some collection {u: u V} of positive

o
scalars, U contains the convex hull of { [-u,u]V: u V}, where [-u,u]V

u

denotes an order inteal :In V. Denot:lng by [-u,u]K the order interval in

K(X,X), we let v b in the intersection with V of the convex hull of

uK:42 { [-u u V} Since v--ilifi for scalars i satisfying
u

7. IX i I__< 1 and fi in ui[-ui,ui]K, then
i--1 n

Ivl_< lxl-Iu ul u.
By the solidness of U, v ils=n U.

The next theorem is a consequence of Proposition 4 and Theorem i.

THEOREM 2. Let V be a 2-universally complete function lattice with i.

The order topology T
O

on V is the topology of compact convergence on the

carrier space of V.

4. CONVERGENCE STRUCTURES RELATED TO UNIFORM CONVERGENCE

In this section we will be using the ideas of convergence space theory (see,

e.g., [i]). We will consider convergence structures on K(X,Y), where Y is

compact and Hausdorff and X is realcompact in Y. We let K(X,Y) denote the

.convergence space inductive limit of the system

{C (Y.Af): f e F(X,Y)}
co

together with the continuous inclusion maps. Thus a net {ge} converges to g

in Ko(X,Y) if and only if ge is in a factor C(Y\Af) for all e beyond

some e0 and {ge}u > u0
converges to g in Cco(Y%Af); equlvalently, a

filter @ converges to g in Ko(X,Y) if and only if @ contains the neighbor-

hood filter at g in some factor Cco(YAf). We note that for X realcompact,

K .(X, SX) is the convergence space CI (X) studied in [2]

A set A in a vector lattice W is bounded if there is an element w in

W such that a < w for all a in A. A filter 0 is bounded if some set

A e @ is bounded. It is easy to verify that if W6 is a convergence vector

lattice then the space Wb containing only the bounded filters from W6 is
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also a convergence vector lattice. Thus Kob 6X, Y) is a convergence vector

lattice. (A net {fa} converges to a function f in Kcrb(X,Y) if and only if

it converges in KG(X,Y) and is bounded- i.e., there exists a function g in

KCX,Y) and an index s0 such that fel <_ g for all _> s0.)

We note that relative uniform convergence on a vector lattice is a convergence

vector lattice structure.

THEOREM 3. Let V be a function lattice rlth i. If V is 2-unlversally

complete, the identity map from V
O

onto its image in Kb(X,SX) is blcontinuous.

PROOF. Let net {vu} converge to zero in V0: For some u in V and

n 1,2,...,
u for >Iv n n .

Thus {v} converges to zero in CoXAu) where X is the carrier space of V.

It follows that {ve} converges to zero in C (-Au) and hence in
co

Kb(X,X). Conversely, let net {v} in V converge to zero in Kb(X, SX).

For some g in K(X,) and s0.

[V] <__ g for >_ tO.

By Lemma 3 we can assume that g is in V; we can also assume g >_ I and {v}
converges to zero in Cco(XAg). Thus, given n, there is an n such that

for x in g-l[l,n]
Ire(x)] < i < 1 g2(x) for >n--n n

For x not in g-l[l,n], since g2(x) > n g(x),
1 g2(x) for > 0

By Lemma 3 there is a w in V such that w >_ g2. Thus for u beyond s0

and

Iv< nl g2 I< w.

We conclude that {v } converges to zero in V

COROLLARY i. For realcompact X,

C
0
(X) Kob(X, SX) CI, b(X).

We recall that a set A in a convergence vector lattice W6 is dense in W

if every element of W is the limit in of a net in A. The space W
6

is

complete if every Cauchy net (filter) converges. If W6 is complete, it
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follow readily that Wb is eomplete.
THEOREM 4. Let V be a 2-unlversally complete function lattice with i

having carrier space X. Then Kob(X,X) is complete and contains V as a dense

subspace. Moreover, Vp is complete if and only if it equals Kb(X, BX).

PROOF. The space K(X,X), being an inductive limit of complete factors

CcoOXAf), is easily seen to be complete; thus gb(X,) is complete.

Given f in K,X), f is in C(XAg) for some g in F(X, X). Since

V C(X Ag) is a sublattice of C(X Ag) containing the constant functions

and separating the points of X Ag, there is a net {v} in V converging

to f in Cco( Ag) by the Stone-Weierstrass Tlore. By Le 3 there is

a w in V w/.tb_ w Ifl {(v^w)v(-w)} converges to f in Kob(,X,I"’). The

last statement of the theorem is now a consequence of Theorem 3.

It follows from Theorem 4 that if a 2-unlversally complete function lattice

V with i separates X and if V is complete, then V C(X). If, moreover,

X is -compact and locally compact then K(X,X) C (X) since BX X Afco

for some f in F(X, SX) C(X), implying Vp CcobCX).
COROLLARY 2. The space of all real-valued measurable functions on

[0,1J with the relative uniform convergence structure is complete.

PROOF.. It was sh in Exale i that = K(X,).
We cite two examples to show that "relatively uniformly complete" and

"2-unlversally complete" are independent concepts.

A!PLE 2. Let V be the space of continuous functions f on the real

line such that the restriction of f to any compact set consists of finitely

many line segments. Clearly, V is a function lattice containing i. To see

that V is 2-unlversally complete, let G be a 2-disjoint collection of

functions in V and let K be a compact subset of . For each y in K there

is a function fy in G such that [fyl (Y) > O, since y is in the carrier space

X of V. Thus, fy] (z) > 0 for all z in some neighborhood of y. Since

finitely many such neighborhoods cover K there are finitely many functions fyl
whose supremum f is positive on K. It follows that gl f # 0 for at most
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finitely many g in G; i.e., g(K) 0 for all but finitely many g in G.

Thus, since on any compact set the polntwise supremum of G is a supremum of

finitely many functions, G has a supremum in V. However, any continuous fnctlon

which vanishes outside the interval (0,I) is a relative uniform limit of

functions in V; thus V is not relatively uniformly complete.

LE 3. We rlll call a function on the reals "ultimately a polynomial"

if it is continuous and is equal to a polynomial on the complement of some

interval [-n,n] and w let V be the solid hull in C(R) of the set of

functions which are ultimately polynomials. We will argue that the carrier space

X of V is . Where C (R) is the space of hounded continuous functions on

c R) C_ V _C C)

Since V separates and Vf CR) separates X, we can assume (examining the

adJ olnt maps)

D x D .
Letting f denote the extended real-valued function on R whose restriction to

R is f(x) x, we will prove that f is infinite on R. If so, then X

since f must be finite on X. Let p be a point in RkR and {re} a net

in convergent to p. Then {f(ru)} converges to f(p). If f(p) were rea]

we would conclude that f) p by uniqueness of the limit of {ru} in R, a

contradiction. We can now show that V is not 2-unlversally complete. Let

{fn}n= (x)be a collection of continuous functions on R chosen so that fn
is zero outside the interval (2n-3,2n+l) and equal to ex on the interval

[2n-2,2n]. Clearly, {fn} is a /-disjoint collection in V with no supremum in

V. On the other hand, if {re} is a relatively uniformly Cauchy net in V, there

is a strlctly positive function w in V such that for s,8 >_ 7n (n-1,2,...

Clearly {v} is bounded in V, and since w is bounded on each compact set,

{ve} is Cauchy in C R). Thus {re} converges in C (R) to some function fco co

in C@R). It follows that for all _> 7n

n
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is in V, and {va} converges relatlvely uniformly to f in V. Hence, V is

relatlvely uniformly complete.
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