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ABSTRACT. A lattice K(X,Y) of continuous functionson space X is associated to
each compactification Y of X. It is shown for K(X,Y) that the order topology is
the topology of compact convergence on X if and only if X is realcompact in Y.
This result is used to provide a representation of a class of vector lattices with
the order topology as lattices of continuous functions with the topology of com—
pact convergence. This class includes every C(X) and all countably universally
Pomplete function lattices with 1. It is shown that a choice of K(X,Y) endowed
with a natural convergence structure serves as the convergence space completion

of V with the relative uniform convergence.
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1. INTRODUCTION.

In this paper we will study a broad class of real function lattices which we
call "2-universally complete." For this class we will show that the order top-
ology To(also called the order bound topology and the relative uniform topology)
is the topology of compact convergence in an appropriate representation (Theorem2).

We will show (Proposition 3) that the 2-universally complete lattices include the
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lattices "C(X), all continuous real-valued functions on X, and all countably
universally complete lattices containing 1. (An example of this latter type is
discussed in Example 1.)

The proof of Theorem 2 requires a construction which is studied independently
in § 1. 1In particular, sublattices K(X,Y) of C(X) for compactifications
Y of X are investigated. Theorem 1 states that the order topology for K(X,Y)
is the topology of compact convergence on X if and only if X is realcompact
in Y. (This concept of realcompactness was studied in [10].)

Since the order topology is the finest locally convex topology in which
every relatively uniformly convergent net converges (see [5]), in § 3 we
consider the 2-universally complete function lattice V with relative uniform
convergence as a convergence function lattice Vp, without reference to its
associated order topology. We show (Theorem 4) that K(X,Y) endowed with a
natural convergence structure serves as the completion in the convergence space
sense of Vb.

We remark that (assuming without loss of generality that X is realcompact)
it can be seen directly that the order topology is the topology of compact
convergence for the lattice C(X). This follows from [13, p. 124] since every
positive linear functional is continuous with respect to the topology of compact
convergence (see [6]) and since C(X) with the topology of compact convergence
is barrelled (see [11]).

2. THE ORDER TOPOLOGY FOR K(X,Y)

Let Y be a compact Hausdorff space and X a dense subspace. We denote
by F(X,Y) the set of all nonnegative extended real-valued continuous functions
on Y which are finite on X. For f in F(X,Y) we let Ay be the set in
Y~ X where f 1s infinite. We set

KX, Y) = U {C(YNAp): £ e F(X,D)}.
Since X 1is dense in each Y'\~Af, by restricting the functions in K(X,Y) to

X we can view K(X,Y) as a sublattice (and also a subalgebra) of C(X).
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LEMMA 1. For each function g in K(X,Y) there is a function f in
F(X,Y) such that g < f.
PROOF. Given g in K(X,Y) there is a function h > 0 in F(X,Y) such
that g is in C(Y‘\-Ah). We consider the compact subsets
A = nt [n-1,n]
and B_ = h ' [0,0-2]V b [n+l, =]

of Y (n=1,2,...) with the understanding that B, = h-l [2, »]. Using

1
separating functions on Y, one can construct for each n a continuous function
fn such that
£,0) = sup {g(z): zeA} for x in A
and fn(x) = h(x) for x in Bn'
On Y\Ah the function f defined by
£(x) = sup {f (x): n=1,2,...}

is continuous, since at each point x in Y‘*»Ah there is a neighborhood of x
on which f 1is the supremum of finitely many functions fn' Moreover, £ > h
on Y‘\sAh and hence extends continuously to Y(i.e., f(x) = for x in Ah).
Thus f is in F(X,Y), and g < f.

For Y a compact Hausdorff space and X a dense subspace of Y, we will
say that X 1is realcompact in Y if

X=N {Y\Af: f € F(X,Y)}
This concept has been considered by Lorch in [10]. Where RX denotes the
Stone-Cech compactification of X, we note that X is realcompact if and only
if X is realcompact in fBX. If X 1is realcompact in Y it follows that X
is realcompact, since Y 1is a quotient of RgX. On the other hand, the real line
X with its discrete topology is realcompact but not realcompact in its one-point
compactification Y: The set Af is empty for each f in F(X,Y) since X 1is
not 0 - compact, implying
N I~A: feFEN}= v,
We note that the following proposition is also a consequence of work done in

(sl.
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PROPOSITION 1. A completely regular space X is realcompact in each of its
compactifications if and only if it is Lindelof.
PROOF. Suppose X is Lindelof, Y is a compactification of X and
P € Y~~X. Arguing as in [9], for each x in X we define a Urysohn function
-1
h, on Y such that h (x) =1, h(p) =0and 0 <h < 1. Then {hx (5,):

x € X} is an open cover of X having a countable subcover corresponding to

o

functions {hn}n-l .

Let h =) h /2", a non-negative member of C(Y) which is
strictly positive on X and zero at p. Thus p is in Al /h? showing that X
is realcompact in Y. Conversely, if X is not Lindelof, by [9] there is a
compact set K in BX~~X which is not contained in a zero set in BX~~X. Let
Y be that quotient of BX obtained by identifying the points of K. Since the
image of K in Y cannot be contained in a zero set in Y~X, X 1s not
realcompact in Y.

The subscript co will denote the topology of compact convergence and the
subscript To will denote the order topology. For a completely regular space X
with realcompactification vX, as noted in the introduction, CT (VX) = cco(\m).

o
Since Cco('x) b Cco(\)X) if X is not realcompact, we conclude that

C.l.0 ) =c &

if and only if X is realcompact (in BX). We provide the following general-
ization, noting that K(X,BX) is C(X).

THEOREM 1. Let Y be a compact Hausdorff space and X be a dense subspace
of Y. Then in K(X,Y) the order topology coincides with the topology of compact
convergence on X if and only if X 1is realcompact in Y.

PROOF. Setting

z=N{I~A;: feFEDI,
we note that
K(X,Y) = K(Z,Y).
We abbreviate K(X,Y) and F(X,Y) to K and F. The subscript p will denote

the relative uniform convergence structure. To complete the proof, we show that
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the topology of KT is the topology of compact convergence on Z. Let {fa} be
a net convergent tg zero in Kp. (As noted in the Introduction, T° is the
finest locally convex topology in which every net convergent in Kp converges.)
There is a g > 0 in K such that for all n,

1
I£,] <_- @2
1
Clearly {ﬁ . g} converges to zero in Cco (Y‘-Ag) and hence in Cco(z)'

Since CCO(Z) is a topological vector lattice, {fa} converges in CCO(Z).

Thus the map from KT into Cco(z) is continuous. To show that To is
coarser than the topoiogy of compact convergence on Z, let U be a closed,
absolutely convex, solid neighborhood of zero in KT . We remark that for f € F,
the inclusion map from Cco(Y‘\Af) into KT is co:tinuous. This follows from

o

the fact that the map from Cp(Y\Af) and hence from Cgp (Y\Af) into K
o o

is continuous. (As noted in the introduction, CT (Y\\Af) is Cco(Y-Af.)

o
Since Cco(Y) is Cco(Y‘~A1) and U is solid,
U ;? {g € ks || 8|| z =2 8}
where || - ||Z denotes the supremum on Z, and & 1is a fixed positive number.

The following argument uses techniques found in [11]. We will call a compact
set G in Y a support set for U if for £ in F, f is in U whenever its
restriction to G vanishes. For example, Y is a supportset for U and,
assuming U does not contain F (if U2F then U =K by Lemma 1), the
empty set is not a support set for U. We note several properties of support
sets for U which will be needed.

(a) Let G be a support set for U. If f is in F with

[I£]]g < 6/2 then £ isin U.

To see this, consider the function g = (f - §/2)vD. Although- - F is not a
vector lattice, g 1is clearly in F. Since
ll2g||g= 0, 28 is in U; since [12¢£-g) ||, < 8, 2(f-g) 4s in U. Thus by

the convexity of U, f is in U.
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(b) Let G be a compact subset of Y. If for h
in F, h 1is in U whenever h vanishes on a

neighborhood of G, then G 1is a support set for U.
To see this, suppose f € F vanishes on such a set G. The function
g = (f - 6§/2)v0 vanishes on f-l(—6/2,6/2), a neighborhood of G. Thus 2g
is in U. Since again 2(f -g) is in U we obtain f € U.

(c) The intersection of two support sets for U 1is a

support set for U.
To see this, let G and H be support sets for U and let f in F vanish
on a neighborhood W of G/\H. If f is bounded there is a g in C(Y)NF
such that Ilgllc =0 and g(x) > f(x) for x in H~~W. Since
|lg Af||G =0, 2(gNf) is in U, and since |[|(f - g)v OHH =0, 2[(f -g) v O]
is in U. Thus by the convexity of U, f is in U. Now suppose f 1is not
bounded. Then f is the limit in K, of the bounded functions {f Anl} since
this sequence converges to f in CCO?Y‘\Af). Each fMnl is in U and U is

closed, so that f is in U.

(d) The intersection S of all support sets

for U 1is a support set for U.
To see this, let f in F vanish on a neighborhood W of S. Since Y~W is
compact it 1s covered by the complements of finitely many support sets for U.
Thus f vanishes on the intersection of these finitely many support sets and is
in U by (c).

We prove that the intersection S of all support sets for U 1is contained
in Z. Let p be in YNZ. Then h(p) =+ > for some h in F. Since the
inclusion map from CCO(Y‘xAh) into KT is continuous, there is a compact
subset D of Y\Ah such that U cont:ins {g € C(Y\\Ah):||g|lD < g} for some
€ >0. Thus if g is in C(Y‘\Ah)f\F and vanishes on D, then g 1is in U.
For any f in F which vanishes on D, since fAnl is in C(Y‘xAh) we have
fAnl € U. It follows from the fact that U is closed that f 1is in U. Thus

D 1is a support set for U not containing p. We conclude that S 1is contained

in z. By (a) U2 {fe F:llfl]s < §/2}.
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Let g be any member of K having ||gl|s < §/2. Then g isin C(YNA,) for
some h in F. By Lemma 1 we can assume h > |g|. There is a number N large
enough so that the closed set h-lfN,“) in Y\Ah is disjoint from S. Since
Y\\Ah is normal there is a function k in C(Y~A,) which equals |g] on s
and h on h—l[N,W). Letting f be kv|g| on Y\\Ah and © on Ah’ we conclude
that f disin F since £>h on h l[N,®). Since f=|g| on S, £ isin
U. Since £ > lg[ and U 1is solid, g is in U. Thus,

U2 {g e K: Hglls <§/2},
a neighborhood of zero in the topology of compact convergence on Z. This completes
the proof.

3. THE ORDER TOPOLOGY FOR A 2-UNIVERSALLY COMPLETE LATTICE

We recall that an element e in a vector lattice V 1is said to be a
weak order unit if for each v in V
v = Viv Ane: n = 1,2,3,...}.
We will assume that V 1is a vector lattice having a weak order unit e and
that the real lattice homomorphisms on V separate the points of V. We let X
be the set of lattice homomorphisms x on V such that x(e) =1 with the
topology of pointwise convergence. We map V into C(X) by the usual Gelfand
map V(x) = x(v) for all x in X. We will refer to X as the carrier space of
V. The proof of the following proposition uses the techniques of Lemma 2 in [3].
PROPOSITION 2. The Gelfand mapping of V into C(X) is injective.
PROOF. Suppose ¥ =0 for v in V; thus, x(v) =0 for all x in X.
For each lattice homomorphism ¢ on V either ¢(e) =0 or ¢/¢p(e) 1is in X,
so that
¢ (vine) = ¢(v)Mnd(e) = 0.
Since the lattice homomorphisms separate X, vine = 0 for all n. Thus
v = Vihne: n = 1,2,...} = 0.
We will henceforth identify V with its image in C(X) and refer to it
as a function lattice with 1 (the image of e). We also will not distinguish

between functions in C(X) and their extensions to functions from the
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Stone-Cech compactification BX of X to the extended real numbers.
We will have need for an additional condition. In a function lattice V
with 1 we will say that a collection {v } _  is 2-disfoint if
1. For each n, |vn| A Ivkl # 0 for at most two
indices k distinct from n, and

2, for each x in the carrier space X of V there is a vu
such that v_(x) ¥ 0.
We will say that V is 2-universally complete if each 2-disjoint collection

has a supremum in V.

For what follows we recall that a countably universally complete lattice

o

n=1 satisfying

is one in which the supremum exists for each collection {Vn}
|vn|A|vj| =0 for n# 3.

PROPOSITION 3. (a) The lattice C(Y) for any completely regular space Y
is8 2-universally complete. (b) Each countably universally complete function
lattice with 1 18 2-universally complete.

PROOF, For (a), since the carrier space of C(Y) 1s the realcompactification
of Y we may as well assume that Y 1is realcompact. Given a 2-disjoint
collection {fn} in C(Y), at any point y in Y there is a function f
with |fn(x)| >0 for all x in a neighborhood N of y. The pointwise
supremm of the collection {f n} on N thus involves at most three functions;
one concludes that the pointwise supremum of {fn} is continuous, and thus the
supremum of {fn} in C(Y).

The proof of (b) follows from the observation that a 2-disjoint
collection can be decomposed into three collections, each having a supremum by
countable universal completeness.

We note that C(R) ( R the reals) is 2-universally complete but not
countably universally complete: Letting fn be a continuous function which

1 1
otl ? n] and has value 1 at some point X,» e obtain a

vanishes off [
o
collection {f } _ 1 satisfying Ifnl A 'fjl =0 for n# j whose supremum f

would clearly vanish on (- =, 0) and yet £ (0) = lim f£(x) = £ (x)) = L.

n-+ o
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For a function lattice V with 1, we let & denote the quotient space of
the Stone-éech compactification BX of the carrier space X which is induced by
the equivalance relation p vq 1if v(p) = v(q) for all v in V. The space
Ei is compact and (since V separates ’B\)'{) Hausdorff. Note that X 1is real-
compact in Ei Since V+ is contained in F(){,ﬁ), V is a sublattice of
K(X, E}'{), Of course, if V separates BX then K(X,'és() = K(X,BX) = C(X).

We will provide an example of a 2-universally complete function lattice -(
with 1 which is not uniformly dense in any function space C(S). For other
such examples see [7]. Furthermore, for the carrier space X in this example,
Ei # BX and K(X,&) --t. For this purpose we will need the following lemma.

We recall that a ¢-algebra is an archimedean lattice-ordered algebra over
the reals with identity 1 which is a weak order umit.

LEMMA 2. Llet V be a ¢-algebra. Then every lattice homomorphism on V 1is
an algebra homomorphism.

PROBF. Let 6O be a lattice homomorphism on V. Then 8 is a lattice
homomorphism on the order ideal I(l1) generated by 1, hence an extremal
element in the continuous dual I(1)' of I(l) in the order unit topology. For
g in I(1), 0< g <1, we define eg(f) = 0(fg). Since for £ >0 in IQ1)
we have Og(f) < 9(fg) < 6(f), it follows that 0 < Bgi 6 . Thus
.68 = )\89 for a scalar Ag which can be easily evaluated to be 6(g), so that
0(fg) = 0(£)0(g). This argument can be extended by standard means to show that 6
is an algebra homomorphism on I(1). We next consider nonnegative elements g
in I(1) and f in V. To facilitate computations if 6(g) = 0, we let

gk =g+ 1. Then
8 g®) =V [0(£g%) A 0o (2%)]
=\/_[0(£ An1)g*]
= V[0 (£ A n1)6 (g%)]

= LV G rmeer = 8(n0 (e,
the third step being valid because fAnl and g* are in I(l). Thus

6(fg) = 6(£)0(g). The argument can now be repeated without the restriction
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that g is in TL(1). The standard extension establishes that 6 1is an algebra
homomorphism on V.

EXAMPLE 1. The ¢-algebra G(of all real-valued measurable functions on [0,1]
is countably universally complete (hence, 2~universally complete) and is
complete in the uniform topology. It is known (see [7]) that X is not isomorphic
as a ¢-algebra to any function space C(S). It follows from Lemma 2 that [ is
not isomorphic as a lattice to any C(S). Thus &£ is not a uniformly dense sub-
lattice of any C(S). Furthermore, if &£, separated the points in RX then the
space of bounded functions in af,would be C(BX) by the Stone-Weierstrass
theorem. But since & as a ¢-algebra is closed under inversion, this would imply
£ = C(X). Thus Ei # BX. To show = K(X,&), consider f in K(X,&). Then
f is in C(§§‘~Ah) for some h in F(X,Ei). Since éi\\Ah is g-compact, the
topology of Cco(gi‘\Ah) is metrizable. By the Stone-Welerstrass theorem there
exists a sequence of functions in JC convergent to f in Cco(éi\\Ah). Thus £
on [0,1] 1is a pointwise limit of a sequence of measurable functions, and so in
&£ . We remark that X here is [0,1] in the discrete topology and x(x,ﬁi)
consists of just those continuous extended realvalued functions on §§ which are
finite on a dense subset.

LEMMA 3. Let V be 2-universally complete. For each function g in
K(X,éis there is a function f in V such that g < f.

PROOF. We begin by showing that for compact sets Kl and K2 in §i there
is a function v in V which is zero on Kl’ one on K2 and satisfies
0<v<l, Given p in K1 and x in K2, since V 1is a vector space and

I~
separates PBX there is a function Ve in V such that
0<v,(p) <1<v (x).
Clearly, 0< vx(q) <1< vx(y)

for all points q in some neighborhood Ux of p and all points y in some
neighborhood Nx of x. Let vp be the supremum of functions Vi corresponding
to a finite subcover {Nx} of K,. Then

0< vp(q) <1< vp(y)
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for all y in K2 and q in a neighborhood of Wp of p. Letting W be the
infimum of functions vp corresponding to a finite subcover {Wp} of K1 we
obtain

0<w(@ <1< o <wy)

for all q in Kl’ y in K, and some real number o. The function

1 [(w1)vOo]phr 1
v={z3 ¢

has the desired properties. Now let g be a function in K(X,éis. By Lemma 1
there is a function h in F(X,éi) such that h > g. Consider the compact
subsets

A =1 "' -2, 20]
and B_ =1 1[0, 20 -3]V b l[2041, «]

of B8X (n=1,2,...) with the understanding that B, = h—1[3,w]. It follows

1
from the first part of this proof that there is a function va in V with

0 < v, <2n which has value 2n on A and is zero on B . Since {v } isa
2-disjoint collection, its supremum is a function in V greater than or equal to
h (and hence g).

Given u in V+, we consider the ideal
[wl’ = vew: |v] € Au for some A in R}
and we set, for each v in [u],
||v||u = inf{A > 0: |v| < Aul,
It is easy to verify that the normed spaces
\'
(el [+ |1p: wevh
form an inductive system ordered by inclusion, whose locally convex inductive
limit is V, (see, e.g., [13,p.122]),
o
PROPOSITION 4. Let B be a 2-universally complete function lattice with 1
and having carrier space X. Then
~
VT =vN Kp X, BX).
o

o

PROOF. We recall that VT is the locally convex inductive limit of the
)
+
factors {([u]’, [l - ||u): u € V'}, where [ul” is the ideal in V generated by

~
u. It follows from Lemma 3 that KL (X, BX) 1is the locally convex inductive
o

limit of the factors {([uX, [] - ||u): u e V'), where [ul® 1is the
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o~
ideal in K(X,8X) generated by u. It is easy to verify that the topology of

~
VT is finer than that of V) KT (X,BX). For the converse, let U be a solid
o o

neighborhood of zero in VT . Then for some collection {au: u € V} of positive
o
\'4 \'A
scalars, U contains the convex hull of \}{au[-u,uj : ueV}l, where [-u,u]

denotes an order interval in V. Denoting by [—u,u]K the order interval in
~S
K(X,BX), we let v be in the intersection with V of the convex hull of
n
K
% {Gu[—u,uJ :u€vVl Since v 1§1x1f1 for scalars Ai satisfying

K
in aui[-ui,ui] , then

n
LA, |<1 and f
gmp 1= 1

ERNI

o u/| €U
i= u i
By the solidness of U, v is }n U.

i

The next theorem is a consequence of Proposition 4 and Theorem 1.

THEOREM 2., Let V be a 2-universally complete function lattice with 1.
The order topology TO on V 1is the topology of compact convergence on the
carrier space of V.

4. CONVERGENCE STRUCTURES RELATED TO UNIFORM CONVERGENCE

In this section we will be using the ideas of convergence space theory (see,
e.g., [1]). We will consider convergence structures on K(X,Y), where Y is
compact and Hausdorff and X is realcompact in Y. We let KU(X,Y) denote the

convergence space inductive limit of the system
{CCO(Y\Af): f e F(X,Y)},

together with the continuous inclusion maps. Thus a net {ga} converges to g
in KU(X,Y) if and only if 8y is in a factor C(Y‘\Af) for all o beyond

some & and {ga} converges to g in CCO(Y\\Af); equivalently, a

o > 0O
filter © converges to g in KO(X,Y) if and only if © contains the neighbor-
hood filter at g in'some factor CCO(Y‘\Af). We note that for X realcompact,
KO(X,BX) is the convergence space CI'(X) studied in [2].

A set A in a vector lattice W is bounded if there is an element w in

W such that [al < w for all a in A. A filter O is bounded if some set

A € O 1is bounded. It is easy to verify that if W6 is a convergence vector

lattice then the space st containing only the bounded filters from wé is
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also a convergence vector lattice. Thus de(.X,Y) is a convergence vector
lattice. (A net {fa} converges to a function f in Kob(x,Y) if and only if
it converges in KOCX,Y) and is bounded - i.e., there exists a function g in
K(X,Y) and an index ¢ such that lfa| < g for all a > ao.)

We note that relative uniform convergence on a vector lattice is a convergence
vector lattice structure.

THEOREM 3. Let V be a function lattice with 1. If V is 2-universally

~
complete, the identity map from V_ onto its image in K ob(X,BX) is bicontinuous.

p
PROOF. Let net {va} converge to zero in Vp: For some u in V and

n=l,2,..., 1
'< -ufora> a_.
Va n

Thus {Va} converges to zero in C (BX\A ), where X is the carrier space of V.
It follows that {v } converges to zero in C (‘BT{\A ) and hence in
Kob(X,B’i’). Conversely, let net {v } din v converge to zero in K (X, ).

For some g in K(X,BX) and Qg.
|vali g fora > ao.

By Lemma 3 we can assume that g is in V; we can also assume g > 1 and {va}

converges to zero in C (BX\A ). Thus, given n, there is an a such that

for x in g [ln]

1 1 2
|Va(x)| < L8 () for a2 a.

For x not in g-1[1,n], since g2(x) > n g(x),
lv, ] < glx) < ;ll g2(x) fora > ap .

By Lemma 3 there is a w in V such that w > gz. Thus for o beyond ap

and Oln,
1 2

< w.
n® =

B

Iv l <
Vol £
We conclude that {Va} converges to zero in V_.

COROLLARY 1. For realcompact X,
cp (X) = KUb(X’Bx) = CI'b(x)o
We recall that a set A in a convergence vector lattice Wé. is dense in W

if every element of W is the limit in 6 of a net in A. The space w6 is

complete if every Cauchy net (filter) converges. If W‘S is complete, it
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follows readily that Wbb is completg.

THEOREM 4. Let V be a 2-universally complete function lattice with 1
having carrier space X. Then xbb(x,éﬁ) is complete and contains V as a dense
subspace. Moreover, Vp is complete if and only if it equals Kob(x,éi).

PROOF. The space KU(X,éi), being an inductive limit of complete factors
Cco(gi\\Af), is easily seen to be complete; thus Kbb(x,ﬁi) is complete.

Given f in K(X,8X), £ is in c(é‘i\Ag) for some g in F(X,BX). Since
vA C(§§\\.A8) is a sublattice of C(éi‘\ Ag) containing the constant functions
and separating the points of E;‘\ Ag, there is a net {vd} in V converging
to £ in Cco(éi‘\ Ag) by the Stone-Weierstrass Theorem. By Lemma 3 there is
a w in V with w> [£]; {(vaﬁw)v(rv)} converges to f in Kobcx,éf). The
last statement of the theorem is now a consequence of Theorem 3.

It follows from Theorem 4 that if a 2-universally complete function lattice
V with 1 separates BX and if Vp is complete, then V = C(X). If, moreover,
X 18 o-compact and locally compact then KU(X,BX) = Cco(x) since BX\\ X = Af
).

COROLLARY 2. The space J:; of all real-valued measurable functions on

for some f in F(X,RX) = C(X), dimplying Vp = Ccob
[0,1] with the relative uniform convergence structure is complete.

PROOF. It was shown in Example 1 that &= KCX,Ef).

We cite two examples to show that "relatively uniformly complete" and
"2-universally complete" are independent concepts.

EXAMPLE 2. Let V be the space of continuous functions f on the real
line such that the restriction of f to any compact set consists of finitely
many line segments. Clearly, V 1is a function lattice containing 1. To see
that V 1is 2-universally complete, let G be a 2-disjoint collection of
functions in V and let K be a compact subset of R. For each y in K there
is a function fy in G such that |fy|(y)>-0, since y 1is in the carrier space
X of V. Thus, lfy](z) >0 for all z in some neighborhood of y. Since
finitely many such neighborhoods cover K there are finitely many functions |fy|

whose supremum f is positive on K. It follows that |g| Af # 0 for at most
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finitely many g in G; i.e., g(K) = 0 for all but finitely many g in G,
Thus, since on any compact set the pointwise supremum of G 1is a supremum of
finitely many functions, G has a supremum in V. However, any continuous function
which vanishes outside the interval (0,1) is a relative uniform limit of
functions in V; thus V is not relatively uniformly complete.

EXAMPLE 3, We will call a function on the reals R "ultimately a polynomial"
if it is continuous and is equal to a polynomial on the complement of some
interval [-n,n] and we let V be the solid hull in C(R) of the set of
functions which are ultimately polynomials. We will argue that the carrier space
X of V is R. Where C° (R) is the space of bounded continuous functions on R,

c°RyCvCcrw

Since YV separates R and VN c® @R) separates X, we can assume (examining the

adjoint.maps)

BR 2 X 2D R.
Letting f denote the extended real-valued function on BR whose restriction to
R 1is f(x) = x, we will prove that f is infinite on RRNR. If so, then X =R
since f must be finite on X. Let p be a point in BR\R and {ra} a net
in R convergent to p. Then {f (ra)} converges to f(p). If f(p) were real,
we would conclude that £(p) = p by uniqueness of the limit of {ra} in PR, a
contradiction. We can now show that V is not 2-universally complete. Let
{£ n}n=_mw be a collection of continuous functions on R chosen so that f (x)
is zero outside the interval (2n-3,2n+l) and equal to e* on the interval
[2n-2,2n]. Clearly, {fn} is a é-disjoint collection in V with no supremum in
V. On the other hand, if {va} is a relatively uniformly Cauchy net in V, there

is a strictly positive function w in V such that for a,B 2v, (n=1,2,...)
lva - vBI < % w.

Clearly {va} is bounded in V, and since w is bounded on each compact set,

{vy} 1s Cauchy in C.o®). Thus {va} converges in C_ (R) to some function f

in C(®R). It follows that for all o > Yo

|vu—f|_<_ 1 w.
n
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Thus |£| is bounded by the function |vY | + w (which is in V) so that f
1

is in V, and {vd} converges relatively uniformly to f in V. Hence, V is

relatively uniformly complete.

10.

11.

12.
13.

L.

H.

L.
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